Computing

<; Springer

INTRODUCTION TO THE

REAL-TIME SYSTEMS

FORMAL DESIGN OF

David Gray

David Gray

Introduction to the
Formal Design of
Real-Time Systems

David Gray, BSc, MSc, PhD, CEng

Series Editors

Professor Peter . Thomas, BA (Hons), PhD, AIMgt, FRSA, FVRS
Centre for Personal Information Management, University of the West of
England, Coldharbour Lane, Bristol, BS16 1QY, UK

Professor Ray J. Paul, BSc, MSc, PhD
Department of Information Systems and Computing, Brunel University,
Uxbridge UB8 3PH, UK

ISBN 3-540-76140-3 Springer-Verlag Berlin Heidelberg New York

British Library Cataloguing in Publication Data
Gray, David
Introduction the Formal Design of Real-Time Systems - (Applied computing)
1.Real-time data processing 2.System design
L.Title
004.3'38'1
ISBN 3540761403

Library of Congress Cataloging-in-Publication Data
Gray, David, 1946-
Introduction the formal design of real-time systems / David Gray
p- cm. -- (Applied computing)
Includes bibliographical references and index.
ISBN 3-540-76140-3 (pbk. : alk. paper)
1. Real-time data processing 2. System design 1. Title II. Series
QA76.54.G73 1997
005.2'.73--dc21 97-29239

Apart from any fair dealing for the purposes of research or private study, or criticism or review,
as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be
reproduced, stored or transmitted, in any form or by any means, with the prior permission in
writing of the publishers, or in the case of reprographic reproduction in accordance with the
terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction
outside those terms should be sent to the publishers.

© Springer-Verlag London Limited 1999
Printed in Great Britain

The use of registered names, trademarks etc. in this publication does not imply, even in the
absence of a specific statement, that such names are exempt from the relevant laws and regula-
tions and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the
information contained in this book and cannot accept any legal responsibility or liability for any
errors or omissions that may be made.

Illustrations by the author

Typesetting by Editburo, Lewes, East Sussex

Printed and bound at the Athenaum Press Ltd., Gateshead, Tyne and Wear
34/3830-543210 Printed on acid-free paper

Applied Computing

Springer
London
Berlin
Heidelberg
New York
Barcelona
Hong Kong
Milan

Paris

Santa Clara
Singapore
Tokyo

Applied Computing

Series Editors
Professor Ray Paul and Professor Peter Thomas

- The Springer-Verlag Series on Applied Computing is an advanced series
of innovative textbooks that span the full range of topics in applied com-
puting technology.

Books in the series provide a grounding in theoretical concepts in com-
puter science alongside real-world examples of how those concepts can
be applied in the development of effective computer systems.

The series should be essential reading for advanced undergraduate and
postgraduate students in computing and information systems.

Books in the series are contributed by international specialist
researchers and educators in applied computing who will draw together
the full range of issues in their specialist area into one concise authori-
tative textbook.

Titles already available

Linda Macauley
Requirements Engineering

Derrick Morris, Gareth Evans, Peter Green, Colin Theaker
Object Oriented Computer Systems Engineering

Deryn Graham and Tony Barrett
Knowledge Based Image Processing

John Hunt
Java and Object Orientation: An Introduction

Sarah Douglas and Anant Mithal
The Ergonomics of Computer Pointing Devices

No, No, No
it only works if we
all play the right bits at

the right time

Grand
Opening

Fronred A
e

This book is about applying an easily understood formal method, the
process algebra SCCS, to the design of concurrent and real time systems.
It charts the progress of a non-mathematician through the process of
learning a formal method from the creation of designs to their validation
using automated tools.

But why formal methods? As a young electrical engineer I was taught by
people who believed that engineers, by employing rigorous mathemati-
cal theories, correctly predict how designs will behave before they are
built; if they couldn’t they weren’t engineers. It came as something as a
shock on first entering the world of software programming to find that
such techniques were thought foolish and unnecessary. It was with some
relief that I eventually stumbled upon several groups of people applying
the rigour of mathematics to the design of correct software systems -
perhaps they were taught by the same sort of lecturers as I was?

