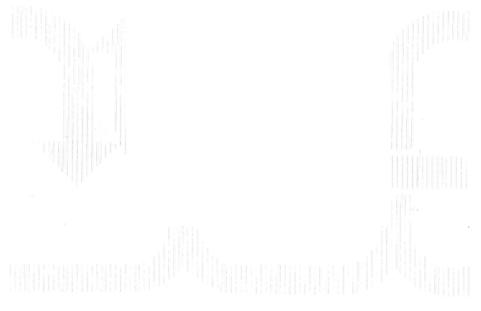
Encyclopedia of Chemical Processing and Design

33

Executive Editor

John J. McKetta


Encyclopedia of Chemical Processing and Design

EXECUTIVE EDITOR
ASSOCIATE EDITOR

John J. McKetta William A. Cunningham

33

Organic Liquids, Thermal Conductivity Estimation to Peat Supply-Demand Relationships

MARCEL DEKKER, INC.

NEW YORK AND BASEL

Library of Congress Cataloging in Publication Data (Revised)

Main entry under title:

Encyclopedia of chemical processing and design.

Includes bibliographical references.

1. Chemical engineering—Dictionaries. 2. Chemistry,

Technical—Dictionaries. I. McKetta, John J.

II. Cunningham, William Aaron. TP9.E66 660.2'8'003

ISBN: 0-8247-2480-1

75-40646

COPYRIGHT © 1990 by MARCEL DEKKER, INC. ALL RIGHTS RESERVED.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage and retrieval system, without permission in writing from the publisher.

MARCEL DEKKER, INC.

270 Madison Avenue, New York, New York, 10016

LIBRARY OF CONGRESS CATALOG CARD NUMBER: 75-40646

ISBN: 0-8247-2483-6

Current printing (last digit): 10 9 8 7 6 5 4 3 2 1

PRINTED IN THE UNITED STATES OF AMERICA

International Advisory Board

RAY C. ADAM

Former Chairman of the Board N. L. Industries, Inc. New York, New York

M. A. ALLAWALA

Managing Director National Refinery Ltd. Karachi, Pakistan

HAMED H. AMER

Chairman Agiba Petroleum Co. Cairo, Egypt

R. G. ANTHONY

Professor, Department of Chemical Engineering Texas A & M University College Station, Texas

H. J. AROYAN

Former Vice President Chevron Research Company Richmond, California

F. SID ASKARI

President Technolog, Inc. Engineering and Industrial Consultants Tehran, Iran

DONALD L. BAEDER

Former Executive Vice President-Science and Technology Occidental Petroleum Corporation Los Angeles, California

Wm. A. BAILEY, Jr.

Former Director, MTM Process Research and Development Lab Shell Development Company Houston, Texas

TRAVIS W. BAIN

Vice President National Sales, Inc. Jackson, Mississippi

GAREN BALEKJIAN

C. F. Braun Arcadia, California

CESAR BAPTISTE

Vice President Petroleos Mexicanos Mexico City, Mexico

LEON R. MARTINEZ BASS

Sales Manager-Northern Mexico Zincamex S A Saltillo, Mexico

ROBERT O. BATHIANY

Technical Planner Weyerhauser Company Tacoma, Washington

LUCIANO BENINCAMPI

Manager of Public Relations CTIP-Compagnia Tecnica Industrie Rome, Italy

LLOYD BERG

Professor Department of Chemical Engineering Montana State University Bozeman, Montana

NEIL S. BERMAN

Professor of Chemical Engineering **Engineering Center** Arizona State University Tempe, Arizona

D. J. BLICKWEDE

Former Vice President and Director of Research Bethlehem Steel Corp. Bethlehem, Pennsylvania

M. J. P. BOGART

Fluor Engineers and Constructors,

Santa Ana, California

Z. D. BONNER

Vice Chairman of the Board Tesoro Petroleum Corp. San Antonio, Texas

JOSEPH F. BOSICH Chairman

Gilmer, Texas ARCHIE BROODO President AID, Inc.

Dallas, Texas

Temcor

WARREN B. BROOKS

Manager, Computer and Telecommunications Department Vice President Mobil Telecom Inc. Mobil Oil

New York, New York

ARTHUR W. BUSCH

Environmental Engineer Consultant Dallas, Texas

ROBERT C. BUTLER

Administrative Assistant and Planning Manager, Petroleum Chemicals Division E. I. du Pont de Nemours and Co. Wilmington, Delaware

J. MORSE CAVENDER President

The Mactan Company Dusseldorf, Federal Republic of Germany

PRAMOTE CHAIYAVICH

Chief Technologist The Tahi Oil Refinery Co., Ltd. Bangkok, Thailand

NICHOLAS P. CHOPEY

Editor-in-Chief Chemical Engineering Magazine McGraw-Hill, Inc. New York, New York

FRANK CHRENCIK

Vulcan Materials Co. Birmingham, Alabama

C. W. COOK

Chairman, Executive Committee General Foods Corp. White Plains, New York

CHARLES F. COOK

Vice President Research and Development Phillips Petroleum Bartlesville, Oklahoma

EARL J. COUCH

Research Associate Mobil Research and Development Dallas, Texas

JAMES R. COUPER

Professor Department of Chemical Engineering University of Arkansas

Fayetteville, Arkansas

HORACE R. CRAWFORD Senior Staff Scientist CONOCO Corp.

