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Preface

The Third International Conference on Quantum Information was held at
Meijo University in Nagoya, Japan, March 7-10, 2000.

This volume contains the papers of invited lectures and contributed talks at
this conference. The editors are pleased to accept all the papers for publication
in this volume at the suggestion of the referees so that this volume is most
valuable. :

The following topics were discussed at the conference:

1) Complexity in Quantum System

)
2) Quantum Stochastic Processes, Quantum Stochastic Analysis
3) Quantum Computation

4) White Noise Theory

5) Infinite Dimensional Stochastic Analysis
6) Variational Calculus

7) Random Fields

8) Time Reversal Symmetry of Fluctuation

This conference was supported by the Research Project “Quantum Informa-
tion Theoretical Approach to Life Science” for the Academic Frontier in Science
promoted by the Ministry of Education in Japan and was also supported by
Meijo University.

We would like to express our sincere thanks to the Faculty of Science and
Technology of Meijo University for their assistance during the conference.

December 30, 2000
Takeyuki Hida
Kimiaki Saito

Meijo University
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A Generalization of Grover’s Algorithm

LuiGl ACCARDI
RUBEN SABBADINI

Centro Vito Volterra
Universita degli Studi di Roma “Tor Vergata”
Via Orazio Raimondo, 00173 Roma, Italia

ABSTRACT

We investigate the necessary and sufficient conditions in order that a uni-
tary operator can amplify a pre-assigned component relative to a particular
basis of a generic vector at the expence of the other components. This leads
to a general method which allows, given a vector and one of its components
we want to amplify, to choose the optimal unitary operator which realizes
that goal. Grover’s quantum algorithm is shown to be a particular case of
our general method.

However the general structure of the unitary we find is remarkably sim-
ilar to that of Grover’s one: a sign flip of one component combined with a
reflection with respect to a vector. In Grover’s case this vector is fixed; in
our case it depends on a parameter and this allows optimization.

1 Unitary operators which increase the prob-
ability of the |0> component of a pre-assigned
vector

Let [i > (i =0,..., N—1) be an orthonormal basis of R¥. The mathematical
core of Grover’s algorithm is the construction of a unitary operator U which



increases the probability of one of the components of a given unit vector,
in the given basis, at the expence of the remaining ones. The necessity of
such an amplification of probabilities arises in several problems of quantum
computation. For example in the Ohya-Masuda [4] quantum SAT algorithm
such a problem arises. In a recent interesting paper Ohya and Volovich
have proposed a new method of amplification, based on non linear chaotic
dynamics [14]. In the present paper we begin to study the following problem:
is it possible to extend Grover’s algorithm so that it becomes applicable to
a more general class of initial vectors, for example those wich arise in the
Ohya-Masuda algorithm? A preliminary step to solve this problem is to
determine the most general unitary operator which performs the same task
of Grover’s operator. This is done in Theorem (1.1) below. The result is
rather surprising: we find that, up to the choice of four +1 (phases), there
exists exactly one class of such unitary operators, labeled by an arbitrary
parameter in the interval [0,1]. Moreover these unitaries can be written in
a form similar to Grover’s one, i.e. a reflection with respect to a given unit
vector possibly preceeded by a sign flip of one component combined with,
where the unit vector in question depends on this parameter in [0,1]. The
free parameter in our problem allows to solve a new problem, which could
not be formulated within the framework of Grover’s explicit construction,
namely the optimization problem with respect to the given parameter. We
prove that, even in the case of Grover’s original algorithm, this additional
freedom allows to speed up considerably the amplification procedure. In a
forthcoming paper [15] we plan to apply the present method to the Ohya-
Masuda algorithm. Since an operator U is unitary if and only if it leaves
unaltered the scalar products of vectors with real components in a given basis,
we shall restrict our attention to unitary operators with real coefficients in a
given basis (as the Grover’s ones). This restrictes the problem to RV.

THEOREM 1 Given the linear functionals:

N-1
1ia=(@) RN (@) = X na, 1)

c:a=(a;) €RY = c(a) = Z_ Vi@ (2)

=0



3

with «; and 7; real and &, ¢, € {£1}, necessary and sufficient condition for
the operator U, defined by:

UZa,-Ii >= 61((10 + 7]((1))'0 > +&9 Z (Cl,' + c(a)) 'Z > (3)
1#0

to be unitary is that there exist a real number 3, such that:

|Bo] <1 (4)
V1-182
Yo =& e (5)
_ 1+esf ;
Vi =T N_-1 1 #£0 (6)
no = —14e4fo (7)
i =% 1#0 (8)

where €3, €4, €5 are arbitrarily chosen in the set {41}.