Based on formal methods, the book’s main premise is that, in order to
design something correctly, one has to understand it fully. One does not
understand something if one’s theories about it are incorrect, contradic-
tory or incomplete, and only by expressing our theories in a formal way
can they be checked with sufficient rigour. As Martin Thomas of Praxis
put it cogently in 1989, ‘If you cannot write down a mathematical behav-
iour of the system you’re designing, you don’t understand it’. This is not
to say that formal methods are a philosopher’s stone; rather than replace
traditional methods, they complement them. The ideas that drive a
design may still come from many sources - your experience, the experi-
ence of others, educated guesses, inspiration, hunches, tarot cards, runes,
or whatever - but, to check if your ideas hold water, what better than for-
mal tools to animate and apply some rigour to the design process?

The formal method used here is the process algebra SCCS. No previous
knowledge of SCCS is presumed: it’s both introduced and applied here.
SCCS was selected for the task because not only does it capture the

viii Introduction to the Formal Design of Real-Time Systems

behaviour of real-time systems, it does so in a simple and elegant way
based on the natural concept of observation - things are considered
equivalent if an observer cannot tell them apart. Equally as important,
SCCS is a member of an extended family of algebras for which automat-
ed tools are available.

Intended Audience

The material that forms the book’s content was developed as part of a set
of modules given to a variety of students at Brunel and Surrey
Universities. The students included undergraduates majoring in elec-
tronic and electrical engineering, information technology, mathematics
and computer science, as well as graduate students studying telematics,
microelectronics and computer engineering. To cater for such disparate
backgrounds the material is, as far as possible, self-contained; it is aimed
at people who already have some experience with computer systems -
about as much as might be achieved by a couple of years of a full-time
academic course, or the equivalent in practical experience. Readers
should be able to follow the programming examples, and ideally have
some understanding of, or may even have met, the problems addressed
here. At first I thought a reasonable knowledge of discrete mathematics
would be mandatory, but all of the students who followed the original
modules took to the formalism like ducks to water, finding the concepts
and theories intuitive, process algebras common sense, and only the act
of linking the concepts to the notations problematic.

Layout
The book has four main parts:

® The first introduces and defines the problems associated with the
correct design of concurrent and real-time systems, and stimulates
awareness of the pitfalls of concurrent systems design in addressing
some examples by adding special extensions to sequential program-
ming languages.

® The second section introduces the process algebra SCCS in a multi-
pass fashion. An informal overview of the complete calculus is fol-
lowed by a formal introduction to the basic algebra. Examples are
given which extend the basic algebra to directly address particular
classes of problems, which are then used to devise further extensions.

® The third section dwells on the role of equality. It is one thing to say
that our objective is to prove a design equivalent to a specification,

Preface ix

but when we state that A ‘equals’ B, as well having to know what we
mean by A and B we also have know what we mean by ‘equals’. This
section explores the role of observers; how different types of observ-
er see different things as being equal, and how we can produce algo-
rithms to decide on such equalities. It also explores how we go about
writing specifications to which we may compare our SCCS designs.
® The final section is the one which the students like best. Once
enough of SCCS is grasped to decide upon the component parts of
a design, the ‘turning the handle’ steps of composition and check-
ing that the design meets its specification are both error-prone and
tedious. This section introduces the concurrency work bench,
which shoulders most of the burden.
How you use the book is up to you; I'm not even going to suggest path-
ways. Individual readers know what knowledge they seek, and course
leaders know which concepts they are trying to impart and in what order.

Acknowledgements

The list of people I wish to thank includes my parents and teachers;
responsible for most of my training, I only hope they're not too dissatis-
fied with the outcome. I'd also like to thank the following. The students at
both Brunel and Surrey Universities, for their forbearance and active feed-
back while the material was being developed; it was their input that result-
ed in the multi-pass nature of the book. In particular, one of my PhD
students, Jason Cozens, whose work on higher order SCCS gave rise to
impassioned discussions which made me rethink certain concepts
expressed here. Bernie Cohen, for encouraging my first formal steps. Steve
Schumann and Mike Shields, with whom I gave courses and from whom I
‘borrowed’ the odd example. Stephan Zuldt, an experienced engineer with
an interest but no formal training in this area, who gave an outsider’s view
of the text. Perdita Stephens, who answered my questions about the
Concurrency Workbench. My wife, who walked the dogs when it was my
turn. But mainly the authors of books and papers and the givers of pre-
sentations and seminars, who began and then nurtured my interest in for-
mal methods, foremost amongst whom are Professor Milner, the
originator of SCCS, whose book [Mil89] I still return to for insights
missed in previous readings, and Professor Stirling, whose clarity of writ-
ing does much to demystify modal logic. I also have to thank Professors
Milner and Joseph for introducing me to Tomasz Janowski, and Professor
Stirling for introducing me to Sibylle Froschle, both of whose reviews
changed the eventual content and presentation of the material.

