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Preface

The dramatic reduction in transmission loss of optical fibers coupled with
equally important developments in the area of light sources and detectors
have brought about a phenomenal growth of the fiber optic industry during the
past two decades. Indeed, the birth of optical fiber communications coincided
with the fabrication of low-loss optical fibers and operation of room tempera-
ture semiconductor lasers in 1970. Since then, the scientific and technological
progress in the field has been so phenomenal that optical fiber communication
systems find themselves already in the fifth generation within a span of about
25 years. Broadband optical fiber amplifiers coupled with wavelength division
multiplexing techniques and soliton communication systems are some of the
very important developments that have taken place in the past few years, which
are already revolutionizing the field of fiber optics. Although the major appli-
cation of optical fibers has been in the area of telecommunications, many new
related areas such as fiber optic sensors, fiber optic devices and components,
and integrated optics have witnessed considerable growth. In addition, optical
fibers allow us to perform many interesting and simple experiments permitting
us to understand basic physical principles.

With the all-pervading applications of optical fibers, many educational in-
stitutions have started courses on fiber optics. At our Institute, we have a three-
semester M. Tech. program on Optoelectronics and Optical Communications
(jointly run by the Physics and Electrical Engineering Departments) in which
we have an extensive coverage of the theory of optical fibers and optical fiber
communications and also many experiments and projects associated with it.
We also have an elective paper on fiber optics for our M.Sc. (Physics) students.
The present book is an outgrowth of the lectures that have been delivered both
to our M.Sc. as well as to our M.Tech. students during the past fifteen years.
Many of the experiments described in the book have also evolved as simple and
elegant demonstration of optics principles to our undergraduate engineering
students taking a course on Optics. The material presented here and also the
associated experiments have been very successfully used in various summer
and winter schools in the area of fiber optics conducted by our Institute. It was
felt that there is a need today of a textbook at the undergraduate level covering
the field from the basic concepts to the very recent advances, including various
applications of this exciting field.,

The book aims to cover the field of fiber optics and its many applications
at an undergraduate level. The book also contains many solved and unsolved
problems, some of which will give the reader a greater feel for numbers while the
others are expected to help in a greater understanding of the concepts developed
in the book. We would greatly appreciate receiving suggestions for further
improvement of the book. We would also be very grateful if any errors in the
book are pointed out to us.

New Delhi Ajoy Ghatak
March 1997 K. Thyagarajan
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Abbreviations

A Angstrom
APD avalanche photo diode
ASE amplified spontaneous emission

AT&T  American telegraph & telephone

BER bit error rate

BH buried heterostructure

BW bandwidth

CCITT Comite consultatif internationale telegraphique et telephonique

CSF conventional single mode fiber
cw continuous wave

dB decibel

DBR distributed Bragg reflector
DCF dispersion compensating fiber
DFB distributed feedback

DH double heterostructure

DMA  differential mode attenuation
DSF dispersion shifted fiber
EDFA  erbium doped fiber amplifier
EMD equilibrium mode distribution
ESA excited-state absorption

ESI equivalent step index
eV electron volt

e-h electron-hole

FP Fabry-Perot

fs femtosecond

FTIR frustrated total internal reflection
FWHM full width at half maximum
FWM  four wave mixing

GHz gigahertz

GSA ground state absorption

GVD group velocity dispersion

GW gigawatt

HWP half wave plate

kHz kilohertz

kV kilovolt

kW kilowatt

LCP left circularly polarized wave
LD laser diode

LED light emitting diode
LHS left hand side

LP linearly polarized
LPS limited phase space
Mb/s mega (million) bits per second

MFD mode field diameter
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Nippon electric company
nonlinear Schrodinger equation
nanometer

nanosecond

pulse amplitude modulation
pulse code modulation

p (doped) intrinsic n (doped)
picosecond

quarter wave plate

radian

right circularly polarized wave
right hand side

root mean square

refracted near field

return to zero

Soleil Babinet compensator
step index fiber

signal to noise ratio

state of polarization
self-phase modulation

tera (trillion) bits per second
time division multiplexing
transverse electric
transverse electromagnetic
transverse magnetic
transmitted near field

ultra violet

wavelength division multiplexing
Wentzel Kramers Brillouin

zero material dispersion wavelength
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1