PROOF In finite dimension unitarity is equivalent to isometry. Therefore U
is unitary if and only if, for every |[a >= Y-;! ¢;|¢ > the following isometricy
condition is satisfied:

doaf = (ao+n)*+) (ai+¢)* = ag+n’+2a0n+ ) al +(N -1)* +2¢ ) q;
i#0 i#0 i#0

where we write 7, ¢ for n(a), ¢(a). This condition can be written in the form:

n*+2an + (N —1)* +2¢d a; =0 (9)
i#0

With the notation:

(@) =v:=(N-1)+2c) a; (10)
i#0

Equation (9) is equivalent to:

n’+2an+7v=0 (11)
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and its possible solutions are:

n(a) = n = —ao + es\/af — 7(a) (12)

Given (12) the funtional n(a) will be linear if and only if Vay,...,an:

aj —~(a) = (Z ﬂjaj) (13)

for some real numbers j3; indipendent of a.
Since the functional ¢(a) is linear and given by (2), because of (12) and
(13), condition (9) becomes:

—ag+ (N -1) (EW) + (Zﬂjaj) +2) 703 ai =

i#0
—ag+2Y 76, Y ai+ Y [(N—1)vv; + BiB;laia; = 0
j i#0 i3
or equivalently:

ag [(N 1) + 65 — 1] + D [295 + (N — Dy + BiBi) aias

i,7#0
+23 " [0 + (N — 1)yo7%i + BoBi] aoa; = 0 (14)
i£0
The identity (14) holds Vay,...,ay, if and only if:

(N-1)v+8—-1=0. (15)

29; +(N— 1)y + BB =0 Vi, j#0 i#j (16)
2% +(N=1)7+B1=0 Vi#0 (17)

Yo+ (N =i+ Bofi =0 Vi#0 (18)

Equation (15) and the reality condition on 5 imply that (4) and (5) hold.
From (18) we deduce that, for z # 0:

__ M+t BoBi
= Yo(N — 1) 1)



and, replacing this into (17), we find:

2(% + BoBi) | (10 + BoBi)? 2 _
MN—U4 ﬁN—U+@‘0

| [(V —1)42 + 3] B2 = +2

which, because of (15), is equivalent to:

V1-8
N-1

with e3 = +1. Replacing (20) into (19) we arrive to (6)
Replacing (24),..., (27) into (1) and (2), we conclude that a necessary
condition for the linearity of U is that n and ¢ must have the form:

77((1) = (_1 + 64,80)a0 + €4€3% Z ar. = (—1+ 64;30)(10 Sogagg e 1D \/—__ﬂ() Z e

k#£0 1 (%o
(21)
1 +e3bo Z 5, = V - B3 _ 1+e36 e (22)

c(a) = yoao — ag
°TON-1 & S YN -1 N-1 7

Conversely, if conditions (4), ..., (8) are satisfied, then also (14), which
is equivalent to (9), is satisfied and therefore U is isometric, hence unitary.
This can also be seen by a direct computation (see appendix A).

B; = €370 = €365 (20)

REMARK Because of (4) there exists a § € [0,27) such that §y has the
form:

ﬂo = g3cos 0 (23)

and therefore, from (5):

V]V—I’YOZEE',VI —ﬂg = sin 0 (24)

i.e. the parameters 3, and v, live onto an ellipse in the (8o, 70)-plane. With
these notations one has:

sin 6
n(a) = (=1 + ezeqcos 0) ap + 6364\/_— > ax (25)

k#0



sin 0 a l+cos€zak (26)
N-1 -1 =0

c(a) =

REMARK The case v = 0 leads to n = 0 or 5 = —2ayp; in both cases we
have:
U aili >=te1a0 [0> +e2 ) (ai +¢) i >
i#0

The operators U(y = 0(a)) are in this class, however they play a significant
role in Grover’s algorithm because they may be used to change the sign of a
component leaving the others u inaltered (flip).

If we are interested in unitaries which modify the component ag of a, we
must look for solutions with v # 0.

COROLLARY 2 Ifin (21) and (22) we choose:

6154263255:1

62=—1
N -2
IBO—T
_2
"/0—N

then the corresponding operator U is Grover’s unitary (see section 4).

