Thermodynamics and Heat Power

Seventh Edition

炒が

Thermodynamics and Heat Power

SEVENTH EDITION

Irving Granet, P.E.

late, Queensborough Community College of City University of New York

Maurice Bluestein, Ph.D.

Indiana University-Purdue University, Indianapolis

Library of Congress Cataloging-in-Publication Data

Granet, Irving.

Thermodynamics and heat power / Irving Granet, Maurice Bluestein.—7th ed.

p. cm.

Includes bibliographical references and index.

ISBN 0-13-110672-4

1. Thermodynamics. 2. Heat engineering. I. Bluestein, Maurice. II. Title.

TJ265.G697 2004

621.042—dc21

2003012592

Editor in Chief: Stephen Helba Executive Editor: Debbie Yarnell Associate Editor: Kimberly Yehle Production Editor: Louise N. Sette

Production Supervision: The GTS Companies/York, PA Campus

Design Coordinator: Diane Ernsberger

Cover Designer: Jim Hunter Production Manager: Brian Fox Marketing Manager: Jimmy Stephens

This book was set in Times Roman by The GTS Companies/York, PA Campus. It was printed and bound by Courier Westford. The cover was printed by The Lehigh Press, Inc.

Copyright © 2004, 2000, 1996, 1990, 1985, 1980, 1974 by Pearson Education, Inc., Upper Saddle River, New Jersey 07458.

Pearson Prentice Hall. All rights reserved. Printed in the United States of America. This publication is protected by Copyright and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department.

Pearson Prentice Hall™ is a trademark of Pearson Education, Inc. Pearson® is a registered trademark of Pearson plc Prentice Hall® is a registered trademark of Pearson Education, Inc.

Pearson Education Ltd.
Pearson Education Singapore Pte. Ltd.
Pearson Education Canada, Ltd.
Pearson Education—Japan

Pearson Education Australia Pty. Limited Pearson Education North Asia Ltd. Pearson Educación de Mexico, S.A. de C.V. Pearson Education Malaysia Pte. Ltd.

Preface

Many colleges and universities require two semesters of thermodynamics for a bachelor's degree in engineering technology. Most students and faculty would, I believe, welcome having one good textbook for both courses. With this in mind, additional material has been added in this seventh edition. Principally, this includes:

- A Windows-based computer disk with thermodynamic properties of steam, air, other gases, and refrigerants, as well as psychrometrics.
- · A discussion and additional problems involving the non-flow work integral.
- Extension of the analysis of the Rankine cycle to include regeneration with both closed and open feedwater heaters and an additional reheat cycle.
- · Analysis of the maximum work Brayton cycle with calculus enrichment.
- Thermal analysis of the reciprocating compressor with additional homework problems.
- Metric unit equations for convection coefficients.
- A description of the heat pipe and how it functions.
- A discussion of the cooling of electronic components and how to determine the operating temperature of components.
- A description of state-of-the-art alternative energy sources, including fuel cells, solar energy, and wind power.

To make room for these additions, some out-of-date material on other power plant cycles and nuclear reactors has been removed. Many of these changes have resulted from the input of reviewers. A special thanks goes out to the following reviewers of the previous edition: Ed Braun—University of North Carolina, Charlotte; Mohammad Hossain—York Technical College; and Charles Rondeau, Jamestown Community College. I am most grateful for those comments. Please keep them coming.

Thanks to the staff at Prentice Hall for their help with this new edition, especially Debbie Yarnell, Louise Sette, Adam Hirschberg, and most of all Kim Yehle. I also thank my family for their support and encouragement: Maris, Karen, Richard, Jennifer, Michaelbarry, and Jaxanna.

Maurice Bluestein Indianapolis, Indiana Mblueste@iupui.edu

Acknowledgments

The following organizations kindly supplied illustrations and other materials. Their contributions and the contributions of many others are gratefully acknowledged. In alphabetical order, they are:

Alco Power, Inc.

Allison Engine Company, d.b.a. Rolls Royce Allison

American Ref-Fuel Company of Hempstead

American Chain and Cable Corp.

Babcock and Wilcox Corp.

Carrier Corp.

Chevrolet Motor Division, General Motors Corp.

Chrysler Corp.

Colt Industries, Fairbanks Morse Power Systems Division

Combustion Engineering Inc.

