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Preface

Chemistry is familiar enough; fire and fermentation are cornerstones of human
civilization, and the beaker and the test tube are readily recognizable icons in most of the
world. Flow is even more familiar; everyone has seen a river, felt the wind, taken a pulse.
Though they are rarely on the center stage, fluids that undergo chemical reactions as they
flow also impact an astonishingly large number of human experiences. Examples of this
include air purification, electro-chemical transport within the human brain, blood and air
flow through lungs, flow through kidneys, catalytic converters, tooth decay, deterioration of
historic objects, and nearly every large-scale manufacturing process, from semiconductors to
paper. Besides the sheer number, the diversity of this list is impressive.

The numerous biological examples reflect an inevitability of Nature’s adoption of the
flow-with-reaction model in the animal kingdom. Diffusion may provide adequate transport
rates at the scale of a single cell, but making viable animals at the meter-scale generally
demands quicker ways to deliver nutrients, provide fuel, remove waste, etc. Certain creatures
manage to survive reasonably well by rooting themselves to one spot and waiting for food to
arrive, in which case the flow-with-reaction model applies to the creature’s surroundings
rather than the creature’s insides. Humans realized long ago the labor-saving and cost-
reducing advantages of flow processes over batch processes, as even a brief inspection of the
history of the chemical industry would show.

Our interest in this subject is primarily geological: we want to describe what takes
place when a fluid is introduced into a permeable medium, reacts with that medium, and
thence transports the reaction product downstream, possibly for further reaction. Even when
restricted to geologic media, the range of interest is large; it encompasses the weathering of
geologic formations by the action of water, the manner in which certain minerals come to
occur in commercial quantities, the fate of chemical contaminants once they enter an aquifer,
optimal methods to remove (or at least contain) these contaminants, and ways to improve the
recovery of hydrocarbons from reservoirs. The last topic usually involves ways to operate
and treat the wells that extract the hydrocarbon.

This, then, is the scope of the applications of the material to be covered in this text.
But this scope, as important and relevant as it may be, would be an insufficient justification
for this text, for it is impossible to believe that all of the applications of geochemical flow can
be comprehensively treated in a single document. But it is possible to treat certain features of
simplified reactive flow that occur in nearly all applications. Understanding these features
will help interpret much more complex flows. Providing the basis for this understanding is
the goal of this text.

The central idea in the treatment is waves. Waves are changes in the chemical
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composition of the fluid. Focusing on changes, rather than the concentrations themselves,
may see a bit odd initially, but you will see that if we can describe the changes (the size of
the change and what is on either side of it), we can also describe the concentrations. All of
the waves in this text are moving (propagating). There are no standing waves. The waves
propagate by direct flow (convection): all of the waves are affected by how the chemical
components contained within them interact with each other and, most especially, how they
interact with the permeable medium. The waves propagate through the medium more slowly
(sometimes much more slowly) than the fluid carrying the components. Frequently they can
change shape, sometimes drastically so. The change in shape is sometimes the most
important part of the flow, for it is through this mechanism that chemicals can be broadcast
over large areas.

As intriguing as the propagation, though, is the fact that entirely new concentrations
can appear as a consequence of chemical interactions. These concentrations need not fall
between the concentrations of the fluids initially present and those injected. This behavior
would be wholly surprising were it not understood in the context of wave behavior. Framing
the discussion in terms of wave behavior is what sets our work apart from others working in
reactive transport and flow.

The text itself is a culmination of a research project conducted at The University of
Texas at Austin (UT) over the past 20 years. The project began as a study on the
requirements of uranium mining, progressed through more than ten graduate students and
many other applications, and most importantly for this text, yielded several other general
insights. We cannot come anywhere close to replicating the detail in the students’ theses and
dissertations, but we hope that there is enough information in this text to assist in reading
those works, to which we have referred extensively at the appropriate places in the text.

This book is also the text for a graduate course on geochemistry and flow that has
been taught at UT. Each of us has taught this course over the past ten years so the material
represents a distillation of four teaching styles and emphasis. The progression of a research
project through publications, to the classroom and finally to a text represents the type of
knowledge flow that is characteristic of a research program at well-furctioning universities.