Introduction: The fiber optics revolution

There has always been a demand for increased capacity of transmission of infor-
mation, and scientists and engineers continuously pursue technological routes
for achieving this goal. The technological advances ever since the invention
of the laser in 1960 have indeed revolutionized the area of telecommunication
and networking. The availability of the laser, which is a coherent source of
light waves, presented communication engineers with a suitable carrier wave
capable of carrying enormously large amounts of information compared with
radiowaves and microwaves. Although the dream of carrying millions of tele-
phone (audio) or video channels through a single light beam is yet to be realized,
the technology is slowly edging toward making this dream a reality.

A typical lightwave communication system consists of a lightwave trans-
mitter, which is usually a semiconductor laser diode (emitting in the invisible
infrared region of the optical spectrum) with associated electronics for mod-
ulating it with the signals; a transmission channel — namely, the optical fiber
to carry the modulated light beam; and finally, a receiver, which consists of an
optical detector and associated electronics for retrieving the signal (see Fig-
ure 1.1). The information — that is, the signal to be transmitted — is usually
coded into a digital stream of light pulses by modulating the laser diode. These
optical pulses then travel through the optical fiber in the form of guided waves
and are received by the optical detector from which the signal is then decoded
and retrieved.

At the heart of a lightwave communication system is the optical fiber, which
acts as the transmission channel carrying the light beam loaded with informa-
tion. It consists of a dielectric core (usually doped silica) of high refractive index
surrounded by a lower refractive index cladding (see Figure 1.2). Incidentally,
silica is the primary constituent of sand, which is found in so much abundance
on our earth. Guidance of light through the optical fiber takes place by the
phenomenon of total internal reflection. Sending the information-loaded light
beams through optical fibers instead of through the open atmosphere protects
the light beam from atmospheric uncertainties such as rain, fog, pollution, and
so forth.

One of the key elements in the fiber optics revolution has been the dramatic
improvement in the transmission characteristics of optical fibers. These include
the attenuation of the light beam as well as the distortion in the optical signals
as they race through the optical fiber. Figure 1.3 shows the dramatic reduc-
tion in the propagation loss of optical radiation through glass from ancient
times to present. The steep fall in loss beginning in 1970 as the technology
advanced rapidly is very apparent. It was indeed the development of low-loss
optical fibers (20 dB/km at the He-Ne laser wavelength of 633 nm) in 1970
by Corning Glass Works in the United States that made practical the use of
optical fibers as a viable transmission medium in lightwave communication
systems. Figure 1.4 shows the wavelength variation of loss of a typical silica
optical fiber showing the low-loss operating wavelength windows of 1300 nm
and 1550 nm.
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Although a variety of optical fibers are available, the fibers in most use today
are the so-called single-mode fibers with a core diameter of about 10 ym and an
overall diameter of 125 wm. Optical fibers with typical losses in the range of 0.2
dB/km at 1550 nm and capable of transmission at 2—-10 Gbit/s (Gb/s) are now
commercially available. (A loss figure of 0.2 dB/km would imply a 50% power
loss after propagating through a distance of about 15 km; the corresponding
power loss for the best glass available in 1966 was about 1000 dB/km, which
implies a 50% power loss in a distance of about 3 m!) Most currently installed
systems are based on communication at a 1300-nm optical window of trans-
mission. The choice of this wavelength was dictated by the fact that around an
operating wavelength of 1300 nm the optical pulses propagate through a con-
ventional single-mode fiber with almost no pulse broadening. Because silica
has the lowest loss in the 1550-nm wavelength band, special fibers known as
dispersion-shifted fibers have been developed to have negligible dispersion in
the 1550-nm band, thus providing us with fibers having lowest loss and almost
negligible dispersion.