PROOF It is known that Grover’s unitary is characterized by (see section

4):
ap — N];,_ 2(10 + — Z ar =: &1 [ao + n(a)] (27)
k;éo
2
a; — —a; + N (—ao +)§)ak) =: €2 [a; + c(a)] (28)

On the other hand, from equations (25) and (26) we have:

€1 a0 + n(a)] = €164 (ﬁoao +e3% ). a,,) (29)

k#£0



N -1 k70

€q[a; + c(a)] = &2 (a,- + Yoo — L+ &5/ > ak) (30)

with 7o given by (5). Comparing this with (27) and (28) we see that the
condition for equality is:

N-=-2
€1€4f00 = T
Now let us choose €;64 = 1 and Sy = MN-_Z then
1- 222
Yo =¢&s B =g
0 N-—1 N

that leads to e5 = 1. Therefore, if ¢, = —1, the coefficient of the third term
in (30) becomes:

1+€3ﬂ0_1+63H1;_2_N+53N—253
N-1 N-1  N{N-1)

—&9

that gives the correct parameter if and only if €5 = 1.

2 Canonical form and reflections

THEOREM 1 Any unitary operator U(f,¢) with real coefficients in the
basis (|2 >) and satisfying the conditions of Theorem (1.1), can be written
in the form:

/1 — R2
U(,Bo,é') = 51€4|0 > (ﬂo < O| +6365'\/—N=_IB;’ Z < kl) +
k#0

\/l_ﬂg 1+63,30
+e2 ) li> [ <i|+estm— < 0| - > <k (31)
1£0 ( VN—1 k#£0

Moreover a unit vector u € RN such that:

U(ﬂo,&) =€ (1 = 2|u >< u|) (32)
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exists if and only if ¢ is such that
€9 = E1E4E3 (33)

In this case |u > has the form:

1 e 1+ €360 /1 + €30
\/§ —E€s 1—- €3ﬂ07 N —1 ’ -1 (34

lu>=—=

REMARK Notice that unitary operator (32) simply realizes the reflection
of the |u >-component of any vector with respect to the |u >-axis.
PROOF The identity (31) follows immediately from (2), (21) and (22).

The operator U(fg,€) of the equation (31) can be rapresented in the
following way:

U(fo,€) = €21 — {|O > l(521 —€1€4f0) < 0] — €1€4€365 \/11V——1 dY < }

k#0

. \ll_ﬂg 1+€3ﬂo )}
+ > | —est—— < 0| + <k 35
62#2()'1 ( 65\/N—_—1 N — ’g) | ( )

Now an easy calculation shows that, given a vector |u > of the form (35),
the right end side of (32) is equal to:

a1 — {IO > |:€2 (1 —€3ﬂ0) A Ol i 6265\/]\[— Ig% < kl]

. \/1_133 1+€3,80 )}
+ed li> [(—es <0+ )~ < k| (36)
70 ( vN —1 N—1 k20

For By # 0,1 (36) and (35) are equal if and only if (33) holds. and the

last operator is a projector if and only if:

€9 = E1E4E€3 (37)

because the off-diagonal terms must be equal. From this the thesis follows
observing that multiplying (37) for ;63 we obtain:

€3 = £1€E4€E2 (38)
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COROLLARY 2 Grover’s operator is the product of a operator of the form
(32) with a flip, realized with a operator U(y = 0, Va), as in the Remark
after previous Theorem 2.1.

PROOF As it is implicit in its definition (see Section 4), Grover’s operator
is a flip followed by a reflection of the |v >-component with respect to the
|v >-axis, where [v >:= N=V?|1,...,1 >.

REMARK Theorem (2.1) shows that Grover’s unitary and the generalized
ones presented in this paper are analogue, and the realizability of the former
implies the realizability of the latter.
REMARK If in (35) the identity (37) holds then, remembering (23) and
(24), we can rewrite (35) inthe form:

0 cos ¢ cos & > (39)

>=|-sin;, —2=, ..., —2—
I = i T ]

which, up to a phase, is the most general form of a vector in RY with N —1
components equal.

REMARK A matrix rapresentation of the operator U(f,€) in the basis
(]z >), with g3 = e1€4€3 is:

(Lepp1 VB R
€30 €5 /N=1 € /N—1 - E5/N-1
€ 3! l_ﬂg 1 _ 1+e300 _1+53ﬁ0 __1+5
5 /N-1 N—-1 N—-1 e N-1
- 1-32 1 o
Ufpe)=er| o ViB  _ah e | _tes |-
e V105 _ 1+esfo _ 14e3f0 1 — Lteafio
\ 5V/N-1 N-1 N-1 ce N—1
1—ﬁ2 1_ﬁ2
1- €3ﬂ0 —E€s \/NT]O Es \/N—19
" l_ﬁg 1+e360 ts 14360
=&l — gy VN-1 N-1 N-1 -