Finally I wish to dedicate this book to Rachel Rochester Warlow.

PLEFACE sovcviririsscsesiosssssmsnsesesessasssasesesssssissasossssssnssssossassasssasossssnssssaronsaonssses vii
Intended AUdIENCE .scmsissismimsssssissusssussssssasusssssnsssnssssivrsnsnsssssasisnsssiss viii
LAYOUL cevovececrcrciinicniie ittt sessae s s s b s st a e viii
ACKNOWICAZEMENTS ..eossvimsesssesemsasssesmasssnsassrsnsasssssssimsnsssssanssamsmsssssssssssass ix

L ISCEHEISEE ..oicvssumusncersuossonnssassnsnnsansassvosnsrasnsampgasysasivess ooiés e isaosaasawssamayigss 1
1.1 Making Models iucusasissssssasrsisssessssssmssonsssssssnsssnssssssisasossonssssusnss 3
1.2 Lies, Damn Lies and Modelscoovveereerererireeenrieeeessrsesseeseneenne 9
1.3 Abstraction, Atomicity and Algebrascccccecevvivvvccniinccnnnn. 13

1.3.1 Algebras, Specifications and Other Related Things 16
1.4 Labelled Transition SYStemMSc.cccevevevuruemsicrciennmencscnennneseane 20
1.4.1 An Algebra of Transition SYStemswcevevsieucsinennns 20
1.5 One at Once, All Together and In Timecocvcvvccurivcnicnnnee 27
1.5.1 A Process Algebra for Sequential Systemscccoeeeucunee. 28
1.5.2 A Process Algebra for Concurrent Systemsccovuvereuneeee 34
1.6 Real-Tifme SYStEMS .ussssmsssrmssrssosmmmmssesssonisonsiosssssusssesisnssissies 41

2 Concurrency and Communicationccccninncrcneeisennnnns 47
2.1 Concurrency - Defining the Problemsccccceeeeerenenincnenuncnnne 49
2.2 Programming Domain Solutionscrncccieiniscsininnne 58

2.2.1 Mutual EXCIUSIONoecuiecnrincrcncicnciicsiencniscacasisacnns 58
2.2:2 Critical SEctions: wuwswwsnssvsmssmesiomsivesismmesssissmvssess 59
2.2.3 SYNCATONISALION ..ueeeeeceerinceirirenereccssseecsisseesaseesassassene 80
2.2.4 Semaphores

2.2.5 MOonitors wsuusssmsmusmmsssssoisssnissssiseisiississssimsisis

3 Message Passingccooveivivnicininninnininncssisssessse i 113
3.1 Choosifigthe BeSt wasswsaussumussmumanisssdusmsimsnssisssnss 114
3.1.1 The Contendersvvvcvsisincnrinisssissessiesensisssessons 115

3.1.2 The Choosing

xii Introduction to the Formal Design of Real-Time Systems

3.2 Blocking Send ... 119
3.3 CCS (Calculus of Communicating SyStems)cceceeeseesnruncns 129
3.4 RENAEZVOUS .eouvrerecnnrciciscsetsisiessesssessneniesesesesss s sesssssassasanses 135
3:5 CoNCIUSION, sassssmmmsmssmmmmmmsasmmmmsaysveesssvesserens 138
4 Synchronous Calculus of Communicating Systems 139
4.1 An Overview of SCCS wssssssssosmsssmsnsnsussssvenssrsonsssmssassrensasassesnsovas 144
4,2 Plain SCCSEcccevncronsessrsnssasnvossisssivisis ssasssisisissiosssssissssssmisssssiss 165
4.2.1 Naming of PATLSvcvcernivcernississiisisisssssissssssssssssnns 165
4.2.2 Basic Operators and Propositions ..., 172

4.3 RECUISION oottt senens 199
4.3.1 Recursion int SCCS Termssessssivssisssisssssssssonsssransassansons 199
43:2 Derived AGents wassswseminssassommimssins s 203

4.4 Actions, Particles, Composites and All Sortsccccceevevevueunnes 209
4.5 Synchronisation. wussmsassmmmsmanimsinasmmssmmss 212
4.5.1 INEETACHION ottt saaaes 212