Houston, Texas ORAN L. CULBERSON

Chemical Engineer Oak Ridge National Lab Chemical Technology Division Oak Ridge, Tennessee

DONALD A. DAHLSTROM Vice President, Research and Development

Process Equipment Group Envirotech Corp. Salt Lake City, Utah

PERRY P. DAWSON

Production Engineer Dow Chemical Co. Freeport, Texas

ELBERT M. DeFOREST

Former Director of Technology, Chemicals and Metals Vulcan Materials Co.

Wichita, Kansas

ROBERT G. DENKEWALTER

Corporate Vice President Technology Allied Corp. Morristown, New Jersey

J. P. de SOUSA

Publisher Chemical Age of India Technical Press Publication Bombay, India

JAMES D. D'IANNI

Former Director of Research The Goodyear Tire and Rubber Co. Akron, Ohio

JUAN M. DIAZ

Production General Manager Rohm and Haas Mexico, S. A. C. V. Mexico City, Mexico

WERNER DIMMLING

Dipl-Chemist Friedrich Uhde GmbH Dortmund, Federal Republic of Germany

BARRETT S. DUFF

Barrett S. Duff and Associates South Pasadena, California

P. K. DUTTA

Project Manager Chemical and Metallurgical Design Company, Private Ltd. New Delhi, India

WALTER EMRICH

Consultant Teterboro, New Jersey

E. FREDERICO ENGEL

Member of the Board of Management Chemische Werke Hüls AG Marl, Federal Republic of Germany

P. E. G. M. EVERS

Operations Manager Anzo Salt Chemical Delfzÿl Delfzÿl, The Netherlands

ALEXANDRE EVSTAFIEV

Director, Division of Technological Research and Higher Education UNESCO—Paris Paris, France

GERALD L. FARRAR

President Farrer Associates Tulsa, Oklahoma

LOUIS FEUVRAIS

Directeur Général Ecole Nationale Supérieure D'Arts et Métiers Paris, France

R. A. FINDLAY

Former Director, Fuels and Lubricants, Research and Development Phillips Petroleum Company Bartlesville, Oklahoma

WILLIAM B. FRANKLIN

Former Technical Manager of Baytown Refinery Exxon Company USA Baytown, Texas

DONALD E. GARRETT

President Saline Processors Ojai, California

L. W. GARRETT, Jr.

President Garrett Associates, Inc. San Mateo, California

JACOB M. GEIST

President Geist TEC Allentown, Pennsylvania

ION GHEJAN

Department of Chemical Engineering Institute of Petroleum, Gas, and Geology Bucharest, Romania

B. GENE GOAR

Goar, Allison, Arrington, and Associates, Inc. Tyler, Texas

MARCEL GOLDENBERG

SAMIN Corp., Inc. New York, New York

WILHELM GRAULICH

Director, Manager, Rubber Division Bayer AG Leverkusen, Federal Republic of Germany

E. HENRY GROPPE

Groppe, Long, & Littell Houston, Texas

GIANFRANCO GUERRERI

INGECO Altech Group Societa per Azioni Con Sede in Milano Milan, Italy

KENNETH M. GUTHRIE

Cost Consultant Marina Del Rev. California

NORMAN HACKERMAN

Former President Rice University Houston, Texas

VLADIMIR HAENSEL

Vice President, Science and Technology Universal Oil Products Co. Des Plaines, Illinois

HENRY E. HALEY

Vice President Arthur D. Little, Inc. Cambridge, Massachusetts

R. L. HARVEL

Project Manager Dow Chemical International Ltd. Tokyo, Japan

J. W. HAUN

Former Vice President and Director of Engineering General Mills, Inc. Minneapolis, Minnesota

TERUAKI HIGUCHI

President Japan Fody Corp. Osaka, Japan

JOHN R. HILL Jr.

President and Chief Executive Officer Gifford-Hill & Co., Inc. Dallas, Texas

HAROLD L. HOFFMAN

Editor Hydrocarbon Processing Houston, Texas

A. B. HORN, Jr.

Former Director—Vice President Ethyl Corporation Baton Rouge, Louisiana

NORBERT IBL

Professor Eidg. Techn. Hochschule Zürich Techn.—Chemie Zürich, Switzerland

RUBEN F. INGA

President Confederacion Interamerican de Ingenieria Quimica Lima, Peru

JAMES R. JOHNSON

Former Executive Scientist and Director, Advanced Research Programs Laboratory 3M Company, Central Research Labs Saint Paul, Minnesota

NAJI A. KADIR

President Scientific Research Council Baghdad, Iraq

JOHN E. KASCH

Former Vice President Standard Oil Indiana Escondido, California

RAPHAEL KATZEN

Managing Partner Ralph Katzen Associates Cincinnati, Ohio

JOHN J. KELLY

Department of Chemical Engineering University College, Dublin Dublin, Ireland

O. P. KHARBANDA

O. P. Kharbanda & Associates Cost and Management Consultants Bombay, India

WLODZIMIERZ KISIELOW

Professor of Petroleum Technology, Director of Research Department of Petroleum and Coal Centre of Polish Academy of Sciences Krzywoustego, Poland

MOHAN SINGH KOTHARI

Chief Consultant Punjab Industrial Consultancy Organisation Chandigarh, India

A. P. KUDCHADKER

Professor of Chemical Engineering and Dean of Student Affairs Indian Institute of Technology. Kanpur Kanpur, India

RALPH LANDAU

Former Chairman Halcon International, Inc. New York, New York

W. S. LANIER

Project Manager Seadrift Expansion Projects Union Carbide Corp. Houston, Texas

CLARK P. LATTIN, Jr.

