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This book is about applying an easily understood formal method, the
process algebra SCCS, to the design of concurrent and real time systems.
It charts the progress of a non-mathematician through the process of
learning a formal method from the creation of designs to their validation
using automated tools.

But why formal methods? As a young electrical engineer I was taught by
people who believed that engineers, by employing rigorous mathemati-
cal theories, correctly predict how designs will behave before they are
built; if they couldn’t they weren’t engineers. It came as something as a
shock on first entering the world of software programming to find that
such techniques were thought foolish and unnecessary. It was with some
relief that I eventually stumbled upon several groups of people applying
the rigour of mathematics to the design of correct software systems -
perhaps they were taught by the same sort of lecturers as I was?

Based on formal methods, the book’s main premise is that, in order to
design something correctly, one has to understand it fully. One does not
understand something if one’s theories about it are incorrect, contradic-
tory or incomplete, and only by expressing our theories in a formal way
can they be checked with sufficient rigour. As Martin Thomas of Praxis
put it cogently in 1989, ‘If you cannot write down a mathematical behav-
iour of the system you’re designing, you don’t understand it’. This is not
to say that formal methods are a philosopher’s stone; rather than replace
traditional methods, they complement them. The ideas that drive a
design may still come from many sources - your experience, the experi-
ence of others, educated guesses, inspiration, hunches, tarot cards, runes,
or whatever - but, to check if your ideas hold water, what better than for-
mal tools to animate and apply some rigour to the design process?

The formal method used here is the process algebra SCCS. No previous
knowledge of SCCS is presumed: it’s both introduced and applied here.
SCCS was selected for the task because not only does it capture the
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behaviour of real-time systems, it does so in a simple and elegant way
based on the natural concept of observation - things are considered
equivalent if an observer cannot tell them apart. Equally as important,
SCCS is a member of an extended family of algebras for which automat-
ed tools are available.

Intended Audience

The material that forms the book’s content was developed as part of a set
of modules given to a variety of students at Brunel and Surrey
Universities. The students included undergraduates majoring in elec-
tronic and electrical engineering, information technology, mathematics
and computer science, as well as graduate students studying telematics,
microelectronics and computer engineering. To cater for such disparate
backgrounds the material is, as far as possible, self-contained; it is aimed
at people who already have some experience with computer systems -
about as much as might be achieved by a couple of years of a full-time
academic course, or the equivalent in practical experience. Readers
should be able to follow the programming examples, and ideally have
some understanding of, or may even have met, the problems addressed
here. At first I thought a reasonable knowledge of discrete mathematics
would be mandatory, but all of the students who followed the original
modules took to the formalism like ducks to water, finding the concepts
and theories intuitive, process algebras common sense, and only the act
of linking the concepts to the notations problematic.

Layout
The book has four main parts:

® The first introduces and defines the problems associated with the
correct design of concurrent and real-time systems, and stimulates
awareness of the pitfalls of concurrent systems design in addressing
some examples by adding special extensions to sequential program-
ming languages.

® The second section introduces the process algebra SCCS in a multi-
pass fashion. An informal overview of the complete calculus is fol-
lowed by a formal introduction to the basic algebra. Examples are
given which extend the basic algebra to directly address particular
classes of problems, which are then used to devise further extensions.

®  The third section dwells on the role of equality. It is one thing to say
that our objective is to prove a design equivalent to a specification,
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but when we state that A ‘equals’ B, as well having to know what we
mean by A and B we also have know what we mean by ‘equals’. This
section explores the role of observers; how different types of observ-
er see different things as being equal, and how we can produce algo-
rithms to decide on such equalities. It also explores how we go about
writing specifications to which we may compare our SCCS designs.
® The final section is the one which the students like best. Once
enough of SCCS is grasped to decide upon the component parts of
a design, the ‘turning the handle’ steps of composition and check-
ing that the design meets its specification are both error-prone and
tedious. This section introduces the concurrency work bench,
which shoulders most of the burden.
How you use the book is up to you; I'm not even going to suggest path-
ways. Individual readers know what knowledge they seek, and course
leaders know which concepts they are trying to impart and in what order.
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Introduction

One of the most endearing preoccupations of human beings is the way they attempt
to understand the world around them and then try to improve it, with varying
degrees of success. Over the years it’s been man’s insatiable curiosity - “...but what
happens next?’ - that has driven advances in both science and engineering. As engi-
neers we make our living out of this desire; we don’t just design things, we know
how objects, yet to be built, will behave, and we can predict whether they will
answer to our customers’ requirements (and even if we don’t, we should). In more
formal terms, engineers not only design systems but prove these designs satisfy
their specifications.

But how do we build things that behave correctly? The artisan approach is just to
go ahead and start building, beginning with something with a behaviour near to
what is required and then repeatedly testing and modifying it until we get what
we want. One problem with this method is its lack of scalability - we can use it to
build simple systems but the method doesn’t scale up to complex ones. Proving a
system meets its specification also has scalability problems. To prove a system
correct we need to test it exhaustively. While smaller systems may need few tests
(for example, to test a lamp and switch to exhaustion we only need to show that
pressing the switch turns the light on and releasing it turns the light off), to test
to exhaustion even medium-sized systems, for example a single computer chip,
can take man years. During that time the customer may get impatient and think
of the wait to get paid. -

Unfortunately, many of the objects we might wish to create are just too complex
to build, test and modify as a prototype, or even as an accurate physical model.
We need a more abstract modelling system, preferably one with a mathematical
framework, so that we can design with pencil on paper, test by computer simula-
tion, and use automated provers to check for correctness. Such an abstract mod-
elling method must faithfully capture the behaviours of objects, enable us to
manipulate those behaviours in a predictable way, predict the behaviours of
objects composed of other objects, and finally compare behaviours so that we can
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check whether the object meets its specification. What we need is a modelling
method which has operations, and laws over those operations, that replicate
objects’ behaviours. We need an algebra of objects.