Consolidated Edison Corp.

Cummins Engine Co. Inc.

Curtiss-Wright Corp.

Detroit Stoker Corp.

Dunham-Bush Inc.

DuPont Chemicals

Ford Motor Company

Foster Wheeler Corp.

Garrett Corp.

General Electric Corp.

Grumman Aerospace Corp.

Grumman Energy Systems Corp.

Indianapolis Power and Light Company

Lockheed Missile and Space Co., Inc.

Long Island Lighting Co.

McGraw-Hill, Inc.

New York State Electric and Gas Corp.

Patterson-Kelley Co.; Division of HARSCO Corp.

Power Authority of the State of New York

Pratt and Whitney Aircraft Group; United Technologies Corp.

Renwal Products Corp.

Riley Stoker Corp.

Solar Energy Research Institute

Subaru of America, Inc.

Tubular Exchanger Manufacturers Association

Volkswagen of America, Inc.

Western Precipitation Division of Joy Industrial Equipment Co.

Westinghouse Electric Corp.

Worthington Corp.

Symbols

		Units		
Symbol	Definition	British Engineering	SI	
a	Acceleration	ft/s ²	m/s ²	
ı, A	Area	ft^2	m^2	
, B, C, D, E	Constants			
\overline{C}_D	Discharge coefficient	dimensionless		
Tv	Velocity coefficient	dimensionless		
	Clearance	dimensionless		
	Specific heat	Btu/lb _m ·°R	kJ/kg⋅°K	
p	Specific heat at constant pressure	Btu/lb _m ·°R	kJ/kg⋅°K	
υ	Specific heat at constant volume	Btu/lb _m ·°R	kJ/kg⋅°K	
n	Specific heat of any process	Btu/lb _m ·°R	kJ/kg⋅°K	
'p	Total specific heat at constant pressure	Btu/°R	kJ/°K	
v	Total specific heat at constant volume	Btu/°R	kJ/°K	
COP	Coefficient of performance	dimensionless		
, D	Diameter	ft	m	
	Base of natural logarithms	dimensionless		
	Force	lb_f	N	
A	Geometric factor	dimensionless		
e	Emissivity factor	dimensionless		
	Acceleration of gravity	ft/s^2	m/s^2	
c	Gravitational constant	$32.174 \text{ ft} \cdot \text{lb}_{\text{m}}/\text{lb}_{\text{f}} \cdot \text{s}^2$		
ir	Grashof number	dimensionless		
	Height	ft	m	
	Enthalpy	Btu	kJ	
	Specific enthalpy	Btu/lb _m	kJ/kg	
·	Specific enthalpy—saturated liquid	Btu/lb _m	kJ/kg	

,			
h_g	Specific enthalpy—saturated vapor	Btu/lb _m	kJ/kg
h_{fg}	Specific enthalpy of vaporization $(h_g - h_f)$	Btu/lb _m	kJ/kg
h^0	Stagnation enthalpy	Btu/lb _m	kJ/kg
h	Heat-transfer coefficient	Btu/hr·ft ² ·°F	kW/m²⋅°K
h_r	Heat-transfer coefficient—radiation	Btu/hr·ft ² ·°F	kW/m²⋅°K
i	Current	amperes	amperes
J	Mechanical equivalent of heat	778 ft·lb _f /Btu	miperes
K	Proportionality constant	101/200	
k	Spring constant	lb _f /in.	N/m
k	Thermal conductivity	Btu/hr·ft·°F	
k	c_p/c_v	dimensionless	,
K.E.	Kinetic energy	$ft \cdot lb_f / lb_m$	
l, L	Length	ft	
m	Mass	lb _m	
m	Mass flow rate		0
M	Mach number	lb _m /s dimensionless	kg/s
mep	Mean effective pressure		1.0
MW	Molecular weight	lb_f/in^2	kPa
n	Polytropic exponent	$lb_m/lb_m \cdot mole$	kg/kg·mole
n	Number of particles	dimensionless	
n	Number of moles	dimensionless	
Nu	Nusselt number	dimensionless	
n	Number of moles	dimensionless	
		mass/MW	mass/MW
p	Pressure	lb_f/in^2	kPa
p_m	Mixture pressure	lb_f/in^2	kPa
p_m	Mean effective pressure	lb_f/in^2	kPa
p_r	Reduced pressure	dimensionless	
p_r	Relative pressure	dimensionless	
P.E.	Potential energy	ft lb _f /lb _m	kJ/g
Pr	Prandtl number	dimensionless	
Q	Heat interchange	Btu	kJ
q	Specific heat interchange	Btu/lb _m	kJ/kg
<u>.</u>	Heat transfer rate	Btu/hr	kW
\dot{Q}_r	Radiant heat transfer rate	Btu/hr	kW
8	Universal gas constant	ft $lb_f/lb_m \cdot {}^{\circ}R$	kJ/kg·°K
?	Electrical resistance	ohms	ohms
Re	Reynolds number	dimensionless	
R_t	Thermal resistance	°F·hr/Btu	°C/W
	Radius	ft	m
e	Expansion ratio	dimensionless	
c	Compression ratio	dimensionless	
c.o.	Cutoff ratio	dimensionless	
p	Pressure ratio	dimensionless	
	Specific entropy	Btu/lb _m ·°R	kJ/kg·°K