Former President The M. W. Kellogg Company Houston, Texas

ISIDORO LAZARRAGA-LEANZA

Chief of Engineering and Control Empresa Nacional del Petroleo Viña del Mar, Chile

JEAN Le BRETON

Managing Director Elf Aquitaine Indonesie Jakarta, Indonesia

IRV LEIBSON

Vice President Bechtel Corp. San Francisco, California

PIERRE Le PRINCE

Director of Refining and Engineering Center Institut Française de Petrole Malmaison, France

C. E. LETSCHER

Caltex Petroleum Company New York, New York

C. J. LIDDLE

White Young & Partners Ltd. Herts, England

DAVID C. K. LIN Senior Engineer

Owens Corning Fiberglas Corp. Newark, Ohio

CHARLES E. LOEFFLER

Technical Manager Celanese Chemical Company Pampa, Texas

T. N. LOLADZE

Vice-Rector, Professor of the Georgian Polytechnic Institute Tbilisi, USSR

STANLEY L. LOPATA

Chairman of the Board Carboline Company Saint Louis, Missouri

PHILIPS S. LOWELL

Chemical Engineer Consultant Austin, Texas

W. D. LUEDEKE

Former Planning Manager E. I. du Pont de Nemours Wilmington, Delaware

BRYCE I. MacDONALD

Manager, Environmental Engineering General Electric Company Fairfield, Connecticut

R. N. MADDOX

Professor School of Chemical Engineering Oklahoma State University Stillwater, Oklahoma

KLAUS MAI

Former President Shell Development Houston, Texas

F. DREW MAYFIELD

Drew Mayfield & Associates Baton Rouge. Louisiana

GUY McBRIDE

Former President Colorado School of Mines Golden, Colorado

CLYDE McKINELY

Former Director, Allentown Labs Air Products and Chemicals, Inc. Allentown, Pennsylvania

RICARDO MILLARES

President Papel Satinado, S. A. Mexico City, Mexico

ROBERT L. MITCHELL

Former Vice Chairman of the Board Celanese Corp. New York, New York

RICHARD MOLLISON

General Manager Colpapel, S.A. Pereira, Columbia

M. PORTIS MORELAND

Process Engineer Worley Engineering, Inc. Houston, Texas

CARLOS EPSTEIN MURGUIA

General Manager and President of the Board Industrias Guillermo Murguia, S. A. Naucalpan, Mexico

TAKAYUKI NATE

Plastics Sales Department Tonen Petrochemical Co. Ltd. Tokyo, Japan

JAMES K. NICKERSON

Research Associate Esso Research and Engineering Company Summit, New Jersey

ALEX G. OBLAD

Distinguished Professor of Chemistry Mining, and Fuels Engineering University of Utah Salt Lake City, Utah

H. E. O'CONNEL

Former President Tenneco Chemicals Inc. Houston, Texas

ERNEST O. OHSOL

Consultant Ohsol Technical Associates Crosby, Texas

I. O. OLADAPO

Dean of Engineering University of Lagos Lagos, Nigeria

GORDON F. PALM

President Gordon, F. Palm & Associates Lakeland, Florida

F. F. PAPA-BLANCO

Advisor of Educational Technology Instituto Latino Americano de la Communicacion Educativa Mexico City, Mexico

MARCELLO PICCIOTTI

Technical Promotion Manager TechniPetrol-Rome Rome, Italy

THOMAS C. PONDER

Petrochemicals Editor Hydrocarbon Processing Houston, Texas

R. G. H. PRINCE

Professor, Head of Department Chemical Engineering University of Sydney Sydney, Australia

J. S. RATCLIFFE

Professor of Chemical Engineering University of New South Wales Kensington, Australia

FRANCIS E. REESE

Former Vice President and Managing Director International Monsanto Company Saint Louis, Missouri

AURELIO REITER

Former Research Manager of Esso Standard Italiana Roma-Italy Rome, Italy

LARRY RESEN

Larry Resen Associates Wilton, Connecticut

H. KEN RIGSBEE

Project Manager Phillips 66 Natural Gas Company Houston, Texas

FRANK S. RIORDAN, Jr.