In the lightwave communication systems in operation today, the signals have
to be regenerated every 30—60 km to ensure that information is intelligibly re-
trieved at the receiving end. This is necessary either because the light pulses have
become attenuated, and hence the signal levels have fallen below the detectable
level, or because the spreading of the pulses has resulted in an overlapping of
adjacent pulses leading to a loss of information. Until now this regeneration
had to be achieved by first converting the optical signals into electrical signals,
regenerating the signals electrically, and then once again converting the elec-
trical signals into optical signals by modulating another semiconductor laser;
such devices are called regenerators. Recent developments in optical amplifiers
based on erbium- (a rare earth element) doped silica optical fibers have opened
up possibilities of amplifying optical signals directly in the optical domain
without the need of conversion to electrical signals. Because of amplification
in the optical domain itself, such systems are not limited by the speed of the
electronic circuitry and indeed can amplify multiple signals transmitted via
different wavelengths simultaneously. For example, Figure 1.5 shows a typical
gain spectrum of an erbium-doped fiber amplifier where one can note the flat
gain over a wavelength band as large as 30 nm. Fortuitously, the gain band of

Fig. 1.1: A typical fiber
optic communication
system consisting of an
optical transmitter (laser
diode or LED), the
transmission medium
(optical fiber), and the
optical receiver
(photodetector).
Information is sent in the
form of optical pulses
through the link.
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Fig. 1.2: (a) A typical
optical fiber consisting of a
doped silica core
surrounded by a pure silica
cladding of slightly lower
refractive index. Light
guidance takes place
through the phenomenon of
total internal reflection.

(b) A scanning electron
micrograph of an etched
fiber showing clearly the
core and the cladding.
[After Miya et al. (1979).]
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such optical amplifiers falls exactly on the low-loss transmission window of
silica-based fibers. Indeed, the wavelength band of 100 nm around 1550 nm
of the low-loss window of silica-based optical fibers (from 1500 to 1600 nm)
corresponds to 12,500 GHz of bandwidth. This may be compared with the to-
tal radio bandwidth of only 25 GHz. Although these give the total accessible
bandwidth figures, utilizing even a fraction of this available bandwidth gives
us an enormous potential.

The coincidence of the low-loss window and the wide-bandwidth erbium-
doped optical amplifiers has opened up possibilities of having wavelength
division multiplexed communication systems (i.e., systems in which multi-
ple wavelengths are used to carry independent signals, thus multiplying the
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capacity of an individual fiber) capable of carrying enormous rates of infor- Fig. 1.3: Figure shows the
mation. Indeed, recent reports have shown successful transmission at the rate ~ dramatic reduction in
of 1.1 trillion bits per second (1.1 Tb/s) over 150 km and 2.6 Tb/s over 120 ‘ransmission loss in optical
. A . ; glass from ancient times to
km using 132 different wavelengths in the interval 1529.03-1563.86 nm (Eu- present. [After Nagel
ropean Conference on Optical Communication, 1996). Figure 1.6 shows the (1989).]
setup and results of the 1.1-Tb/s experiment that were accomplished with 55
different optical wavelengths carrying independent signals. This corresponds to
sending almost the entire contents of 1000 copies of a 30-volume encyclopedia
in 1 s!
There is also a lot of research activity on special kinds of fibers — namely,
dispersion-compensating fibers (DCFs). This has arisen because the existing
underground network already contains more than 70 million km of fibers op-
timized for operation at 1300 nm. Because today’s optical amplifiers operate
only in the 1550-nm region, the question that arises is whether it is possi-
ble to use the existing network of fibers to send signals at 1550 nm. Since
they are not optimized for 1550-nm operation, such fibers exhibit a significant
amount of dispersion at 1550 nm, leading to distortion of signals. The newly
developed DCFs have very large dispersions but have a sign that is opposite
those of the 1300-nm fibers. Hence, by appropriately choosing the lengths of
these fibers, one can indeed compensate for the distortion and thus use the