Several acknowledgements are in order. We thank Dr. I. H. Silberberg for numerous
editorial suggestions, Ms. Joanna Castillo for the figures, format editing and general
computer support. We also thank Claire Jones, Mary Pettengill and the numerous research
sponsors the program has enjoyed over the years. Above all, we thank the M.S. and Ph.D.
students at The University of Texas for providing the foundation of this knowledge. Most of
them are cited too infrequently throughout text, so let us acknowledge them here:

Dr. Terry R. Guilinger
Dr. Mark P. Walsh
Dr. Muhammad Kabir
Ms. Aline Tatom

Ms. Miriam Stohs

Dr. Myra A. Dria
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Dr. Craig F. Novak (deceased)
Mr. David Simmons

Mr. Gianni Chieruzzi

Dr. Stephen D. Sevougian

Dr. Gang Wu

Mr. Anthony Quinn

Finally, we acknowledge the students who attended the geochemistry class over the past few
years, especially the most recent class: Myeong Noh, Farid Zouioueche, and Anna Johnson.
Your service of enduring a “dry run” invaluably improved this text.
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Chapter 1

Introduction

1.1. Objectives and Scope

Making a pot of coffee is like making a cask of whiskey: the process cannot be
rushed. The impatient new owner of a drip coffee maker soon acquires a keen appreciation
of the trade-off between taste and drip rate. The distiller who increases the flow rate through
the filtration section can fill more barrels per year but with a lower-quality product. Both are
caught in what a dramatist would recognize as creative tension, in this case arising from the
co-existence of two independent time scales, one for flow and another for reaction. This
tension, or competition between coupled phenomena, is a hallmark of reactive transport.
This book provides a foundation for the qualitative and quantitative understanding of such
features.

Though we do not guarantee that you will make better coffee the morning after
reading this book, you will at least be in a better position to explain what went wrong, as well
as to weigh in authoritatively on the merits of metal vs. paper filters*. More importantly, you
will also be equipped to interpret a broad range of phenomena, for fluid flow accompanied by
chemical reaction and mass transfer is ubiquitous. Its practical applications are as mundane
as making coffee and as marvelous as moving oxygen through the human body. Moreover, a
variety of couplings are inherent in reactive flow and transport, giving rise to as interesting
an array of behavior as may be found in any of the engineering sciences.

Our applications deal mainly with flow through the Earth’s crust, though many of the
ideas are immediately relevant in other systems. The chemical reactions of the Earth's
minerals with meteoric water underlie many phenomena that are vital to human enterprise:
mineral deposition, weathering, diagenesis, formation of ore deposits, and mobilization,
migration, and mitigation of pollutants. Some of these are specifically discussed in Chap. 9.
We are thus at a crossroads between chemistry, physics, and geology. This is remarkably
fertile territory. It exhibits elegant and subtle mathematical behavior while, at the same time,
encompassing many applications.

To keep the treatment manageable, we will examine only a subset of the many
problems in which chemistry, transport, and geology interact simultaneously. For example,
we mostly treat the limiting case in which the chemical reactions are locally in

* One is inert, the other sorbs oils extracted from the beans. The consequences of this distinction are explored in
Chap. 3.
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thermodynamic equilibrium. Furthermore, we shall use just enough physics to obtain steady
flow of a single fluid phase through a permeable medium, though the behavior of the
chemical components will be transient. And we will often boil down the geological
description of a stratum or formation to a list of the mineral phases present in that rock. We
rely almost exclusively on analytical solutions of the partial differential equations that define
the reactive transport problem, resorting to numerical solutions only occasionally to discuss a
realistic application.

As discussed above, all solutions are restricted to single-phase, incompressible,
isothermal, and one-dimensional flow. Later sections of this chapter discuss these
assumptions and their implications in more detail. You might wonder how much substance
remains after so many simplifications. A good deal of interesting behavior remains, though.
The set of requirements to be explored in this text consists of

(i) the possibility of transforming one chemical component into another;
(ii) the possibility of transferring components between phases;

(iii) a means for perturbing the system from equilibrium; and

(iv) chemical interaction between moving and stationary-phases.

The first two requirements are met as soon as we allow chemical reactions. Whether the
reactions go to equilibrium is less important than the fact that the reactions occur. The
assumption of local equilibrium is convenient mathematically, provides a basis for
understanding more complex flows (even those not in equilibrium), and is occasionally valid
in practical applications. Thus this assumption will permit much insight without sacrificing a
key feature of reactive transport problems. Similarly, steadily injecting fluid into a domain
with which it is not already in chemical equilibrium is a mathematically convenient way to
perturb the system. Such injection is also a good approximation of what happens in many
reactive transport applications. Permeable rocks and soils are the oldest examples of media
in which a moving fluid phase is in intimate contact with a stationary-phase.

1.2. Aesthetics of Reactive Flow

Mathematics is the language of science, and, like other languages, it can be a medium
for artistic expression. Coupling between one phenomenon and another is often a source of
richness. Consider, for example, the chaotic evolution of simple predator-prey population
models or weather models, or pattern formation in self-organizing systems. The
mathematical encapsulation of the laws governing these systems can be extremely simple,

e.g.,

dxldt = x—xy
dyldt=xy—y

The term xy imposes a nonlinear coupling between the two rate laws, and its presence is all
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that is needed to produce subtle behavior. Dropping that term from one or both equations, or
replacing it with a linear term (e.g., with y in the first equation and x in the second), yields
comparatively straightforward exponential growth/decay curves.