Director, Technology Planning Monsanto Textiles Company Saint Louis, Missouri

LOUIS R. ROBERTS

Director, Planning and Source Evaluation Texas Air Control Board Austin, Texas

RICCARDO ROBITSCHEK

Direttore Divisione Resine Societa Italiana Resine Milano, Italy

ROBERTO RODRIQUEZ

INTEVEP Caracas, Venezuela

GERHARD ROUVÉ

Director of the Institute for Water Resources Development Technical University Aachen Aachen. Federal Republic of Germany

JOHN H. SANDERS

Vice President and Assistant General Manager Eastman Chemicals Division Eastman Kodak Company Kingsport, Tennessee

HIDESHI SATO

General Manager Technical Information Office Technical Development Department Nippon Steel Corp. Tokyo, Japan

GEORGE E. SCHAAL

Manager, Research and Development Produits Chimiques Ugine Kuhlmann Pierre-Benite, France

GERT G. SCHOLTEN

Managing Director Edeleanu Gesellschaft mbH Frankfurt/Main, Federal Republic of Germany

MICHAEL W. SWARTZLANDER

Staff Engineer Union Carbide Corp. South Charleston, West Virginia

M. L. SHARRAH

Former Senior Vice President Continental Oil Company Stamford, Connecticut

JOHN W. SHEEHAN

Vice President, Manufacturing and Marketing Champlin Petroleum Company Kerrville, Texas

PIERRE SIBRA

Designer Esso Engineering Services Ltd. Surrey, England

PHILIP M. SIGMUND

Professor of Chemical Engineering University of Calgary Alberta, Canada

ARTHUR L. SMALLEY, Jr.

President Matthew Hall Inc. Houston, Texas

CARL I. SOPCISAK

Technical Consultant Synthetic Fuels Wheat Ridge, Colorado

PETER H. SPITZ

President Chemicals Systems Inc. New York, New York

JOSEPH E. STEINWINTER

Former Personnel Senior Coordinator C. F. Braun & Company Alhambra, California

SAM STRELZOFF

Consultant Marlboro, Vermont

Y. S. SURY

CIBA-Geigy Chemical Corp. Saint Gabriel, Louisiana

T. SZENTMARTONY

Associate Professor Technical University Budapest Budapest, Hungary

M. TAKENOUCHI

General Manager of Manufacturing Department Maruzen Oil Co., Ltd. Tokyo, Japan

SOONTHORN THAVIPHOKE

Managing Director S. Engineering Services Co., Ltd. Bangkok, Thailand

ROBERT S. TIMMINS

Core Laboratory Aurora, Colorado

T. W. TOMKOWIT

Former Manager—Logistics Section Freon Products Division E. I. du Pont de Nemours Wilmington, Delaware

A. A. TOPRAC

President Interchem-Hellas Athens, Greece

YORGI A. TOPRAKCLOGLU

Chairman of the Board of Directors Marshall Boya ve Vernik Sanayii A. S. Istanbul, Turkey

GOPAL TRIPAHTI

Vice Chancellor Lucknow University Lucknow, India

HERNANCO VASQUEZ-SILVA

President Hernando Vasqez & Associates, Ltd. Bogota, Colombia

M. A. VELA

President VELCO Engineering, Inc. Houston, Texas

JUAN JOSE URRUELA VILLACORTA

Ingeniero Fabrica de Jabon "La Luz, S. A." Guatemala

S. P. VOHRA

Managing Director Bakelite Hylam, Ltd. Bombay, India

A. L. WADDAMS

Former Manager, Marketing Services Division BP Chemicals International Ltd. London, England

T. J. WALKER

Former Production Manager Dow Chemical Europe S. A. Zürich, Switzerland

JAMES D. WALL

Gas Processing Editor Hydrocarbon Processing Gulf Publishing Company Houston, Texas

J. C. WALTER, Jr.

J. C. Walter Interests Houston, Texas

THEODORE WEAVER

Director of Licensing Fluor Corporation Los Angeles, California

ALBERT H. WEHE

Chief, Cost and Energy U. S. Government Raleigh, North California

GUY. E. WEISMANTEL

President Weismantel International Houston, Texas

PAUL B. WEISZ

Distinguished Professor Chemical and Bio-Engineering University of Pennsylvania Philadelphia, Pennsylvania

D. L. WILEY

Former Senior Vice President Union Carbide Corp. Danbury, Connecticut

JACK C. WILLIAMS

Former Vice President Texaco, Inc. Houston, Texas

MASAMI YABUNE

Section Head, Technical Section Tonen Pertochemical Co., Ltd. Tokyo, Japan

LEWIS C. YEN

Manager, Technical Data M. W. Kellogg Company Houston, Texas

STANLEY B. ZDONIK

Vice President and Manager Process Department Stone and Webster Engineering Corp. Boston, Massachusetts