4.6 Constructional Design ... 229
4.6.1 Scoping and Synchronisation ... 229
4.6.2 Choice Of CHOICES ...cvueuerecerericerrieeneeeeeisasesesaseseessasesans 233
4.6.3 Example — Software INterruptsveiniveiceiniseniones 236
4.6.4 Distributing Pruning over Productennieenenee 238

4.7 Message PaSSING u.scvssssssssssssosssssssssssanssssmsesasespsnsisesess sevess snsusonsnss 242
4.7.1 Parameter PasSingcivivinsinicnininssisisseasesesssens 242
4.7.2 Message Passiflfl ..csesessssssssssomsssossessorssssssssssssssssssassssesssss 247
4.7.3 Predicated CHOICEucuurivcirriecieiciriceeereecssesnsecens 251

4.8 Agents LUrking ... 254
4:8.1 Delay 8 wumwummsmmwnsnsmonsmssmsssssssmsmsmmms 254
4.8.2 One Agent WAilscvuvveveecrencsininniesinencsnsesassenescsnsssesseneas 261
4.8.3 Both Agents Wil .ssemssmmsmmsesssmssssassisssesiiss 268
4,84 Examples swsumummmasasmmsmmm s i 275
4.8.5 Message Passing and Waitingvevceveerncrrneencnes 283

4,9 Specifications and Proof .icsssssssssssmssmmsssssnssssssiisnss 292
4.9.1 Mutual EXCIUSIONuceeeeneceriicecirececneeceeieesceeeeeneesiseenns 293
4.9.2 Livelock - Software Scheduleroocveeerevveresenecsnnenne 297
4.9.3 Deadlock - Software Scheduleruoreenereererunenn. 298
9.4, \COTATHBIITS coversurveesmmroriastsss s s osss s msesm s sy s ms s s oSS 55 300

5 EQUivalence ... 301
5.0 The Need Fof BANIVAlENEE sussmmmmmmmansrmsnsssissssns 301
5.1 TRACES ovivitiiiiceciiii e e e 304
5.2 From Traces to Bisimulationsc.ccccecevnnninivenennennenenenannas 306
5.3 Bisimulation ...cccvicrccuiinininicinieiniieeieiesseeeeie s 307
5.3.1 Strotig Bisimulation: .owwssmsmssesssseamssmsronmmssssemmse 309

5.3.2 From Strong Bisimulation to an Equivalence 311

Contents xiii

5.3.3 Observational EQUIvVAIENCEocrvivieriinnriiriniriiienisirerenns 319
5.3.4 Observational CONGruence ... 328
6 Automating SCCScovviviinininiiniiiicceee s 333
6.0 Concurrency Work Bench: an Introductioncccccovrrnnnen. 333
6.1 CWB and Agent Behavioursccccceveereccicinccnncncniseinenen, 337
6.2 Agents, Bisimulation and CWB ... 355
6.3 COMMENTS sussssvemsssssvmssssmssnsssssmsasssassssmasssessssssmsamsasaorsassassisssess 378
7 Proving Things COrrectieniennininesieneniessecresennesenenene 379
7:1 Modal LOGICS wssssmmssmvsssssinersusssnsssnssomssmsssusmvnssssssmmsssmaassinnsns 380
7.1.1 Hennessy-Milner LOGICccucuvuueeuviviuvinnenccnsirienisennsinenans 380

7.1.2 Propositional Modal Mu-Calculus - Modal Logic
Plus Fixed POINEScuveceeevivernicieseineeseseanensensseeasissasesssseasanens 394
7.2 Modal Logic, CWB and Satisfactionccccecvvvivrsrvrnenenans 418
8 ENd ENA NOLEooiiceiviiiceceeiririeicisieterceieiessesissasesssssssssnnnsanas 433
Appendix 1 Some of the More Useful SCCS Propositions 435
Appendix 2 Notation Used Throughout the Bookccccecovvvurunneee. 441
REfEIENCES ..ottt et 451

Introduction

One of the most endearing preoccupations of human beings is the way they attempt
to understand the world around them and then try to improve it, with varying
degrees of success. Over the years it’s been man’s insatiable curiosity - “...but what
happens next?’ - that has driven advances in both science and engineering. As engi-
neers we make our living out of this desire; we don’t just design things, we know
how objects, yet to be built, will behave, and we can predict whether they will
answer to our customers’ requirements (and even if we don’t, we should). In more
formal terms, engineers not only design systems but prove these designs satisfy
their specifications.