How would such an algebra-based modelling method revise our design
approach?

We commence any design with a set of requirements which state how we wish the
final object to behave. We then propose, in the abstract world of models, a design
that may satisfy those requirements

Real World [Model World

o ! Mapping

Requirements

Requirements Proposed

Design
Salie
— %

Arbiter

Design Documerts

Modifier

Using our algebra upon models we can predict how the design will behave; then,
using an arbiter, we can test if this behaviour satisfies the requirements. If the
arbiter decides the design is satisfactory we can proceed to build the real-world
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object. If not, we revise the design, before submitting it again to the arbiter. There’s
a small problem with this scenario. When making comparisons, an arbiter can
only compare like with like. To compare an expression in our algebra of models
with a specification, both must be defined in the same terms. The specification
must either be expressed in terms of the algebra of models or isomorphic to them.

While this process is similar to the artisan method, the design is no longer car-
ried out in the physical world but in the more tractable world of abstract models.
When we avail ourselves of strong mathematical underpinnings, the construc-
tion, testing, and modification of a design can be carried out more simply, reli-
ably and quickly.

For our design method to be successful, we require that our models behave like
the real thing - but only in those aspects in which we are interested. A model air-
craft might fly, but it need not contain all the detail of a real one. By reducing
complexity we reduce the possibility of error. But how do we know what behav-
iour is essential? What not? And how do we represent such behaviour in a model?

1.1 Making Models

When modelling the behaviour of a thing

we have conflicting goals. We want the model to be simple - the simpler the bet-
ter — but it must also completely capture the important behaviour of the thing. As
we define the behaviour of a real-world object in terms of the actions in which it
is seen to engage we will have created an adequate model if an observer cannot
distinguish between the actions of our creation and those of the real thing.

As actions are to be the basis of all our models, we need to know more about
them. In the simplest terms, an action is something which moves an object
between discernible states.

an_action

y /\ _

STATE STATE

We can label actions with abstract names. Here, instead of an_action, we sub-
stitute the label ‘a’,
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a
_ /_\ .

STATE STATE

and the states of a system are defined purely in terms of these observed and

labelled actions.

ready_to_engage_in_a just_engaged_in_a

Here, action a moves the system from state ready_to_engage_in_a to state
just_engaged_in_a. The states are only significant with respect to actions.
If a was the last observed action, we can only be in state just_engaged_in_a.
If we've not observed any action, we must be in the initial state
ready_to_engage_in_a.

We can, if we wish, label the states and actions with names relevant to the states
and actions in the system being modelled. For example, in

on

&i 5

@ PN
z Z
LIGHT OFF LIGHT ON

off

the state of the light is switched between LIGHT_ON and LIGHT OFF by the on
and of f actions.

The same model can be interpreted using different objects in different environ-
ments. The light model behaves the same as these flag and clock models.

raise tick
et
%
~ v’ .Y
<
lower tock

All have two actions moving the systems between two states. We could abstract
this to a system in which a and b actions move the system between states P and Q.
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b

Devising laws over behaviours for such generalised models allows us to make
subsequent interpretations as to how a particular instantiation will behave.
Renaming the general (a,b) in terms of the particular gives us the light system
(on,off), the flag system (raise,lower), and the clock system
(tick, tock). The benefit of taking abstract views is that one system contain-
ing certain action sequences is the same as any other with the same sequences;
only the action and state names are changed to better reflect the system modelled.

Instead of the pretty, but difficult to manipulate, pictures, we can represent a
model’s actions and subsequent state changes in terms of formulae. ‘A system in
state P can engage in action a and in so doing move to state Q. The states P and
Q represent agents — they portray, in mathematical terms, the behaviour of an
associated real-world system. Agent P is defined by expression a—Q.
pdef a0
In other words, ‘Agent P can engage in action a and in so doing become agent Q.
Similarly ‘Agent Q can engage in action b and in so doing become agent P’
Qdfpp
Finally, the complete system can be expressed as a recursive equation. ‘Agent P
can engage in actions a then b and so become agent P again’
P df a5bP
These general action and agent names can be instantiated to particular systems.
LIGHT “f of f5on—LIGHT
FLAG %f lower—raise—FLAG
CLOCK %f tick—tock—CLOCK
And so on.

Such state- and action-based mathematical models are not new. In the world of
electronics, Meally-More diagrams, a type of labelled transition system, are used
to design and check the correct operation of digital circuitry. In the field of com-
puter systems vector diagrams, showing how processors change state when they
engage in software instructions, have long been used to check if a program per-
forms correctly.

The ability to model single objects is only part of the picture. Objects do not exist
in isolation. Something must raise the flag, switch on the light, hear the clock tick,
etc.. Objects exist in environments with which they interact. For example, when
we observe and record an object’s actions, the observer is part of that object’s
environment. The existence of environments means that an object must engage in