Contributors to Volume 33

- **P. W. Allen** Senior Engineering Associate, Intermediates Technology Division, Exxon Chemical Company, Baton Rouge, Louisiana: Oxo Process Alcohols
- **Peter A. Bergh** Manager Pulp & Paper Division, Foxboro Company, The Netherlands: *Paper and Pulp, Retrofitting with Advanced Control*
- **Terry L. Blevins** Senior Technologist, Fisher Controls International, Inc., Austin, Texas: Paper and Pulp, Energy Management; Paper and Pulp, Retrofitting with Advanced Control
- Gilbert K. Chen, Ph.D. Vice President, Technology, Glitsch, Inc., Dallas, Texas: Packed Towers, Design; Packed Towers, Internals
- **Chun H. Cho, Ph.D.** Senior Technical Consultant, Fisher Controls International, Inc., Marshalltown, Iowa: *Paper and Pulp, Energy Management*
- **Richard A. Corbett, P.E.** Refining/Petrochemical Editor, Oil & Gas Journal, Houston, Texas: *Packings and Gaskets, Substitute Materials*
- Ralph M. Cox, P.E. Vice President-Engineering, Industrial Handling Engineers, Inc., Houston, Texas: *Packaging*, *Chemicals*
- **Charles L. Davis, Ph.D.** Bureau of Mines, Branch of Chemical Materials, Washington, D.C.: *Peat Supply—Demand Relationships*
- L. Dev, Ph.D. Weyerhauser Company, Tacoma, Washington: Paper and Pulp, Steam Stripping of Condensates
- John L. Dunlap Manager, Applications Engineering, Fisher Controls International, Inc., Austin, Texas: *Paternering and Life Cycle Procurement; Parts Inventory*
- **Ken R. Ferguson** Lead Design & Construction Engineer, Chevron, U.S.A, Snyder, Texas: *Orifice Meter Accuracy, High Flow Rates*
- **Andrew Garner** Director, Process Physics Division, Pulp and Paper Research Institute of Canada, Pointe Claire, Quebec, Canada: Paper and Pulp Industry, Alloy Selection
- **Timothy L. Holmes, Ph.D.** Director, Research & Development, Otto H. York, Co., Inc., Fairfield, New Jersey: *Packed Towers, Design*
- **Jerry R. Johanson, Ph.D.** President, JR Johanson, Inc., San Luis Obispo, California: *Particle Segregation, Prevention*
- Emrys H. Jones, Jr., Ph.D. Senior Engineering Associate, Chevron Oil Field Research Co., La Habra, California: Orifice Meter Accuracy, High Flow Rates
- J. B. Joshi Department of Chemical Technology, University of Bombay, Matunga, Bombay, India: Packed Towers Shortcuts, Pressure Drop Estimation
- P. W. Kelso Weyerhauser Company, Tacoma, Washington: Paper and Pulp, Steam Stripping of Condensates
- Jerry M. Keys Brown, Maroney, Rose, Barber & Dye, Austin, Texas: Patents
- **Robert Lowrie, Ph.D.** Consulting Engineer, The BOC Group Technical Center, Murray Hill, New Jersey: Oxygen Service, Materials for
- Mileta Mikasinovic, P.E. Ontario Hydro, Toronto, Ontario Canada: Orifices, Cavitation Prevention; Orifices, Throttling, Sizing of
- William J. Moltz Brown, Maroney, Rose, Barber & Dye, Austin, Texas: Patents

Kathleen F. Morris Director, Delta Consulting Group, Inc., New York, New York: *Performance Appraisal*

- Malcolm G. Murray, Jr., P.E. Owner, Murray & Garig Tool Works, Baytown, Texas: *O-Rings*
- Robert B. Neveril Gard, Inc., Niles, Illinois: Particle Emissions Control Costs
- K. Niranjan Department of Chemical Technology, University of Bombay, Matunga, Bombay, India: Packed Towers Shortcuts, Pressure Drop Estimation
- **Ernest O. Ohsol, Sc.D., P.E.** Technical Director, OPR Technical Associates, Houston, Texas: *Oxidation of Aromatics; Paper Manufacture*
- V. G. Pangarkar Department of Chemical Technology, University of Bombay, Matunga, Bombay, India: Packed Towers Shortcuts, Pressure Drop Estimation
- **R. L. Pruett** Chief Scientist (retired), Intermediates Technology Division, Exxon Chemical Company, Baton Rouge, Louisiana: *Oxo Process Alcohols*
- Joseph F. Reilly, Jr., P.E., C.M.C. President, Industrial Handling Engineers, Inc., Houston, Texas: *Packaging, Chemicals*
- **B. Tammami** Superior Hard-Surfacing Co., Inc., Tulsa, Oklahoma: *Partial Condensor, Flooding Prevention*
- **Tom C. Tsai, Ph.D., P.E.** Consulting Engineer, TDS Associates, Houston, Texas: *Packed Towers Shortcuts, Computer Calculation*
- Patrick C. Tung, P.E. Ontario Hydro, Toronto, Ontario, Canada: Orifices, Cavitation Prevention; Orifices, Throttling, Sizing of
- William M. Vatavuk, P.E. Senior Chemical Engineer, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina: Particle Emissions Control Costs
- **Guy E. Weismantel** President, Weismantel International, Kingwood, Texas: *Paints and Coatings*
- **E. J. Wickson** President, Wickson Product Research Ltd., Baton Rouge, Louisiana: *Oxo Process Alcohols*
- **E. John Wilkinson, Ph.D.** Manager, Government Affairs, Vulcan Chemicals, Division of Vulcan Materials Company, Washington, D.C.: *Pentachlorophenol*
- Adam Zanker, Ch.E., M.Sc. Senior Research Engineer, Oil Refineries, Ltd., Haifa, Israel: Organic Liquids, Thermal Conductivity Estimation; Orifices, Air Flow Estimation; Packed Towers Shortcuts, Diameter, Optimum; Packed Towers Shortcuts, Efficiency; Packed Towers Shortcuts, Liquid Holdup and Pressure Drop; Packed Towers Shortcuts, Liquid Velocity, Linear; Particle Size Distribution Estimation;
- Frederick A. Zenz, Ph.D. Technical Director, Particulate Solid Research, Inc., Riverdale Station, Bronx, New York: *Particulate Technology*