S	Total entropy	Btu/°R	kJ/K
	Specific entropy of saturated liquid	Btu/lb _m ·°R	kJ/kg⋅°K
S_f	Specific entropy of saturated vapor	$Btu/lb_m \cdot {}^{\circ}R$	kJ/kg·°K
S_g	Specific entropy of vaporization $(s_g - s_f)$	Btu/lb _m ·°R	kJ/kg⋅°K
S_{fg}	Specific gravity	dimensionless	
sg T	Temperature, absolute	°R	°K
	Critical temperature	°R	°K
T_c	Temperature	°F	°C
t	Time	s (seconds)	S
T_r	Reduced temperature	dimensionless	
	Logarithmic temperature difference	e °F trobado ésperedillo	°C
$(\Delta t)_m$ U	Internal energy	Btu	kJ
U	Overall heat transfer coefficient	Btu/hr·ft ² ·°F	kW/m²⋅°K
	Specific internal energy	Btu/lb _m	kJ/kg
u	Specific internal energy—saturated liquid	Btu/lb _m	kJ/kg
u_f	Specific internal energy—saturated liquid	Btu/lb _m	kJ/kg
u_g	Specific internal energy of vaporization	Btu/lb _m	kJ/kg
u_{fg}		Dtd/10 _m	107 118
V	$(u_g - u_f)$ Velocity	ft/s	m/s
	Acoustic velocity	ft/s	m/s
$V_a V$	Volume	ft ³	m^3
v V	Volume flow rate	ft ³ /min	m^3/s
	Specific volume	ft ³ /lb _m	m ³ /kg
v	Reduced specific volume	dimensionless	111 / 125
v_r	Relative specific volume	dimensionless	
v_r	Critical specific volume	ft ³ /lb _m	m ³ /kg
v_c	Specific volume of saturated liquid	ft^3/lb_m	m^3/kg
v_f	Specific volume of saturated vapor	ft^3/lb_m	m^3/kg
v_g	Specific volume of vaporization $(v_g - v_f)$	ft^3/lb_m	m^3/kg
v_{fg}	Weight	lb _f	N N
W	Weight	lb _f	kN
W	Humidity ratio	dimensionless	KIY
W	Work	ft lb _f	kJ
	Work per unit mass	ft lb _f /lb _m	kJ/kg
w W	Power	Btu/min	kW kW
	Mole fraction	dimensionless	K 44
x		dimensionless	
X	Quality Length	ft	m
- X		ft	m m
Z Z	Elevation above reference plane	dimensionless	m
Z	Compressibility factor	dimensionless	
α	Absorptivity	lb_f/ft^3	kn/m³
Y	Specific weight	dimensionless	KII/ III
Δ	Small change of variable	dimensionless	
ε	Emissivity		
η	Efficiency	dimensionless	

$\eta_{ m V}$	Volumetric efficiency	dimensionless	
μ	Viscosity	lb _m /ft ² ·hr	N·s/m²
ρ	Density	lb_m/ft^3	$\frac{10.8}{\text{m}^3}$
ρ	Reflectivity	dimensionless	Kg/III
σ	Stefan-Boltzmann constant	$Btu/hr \cdot ft^2 \cdot R^4$	W/m ² ⋅°K ⁴
au	Transmissivity	dimensionless	W/III·K
θ	A function of	dimensionless	
$\frac{\phi}{}$	Relative humidity	dimensionless	

In addition to the symbols listed above, the following notation is used: Superscript 0 refers to the stagnation property. Superscript * refers to the state where M=1. Subscript $_m$ refers to the mixture property.