In the case of reactive transport, a fundamental coupling arises when components in a
flowing phase interact with a stationary phase. We chose the simplifying assumptions given
above to preserve this particular coupling. Other couplings arise in reactive transport,
notably when chemical modification of the medium changes its flow properties
(permeability, porosity, wettability) or when reactions change the composition-dependent
viscosity of the fluid. These couplings fall beyond the scope of this book.

Let us now briefly tour a gallery of interesting behaviors. Flow with competitive
sorption provides a simple example of a situation rarely encountered in life, wherein one can
get something for (almost) nothing. It is possible to inject a fluid containing a component at
a concentration C, into an appropriate permeable medium (ion exchange bed,
chromatography column, a bucket of clay mixed with sand) initially containing a solution
with that component at concentration C,, and extract from the medium (for a limited time) a
fluid with component concentration exceeding both C, and C,. Just how amazing this is may
be hard to realize in the modern world, where chromatographic columns and water softeners
are commonplace. But consider what effect Twain’s Connecticut Yankee could have
produced at King Arthur’s court with a vial of ion exchange resin, a bucket of fresh well
water, and a bucket of seawater!

Another geochemical marvel is the process that petrifies wood. Pieces of petrified
wood bear detailed images of the original tree, but there may not be a single molecule of the
tree remaining, the cellulose having been replaced by siliceous compounds. The replacement
of the original cellulose is so precise that the morphology of the bark or annual rings of the
original trec remains. Even the original cells of the wood are distinguishable under a
microscope. How is it possible for a geochemical process to so exactly replicate the original
texture of the wood when replacing the cellulose?

One other picture in this gallery ends the tour. Some years ago we had an opportunity
to view a Texas uranium-roll-front deposit in a sandstone aquifer (Galloway, 1977). The
uranium ore was being produced by open-pit mining. Viewing the roll-front from within the
mine, we observed the boundary between the ore zone and the reduced zone downstream of
it. The boundary or front was easy to see because there was a change in the color of the
sandstone from black to a reddish tinge. This sharp change in color is consistent with the
presence of iron in different oxidation states in the sandstone. In a reduced valence state iron
tends to be dark, whereas iron compounds in an oxidized state are more colorful (for a more
quantitative description, see Chap. 9). The most remarkable feature of the boundary was that
it seemed to be only a few sand grains thick, which is extremely sharp considering that the
ore body dimensions are measured in meters. How has Nature managed to make such sharp
boundaries?
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1.3. Computation of Reactive Flow

You may wonder why anyone should be concerned with analytical solutions to
simplified problems in the era of massive computational power. Many computer programs to
mode] the interactions between aqueous solutions and assemblages of minerals exist (e.g.,
Truesdale and Jones, 1974; Wolery, 1979; Felmy et al., 1983). Besides their usefulness for
modeling batch (non-flowing) systems, these programs often are the basis of sophisticated
simulators that solve for the transport of an arbitrary number of chemical components in
multiple flowing phases in heterogeneous three-dimensional domains, all subject to many
chemical reactions. Several of these programs are free, publicly available, and run on a
variety of platforms at practical speeds. In more than two decades of work, we at The
University of Texas have weighed in with PHASEQ/FLOW (Walsh, 1983), KGEOFLOW
(Sevougian, 1992), ALGEFLOW (Novak, 1990; Araque-Martinez, 2001), UTKFLOW
(Araque-Martinez, 2001) and IPARS/TRCHEM (Sun, 2002). See also ParSSim (Saaf,
1996). We routinely use simulators and train students to use them. Would not a tutorial on
preparing input files for such a program therefore be much more useful than a treatise on
theory?

Posing such a question misses a key point: the interplay between computation and
theory. Advances in algorithms, raw processing speed, and user interfaces are ushering in an
era in which computation will join theory and experiment as a third pillar of science. In our
experience, simulation results have on several occasions provided the inspiration for a new
theoretical development. Conversely, testing the generality of theoretical predictions
obtained in simple, mathematically tractable cases is often much easier at the keyboard than
at the laboratory bench.

These remarks should not be misconstrued. Numerical experiments cannot and
should not be regarded as substitutes for laboratory or field experiments. Rather, a simulator
is most powerful for understanding physical systems when its output is interpreted through a
theoretical framework. Thus from our perspective, a User’s Guide is neither more nor less
useful than a mathematical theorem.

Since no part of this book deals with computational tools, you may yet have doubts
about its practical utility. You should consider the following sampler of questions, the
answers to which do not appear in any User’s Guide known to us.

1. How many gridblocks (cells), the minimum resolution in numerical models, is
enough? Features in reactive transport applications, such as the roll-front boundary in Fig.
1.1, can be remarkably sharp. How does one know that the chosen level of refinement is not
obscuring important features?

2. Which components can be safely omitted from the simulation? Nature knows all the
possible components and thus leaves nothing out. The computer only knows what the user

tells it.

3. What if no characterizing data are available for a particular component? How