Conversion to SI Units

To convert from	То	Multiply by
acre	square meter (m ²)	4.046×10^{3}
angstrom	meter (m)	1.0×10^{-10}
are	square meter (m ²)	1.0×10^{2}
atmosphere	newton/square meter (N/m ²)	1.013×10^{5}
bar	newton/square meter (N/m ²)	1.0×10^{5}
barrel (42 gallon)	cubic meter (m ³)	0.159
Btu (International Steam Table)	joule (J)	1.055×10^{3}
Btu (mean)	joule (J)	1.056×10^{3}
Btu (thermochemical)	joule (J)	1.054×10^{3}
bushel	cubic meter (m³)	3.52×10^{-2}
calorie (International Steam Table)	joule (J)	4.187
calorie (mean)	joule (J)	4.190
calorie (thermochemical)	joule (J)	4.184
centimeter of mercury	newton/square meter (N/m ²)	1.333×10^{3}
centimeter of water	newton/square meter (N/m ²)	98.06
cubit	meter (m)	0.457
degree (angle)	radian (rad)	1.745×10^{-2}
denier (international)	kilogram/meter (kg/m)	1.0×10^{-7}
dram (avoirdupois)	kilogram (kg)	1.772×10^{-3}
dram (troy)	kilogram (kg)	3.888×10^{-3}
dram (U.S. fluid)	cubic meter (m ³)	3.697×10^{-6}
dyne	newton (N)	1.0×10^{-5}
electron volt	joule (J)	1.60×10^{-19}
erg	joule (J)	1.0×10^{-7}
fluid ounce (U.S.)	cubic meter (m³)	2.96×10^{-5}
foot	meter (m)	0.305
furlong	meter (m)	2.01×10^{2}
gallon (U.S. dry)	cubic meter (m³)	4.404×10^{-3}
gallon (U.S. liquid)	cubic meter (m³)	3.785×10^{-3}
gill (U.S.)	cubic meter (m³)	1.183×10^{-4}
grain	kilogram (kg)	6.48×10^{-5}
gram	kilogram (kg)	1.0×10^{-3}
horsepower	watt (W)	7.457×10^{2}
horsepower (boiler)	watt (W)	9.81×10^{3}
horsepower (electric)	watt (W)	7.46×10^{2}
hundred weight (long)	kilogram (kg)	50.80
hundred weight (short)	kilogram (kg)	45.36
inch	meter (m)	2.54×10^{-2}
inch mercury	newton/square meter (N/m2)	3.386×10^{3}
inch water	newton/square meter (N/m2)	2.49×10^{2}
kilogram force	newton (N)	9.806

To convert from	То	Multiply by
kip	newton (N)	4.45×10^{3}
knot (international)	meter/second (m/s)	0.5144
league (British nautical)	meter (m)	5.559×10^{3}
league (statute)	meter (m)	4.83×10^{3}
light year	meter (m)	9.46×10^{15}
liter	cubic meter (m ³)	0.001
micron	meter (m)	1.0×10^{-6}
mil	meter (m)	2.54×10^{-6}
mile (U.S. nautical)	meter (m)	1.852×10^{3}
mile (U.S. statute)	meter (m)	1.609×10^{3}
millibar	newton/square meter (N/m2)	100.0
millimeter mercury	newton/square meter (N/m ²)	1.333×10^{2}
oersted	ampere/meter (A/m)	79.58
ounce force (avoirdupois)	newton (N)	0.278
ounce mass (avoirdupois)	kilogram (kg)	2.835×10^{-2}
ounce mass (troy)	kilogram (kg)	3.11×10^{-2}
ounce (U.S. fluid)	cubic meter (m³)	2.96×10^{-5}
pascal	newton/square meter (N/m2)	1.0
peck (U.S.)	cubic meter (m³)	8.81×10^{-3}
pennyweight	kilogram (kg)	1.555×10^{-3}
pint (U.S. dry)	cubic meter (m³)	5.506×10^{-4}
pint (U.S. liquid)	cubic meter (m³)	4.732×10^{-4}
poise	newton second/square meter (N · s/m²)	0.10
pound force (avoirdupois)	newton (N)	4.448
pound mass (avoirdupois)	kilogram (kg)	0.4536
pound mass (troy)	kilogram (kg)	0.373
poundal	newton (N)	0.138
quart (U.S. dry)	cubic meter (m³)	1.10×10^{-3}
quart (U.S. liquid)	cubic meter (m³)	9.46×10^{-4}
rod	meter (m)	5.03
roentgen	coulomb/kilogram (c/kg)	2.579×10^{-4}
second (angle)	radian (rad)	4.85×10^{-6}
section	square meter (m ²)	2.59×10^{6}
slug	kilogram (kg)	14.59
span	meter (m)	0.229
stoke	square meter/second (m ² /s)	1.0×10^{-4}
ton (long)	kilogram (kg)	1.016×10^{3}
ton (metric)	kilogram (kg)	1.0×10^{3}
ton (short, 2000 pounds)	kilogram (kg)	9.072×10^{2}
torr	newton/square meter (N/m2)	1.333×10^{2}
yard	meter (m)	0.914

Bringing Costs up to Date

Cost escalation via inflation bears critically on estimates of plant costs. Historical costs of process plants are updated by means of an escalation factor. Several published cost indexes are widely used in the chemical process industries:

Nelson Cost Indexes (*Oil and Gas J.*), quarterly
Marshall and Swift (M&S) Equipment Cost Index, updated monthly
CE Plant Cost Index (*Chemical Engineering*), updated monthly
ENR Construction Cost Index (*Engineering News-Record*), updated weekly

All of these indexes were developed with various elements such as material availability and labor productivity taken into account. However, the proportion allotted to each element differs with each index. The differences in overall results of each index are due to uneven price changes for each element. In other words, the total escalation derived by each index will vary because different bases are used. The engineer should become familiar with each index and its limitations before using it.