Contents

	Preta	ace xi	
	Ackı	nowledgments xiii	
	Sym	bols xv	
1	Fund	damental Concepts	1
	1.1 1.2 1.3 1.4 1.5 1.6 1.7	Learning Goals, 1 Introduction, 1 Properties of a System, 4 Temperature, 6 Force and Mass, 15 Elementary Kinetic Theory of Gases, 26 Pressure, 29 Review, 50 Key Terms, 51 Equations Developed in This Chapter, 51 Questions, 52 Problems, 53	
2	Wor	k, Energy, and Heat	_ 59
	2.1 2.2	Learning Goals, 59 Introduction, 59 Work, 60	

	2.3 Energy, 62 2.4 Internal Energy, 63 2.5 Potential Energy, 64 2.6 Kinetic Energy, 67 2.7 Heat, 71 2.8 Flow Work, 73 2.9 Nonflow Work, 75 2.10 Review, 80	
	Key Terms, 80 Equations Developed in This Chapter, 81 Questions, 81 Problems, 82	
3	The First Law of Thermodynamics	86
	Learning Goals, 86 3.1 Introduction, 86 3.2 The First Law of Thermodynamics, 87 3.3 The Nonflow System, 88 3.4 The Steady-Flow System, 95 3.5 Applications of the First Law of Thermodynamics, 107 3.6 Review, 126 Key Terms, 127 Equations Developed in This Chapter, 128 Questions, 129 Problems, 130	
4	The Second Law of Thermodynamics	138
	Learning Goals, 138 4.1 Introduction, 139 4.2 Reversibility—The Second Law of Thermodynamics, 140 4.3 The Carnot Cycle, 143 4.4 Entropy, 153 4.5 Review, 168 Key Terms, 168 Equations Developed in This Chapter, 169 Questions, 169 Problems, 170	
5	Properties of Liquids and Gases	176
	Learning Goals, 176 5.1 Introduction, 176 5.2 Liquids and Vapors, 177	

	5.7	Review, 231	
		Key Terms, 232	
		Equations Developed in This Chapter, 232	
		Questions, 233	
		Problems, 233	
6	The	Ideal Gas	238
		Learning Goals, 238	
	6.1	Introduction, 238	
	6.2	Basic Considerations, 240	
	6.3	The Specific Heat, 247	
	6.4	Entropy Changes of the Ideal Gas, 257	
	6.5	Nonflow Gas Processes, 262	
	-		
	6.6	The Gas Tables, 282	
	6.7	Gas Flow Processes, 285	
	6.8	Real Gases, 302	
	6.9	Review, 304	
		Key Terms, 305	
		Equations Developed in This Chapter, 306	
		Questions, 309	
		Problems, 310	
7	Mix	tures of Ideal Gases	318
ñ		William to the second real part of the second real par	_ 510
		Learning Goals, 318	
	7.1	Introduction, 318	
	7.2	Pressure of a Mixture, 319	
	7.3	Volume of a Mixture, 324	
	7.4	Mixture Composition, 327	
	7.5		
		Thermodynamic Properties of a Gas Mixture, 330	
	7.6	Air–Water Vapor Mixtures, 336	
	7.7	Thermodynamic Properties of Air–Water Vapor Mixtures, 344	
	7.8	The Psychrometric Chart, 345	
	7.9	Air Conditioning, 359	
	7.10	Review, 365	
		Key Terms, 366	
		Equations Developed in This Chapter, 366	
		Questions, 367	
		Problems, 368	