Table 1 compares the CE Plant Index with the M&S Equipment Cost

TABLE 1 Chemical Engineering and Marshall and Swift Plant and Equipment Cost Indexes since 1950

Year	CE Index	M&S Index	Year	CE Index	M&S Index
1950	73.9	167.9	1969	119.0	285.0
1951	80.4	180.3	1970	125.7	303.3
1952	81.3	180.5	1971	132.3	321.3
1953	84.7	182.5	1972	137.2	332.0
1954	86.1	184.6	1973	144.1	344.1
1955	88.3	190.6	1974	165.4	398.4
1956	93.9	208.8	1975	182.4	444.3
1957	98.5	225.1	1976	192.1	472.1
1958	99.7	229.2	1977	204.1	505.4
1959	101.8	234.5	1978	218.8	545.3
1960	102.0	237.7	1979	238.7	599.4
1961	101.5	237.2	1980	261.2	659.6
1962	102.0	238.5	1981	297.0	721.3
1963	102.4	239.2	1982	314.0	745.6
1964	103.3	241.8	1983	316.9	760.8
1965	104.2	244.9	1984	322.7	780.4
1966	107.2	252.5	1985	325.3	789.6
1967	109.7	262.9	1986	318.4	797.6
1968	113.6	273.1	1987	323.8	813.6
	<i>y</i>		1988	342.5	852.0

TABLE 2 Nelson Inflation Refinery Construction Indexes since 1946 (1946 = 100)

1946 1947 1948 1949 1950 1951 1952 1953 1954 1955	100.0 122.4	100.0		Index
1948 1949 1950 1951 1952 1953 1954			100.0	100.0
1949 1950 1951 1952 1953 1954		113.5	114.2	117.0
1950 1951 1952 1953 1954	139.5	128.0	122.1	132.5
1951 1952 1953 1954	143.6	137.1	121.6	139.7
1952 1953 1954	149.5	144.0	126.2	146.2
1953 1954	164.0	152.5	145.0	157.2
1954	164.3	163.1	153.1	163.6
	172.4	174.2	158.8	173.5
1955	174.6	183.3	160.7	179.8
	176.1	189.6	161.5	184.2
1956	190.4	198.2	180.5	195.3
1957	201.9	208.6	192.1	205.9
1958	204.1	220.4	192.4	213.9
1959	207.8	231.6	196.1	222.1
1960	207.6	241.9	200.0	228.1
1961	207.7	249.4	199.5	232.7
1962	205.9	258.8	198.8	237.6
1963	206.3	268.4	201.4	243.6
1964	209.6	280.5	206.8	252.1
1965	212.0	294.4	211.6	261.4
1966	216.2	310.9	220.9	273.0
1967	219.7	331.3	226.1	286.7
1968	224.1	357.4	228.8	304.1
1969	234.9	391.8	239.3	329.0
1970	250.5	441.1	254.3	364.9
1971	265.2	499.9	268.7	406.0
1972	277.8	545.6	278.0	438.5
1973	292.3	585.2	291.4	468.0
1974	373.3	623.6	361.8	522.7
1975	421.0	678.5	415.9	575.5
1976	445.2	729.4	423.8	615.7
1977	471.3	774.1	438.2	653.0
1978	516.7	824.1	474.1	701.1
1979	573.1	879.0	515.4	756.6
1980	629.2	951.9	578.1	822.8
1981	693.2	1044.2	647.9	
1982	707.6	1154.2	622.8	903.8
1983	712.4	1234.8		976.9
1984	735.3	1278.1	656.8	1025.8
1985	739.6	1297.6	665.6	1061.0
1986	730.0	1330.0	673.4	1074.4
1980	748.9		684.4	1089.9
1987	802.8	1370.0 1405.6	703.1 732.5	1121.5 1164.5

Index. Table 2 shows the Nelson Inflation Petroleum Refinery Construction Indexes since 1946. It is recommeded that the CE Index be used for updating total plant costs, and the M&S Index or Nelson Index for updating equipment costs. The Nelson Indexes are better suited for petroleum refinery materials, labor, equipment, and general refinery inflation.

Since

$$C_B = C_A (B/A)^n \tag{1}$$

Here, A = the size of units for which the cost is known, expressed in terms of capacity, throughput, or volume; B = the size of unit for which a cost is required, expressed in the units of A; n = 0.6 (i.e., the six-tenths exponent); C_A = actual cost of unit A; and C_B = the cost for B being sought for the same time period as cost C_A .

To approximate a current cost, multiply the old cost by the ratio of the current index value to the index at the date of the old cost:

$$C_B = C_A I_B / I_A \tag{2}$$

Here, C_A = old cost; I_B = current index value; and I_A = index value at the date of old cost.

Combining Eqs. (1) and (2):

$$C_B = C_A (B/A)^n (I_B/I_A)$$
 (3)

For example, if the total investment cost of Plant A was \$25,000,000 for 200-million-lb/yr capacity in 1974, find the cost of Plant B at a throughput of 300 million lb/yr on the same basis for 1986. Let the sizing exponent, n, be equal to 0.6.

From Table 1, the CE Index for 1986 was 318.4, and for 1974 it was 165.4. Via Eq. (3):

$$C_B = C_A (B/A)^n (I_B/I_A)$$
= 25.0(300/200)^{0.6}(318.4/165.4)
= \$61,200,000

JOHN J. MCKETTA

Contents of Volume 33

Contributors to Volume 33	vii
Conversion to SI Units	xi
Bringing Costs Up to Date	xiii
Organic Liquids, Thermal Conductivity Estimation Adam Zanker	1
Orifice Meter Accuracy, High Flow Rates Emrys H. Jones, Jr. and Ken R. Ferguson	3
Orifices, Air Flow Estimation Adam Zanker	17
Orifices, Cavitation Prevention Patrick C. Tung and Mileta Mikasinovic	19
Orifices, Throttling, Sizing of Mileta Mikasinovic and Patrick C. Tung	26
O-Rings Malcolm G. Murray, Jr.	32
Oxidation of Aromatics Ernest O. Ohsol	36
Oxo Process Alcohols P. W. Allen, R. L. Pruett, and E. J. Wickson	46
Oxygen Service, Materials for Robert Lowrie	75
Packaging, Chemicals Ralph M. Cox and Joseph F. Reilly, Jr,	84
Packed Towers, Design Timothy L. Holmes and Gilbert K. Chen	122
Packed Towers, Internals Gilbert K. Chen	141
Packed Towers Shortcuts, Computer Calculation Tom C. Tsai	170
Packed Towers Shortcuts, Diameter, Optimum Adam Zanker	180
Packed Towers Shortcuts, Efficiency Adam Zanker	183
Packed Towers Shortcuts, Liquid Holdup and Pressure Drop	185

Packed Towers Shortcuts, Liquid Velocity, Linear Adam Zanker	190
Packed Towers Shortcuts, Pressure Drop Estimation K. Niranjan, V. G. Pangarkar, and J. B. Joshi	191
Packings and Gaskets, Substitute Materials Richard A. Corbett	193
Paints and Coatings Guy E. Weismantel	206
Paper Manufacture Ernest O. Ohsol	312
Paper and Pulp, Energy Management Chun H. Cho and Terry L. Blevins	325
Paper and Pulp Industry, Alloy Selection Andrew Garner	336
Paper and Pulp, Retrofitting with Advanced Control Peter A. Bergh and Terry L. Blevins	349
Paper and Pulp, Steam Stripping of Condensates L. Dev and P. W. Kelso	359
Partial Condenser, Flooding Prevention B. Tammami	368
Particle Emissions Control Costs William M. Vatavuk and Robert B. Neveril	373
Particle Segregation, Prevention Jerry R. Johanson	379
Particle Size Distribution Estimation Adam Zanker	392
Particulate Technology Frederick A. Zenz	396
Partnering and Life Cycle Procurement John L. Dunlap	426
Parts Inventory John L. Dunlap	444
Patents William J. Moltz and Jerry M. Keys	454
Peat Supply—Demand Relationships Charles L. Davis	462

Organic Liquids, Thermal Conductivity Estimation

A study on the prediction of thermal conductivity of organic liquids has been performed by Narasimhan and collaborators [1]. The authors checked the six existing and widely used correlations for thermal conductivity prediction, and found that an average error of prediction (based on over 80 specimens checked) ranges from 8.8 to 14.8%.

The authors presented a new correlation for which the average error does not exceed $\pm 3\%$ of measured value for the 84 liquids tested. This correlation is valid for a wide range of organic liquids, including hydrocarbons, alcohols, and halogenated hydrocarbons (aromatic and aliphatic) in a relatively narrow temperature range. This new correlation is

$$K = (0.877 \times 10^{-3}) C_n \rho^{0.83} (293/T)^{0.38}$$

where K = the thermal conductivity of an organic liquid, cal/s·cm·°C

 C_p = the heat capacity of an organic liquid, cal/g·°C

 ρ = the density of a liquid at 20°C, g/cm³

T = the absolute temperature, $^{\circ}K$

Calculation of thermal conductivity is easily made since it involves only knowledge of the density at 20°C and the heat capacity at 20°C, both of which are very easily obtainable. On the other hand, the calculation is troublesome because it involves the use of fractional powers.

Therefore, a nomograph (Fig. 1) is presented which solves this equation rapidly through the use of only two movements of a ruler.

How to Use the Nomograph. Although the temperature is expressed in °K in the original formula, the nomograph is graduated in degrees centigrade for greater convenience.

The Procedure

- 1. Connect the known values of ρ and t on the appropriate scales with a ruler. Mark the point of intersection of the ruler with the Reference Line.
- 2. Connect this point to the known value of C_p on the appropriate scale with the ruler. Read the final result from the intersection point of the ruler with the K scale.

Example. Given an organic liquid having a density (ρ) at 20°C of 0.9 g/cm³ and a heat capacity (C_p) at 20°C of 0.5 cal/g · °C. Find the thermal conductivity of this liquid at a temperature t = +60°C.