Thermodynamic Properties of Steam, 181

Computerized Properties, 203

5.6 Processes, 216

Thermodynamic Diagrams, 209

5.3

5.4

5.5

	Learning Goals, 373	
8.1	Introduction, 374	
0.11		
	11001CH15, 422	
Gas	Power Cycles	_ 427
	Air-Standard Analysis of the Otto Cycle, 436	
	Diesel Engine (Compression Ignition Engine), 449	
	Air-Standard Analysis of the Diesel Cycle, 453	
	Air-Standard Brayton Cycle Analysis, 465	
	The Dual Combustion Cycle (The Dual Cycle), 469	
	Stirling Cycle and Ericsson Cycle (Regeneration), 470	
9.9		
	Equations Developed in This Chapter, 472	
	Problems, 473	
Refri	igeration	478
	Loarning Cools 470	
10.1	Learning Goals, 4/8	
10.1	introduction, 4/9	
10.3	Defined Ratings, 483	
10.4	Compression Cycles, 485	
10.5	Compressors, 51/	
	9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9	8.3 The Rankine Cycle, 375 8.4 Rating of Power-Plant Cycles, 385 8.5 The Reheat Cycle, 387 8.6 The Reheat Cycle, 391 8.7 The Steam Generator, 400 8.8 The Steam Turbine, 404 8.9 Cogeneration, 408 8.10 Direct Energy Conversion, 410 8.11 Review, 420 Key Terms, 421 Equations Developed in This Chapter, 421 Questions, 422 Problems, 422 Gas Power Cycles Learning Goals, 427 9.1 Introduction, 428 9.2 Air-Standard Analysis of the Otto Cycle, 436 9.3 Diesel Engine (Compression Ignition Engine), 449 9.4 Air-Standard Analysis of the Diesel Cycle, 453 9.5 Brayton Cycle, 458 9.6 Air-Standard Brayton Cycle Analysis, 465 9.7 The Dual Combustion Cycle (The Dual Cycle), 469 9.8 Stirling Cycle and Ericsson Cycle (Regeneration), 470 9.9 Review, 471 Key Terms, 471 Equations Developed in This Chapter, 472 Questions, 473 Problems, 473 Refrigeration Learning Goals, 478 10.1 Introduction, 479 10.2 The Reversed Carnot Cycle, 479

The Heat Pump, 522	
Review, 526	
Key Terms, 527	
Equations Developed in This Chapter,	527
Questions, 529	
Problems, 529	
	Review, 526 Key Terms, 527 Equations Developed in This Chapter, Questions, 529

11 Heat Transfer

534

Learning Goals, 534

11.1 Introduction, 535

11.2 Conduction, 536

11.3 Convection, 553

11.4 Radiation, 565

11.5 Heat Exchangers, 578

11.6 Combined Modes of Heat Transfer, 591

11.7 Cooling Electronic Equipment, 592

11.8 Heat Pipes, 593

11.9 Review, 594

Key Terms, 594

Equations Developed in This Chapter, 595

Questions, 597

Problems, 598

Appendix 1 References, 606

Appendix 2 Answers to Even-Numbered Problems, 609

Appendix 3 Supplemental Tables, 618

Index, 701

1

Fundamental Concepts

Learning Goals

After reading and studying the material in this chapter, you should be able to:

- Define thermodynamics as the study of energy and the conversion of energy from one form to another.
- Use the observable external characteristics that are known as properties to describe a system.
- 3. Establish and convert from one system of temperature measurement to another, and understand the four methods of measuring temperature.
- 4. Use both the English and SI systems of units.
- 5. Use elementary kinetic theory of gases to establish the concepts of pressure, temperature, density, specific weight, specific volume, and Avogadro's law.
- 6. Use the concept of pressure in both English and SI units. Gage and absolute pressure definitions are important ideas that are necessary in engineering applications.
- 7. Use the concept that fluids exert pressures that can be expressed in terms of the height and specific weight of the column of fluid.
- 8. Describe the various methods of measuring pressure and the methods used to calibrate pressure-measuring devices.

1.1 INTRODUCTION

Thermodynamics is the study of energy, heat, work, the properties of the media employed, and the processes involved. Thermodynamics is also the study of the conversion of one form of energy to another. Because energy can be derived from electrical, chemical, nuclear, or other means, thermodynamics plays an important role in all branches of engineering, physics, chemistry, and the biological sciences.

In defining the word *thermodynamics*, we have used the terms *energy*, *heat*, and *work*. It is necessary to examine these terms in detail, and this will be done in subsequent chapters. In this chapter, certain fundamental concepts are defined and basic ideas are developed for future use.

The role of thermodynamics in modern life is of great importance. For example, Figure 1.1 shows a modern jet engine for use on commercial aircraft. This engine is capable of producing a