But how do we build things that behave correctly? The artisan approach is just to
go ahead and start building, beginning with something with a behaviour near to
what is required and then repeatedly testing and modifying it until we get what
we want. One problem with this method is its lack of scalability - we can use it to
build simple systems but the method doesn’t scale up to complex ones. Proving a
system meets its specification also has scalability problems. To prove a system
correct we need to test it exhaustively. While smaller systems may need few tests
(for example, to test a lamp and switch to exhaustion we only need to show that
pressing the switch turns the light on and releasing it turns the light off), to test
to exhaustion even medium-sized systems, for example a single computer chip,
can take man years. During that time the customer may get impatient and think
of the wait to get paid. -

Unfortunately, many of the objects we might wish to create are just too complex
to build, test and modify as a prototype, or even as an accurate physical model.
We need a more abstract modelling system, preferably one with a mathematical
framework, so that we can design with pencil on paper, test by computer simula-
tion, and use automated provers to check for correctness. Such an abstract mod-
elling method must faithfully capture the behaviours of objects, enable us to
manipulate those behaviours in a predictable way, predict the behaviours of
objects composed of other objects, and finally compare behaviours so that we can

2 Introduction to the Formal Design of Real-Time Systems

check whether the object meets its specification. What we need is a modelling
method which has operations, and laws over those operations, that replicate
objects’ behaviours. We need an algebra of objects.

How would such an algebra-based modelling method revise our design
approach?

We commence any design with a set of requirements which state how we wish the
final object to behave. We then propose, in the abstract world of models, a design
that may satisfy those requirements

Real World [Model World

o ! Mapping

Requirements

Requirements Proposed

Design
Salie
— %

Arbiter

Design Documerts

Modifier

Using our algebra upon models we can predict how the design will behave; then,
using an arbiter, we can test if this behaviour satisfies the requirements. If the
arbiter decides the design is satisfactory we can proceed to build the real-world

Chapter 1: Scene Set 3

object. If not, we revise the design, before submitting it again to the arbiter. There’s
a small problem with this scenario. When making comparisons, an arbiter can
only compare like with like. To compare an expression in our algebra of models
with a specification, both must be defined in the same terms. The specification
must either be expressed in terms of the algebra of models or isomorphic to them.

While this process is similar to the artisan method, the design is no longer car-
ried out in the physical world but in the more tractable world of abstract models.
When we avail ourselves of strong mathematical underpinnings, the construc-
tion, testing, and modification of a design can be carried out more simply, reli-
ably and quickly.

For our design method to be successful, we require that our models behave like
the real thing - but only in those aspects in which we are interested. A model air-
craft might fly, but it need not contain all the detail of a real one. By reducing
complexity we reduce the possibility of error. But how do we know what behav-
iour is essential? What not? And how do we represent such behaviour in a model?

1.1 Making Models

When modelling the behaviour of a thing

we have conflicting goals. We want the model to be simple - the simpler the bet-
ter — but it must also completely capture the important behaviour of the thing. As
we define the behaviour of a real-world object in terms of the actions in which it
is seen to engage we will have created an adequate model if an observer cannot
distinguish between the actions of our creation and those of the real thing.

As actions are to be the basis of all our models, we need to know more about
them. In the simplest terms, an action is something which moves an object
between discernible states.

an_action

y /\ _

STATE STATE

We can label actions with abstract names. Here, instead of an_action, we sub-
stitute the label ‘a’,

4 Introduction to the Formal Design of Real-Time Systems

a
_ /_\ .

STATE STATE

and the states of a system are defined purely in terms of these observed and

labelled actions.

ready_to_engage_in_a just_engaged_in_a

Here, action a moves the system from state ready_to_engage_in_a to state
just_engaged_in_a. The states are only significant with respect to actions.
If a was the last observed action, we can only be in state just_engaged_in_a.
If we've not observed any action, we must be in the initial state
ready_to_engage_in_a.

We can, if we wish, label the states and actions with names relevant to the states
and actions in the system being modelled. For example, in

on

&i 5

@ PN
z Z
LIGHT OFF LIGHT ON

off

the state of the light is switched between LIGHT_ON and LIGHT OFF by the on
and of f actions.

The same model can be interpreted using different objects in different environ-
ments. The light model behaves the same as these flag and clock models.

raise tick
et
%
~ v’ .Y
<
lower tock

All have two actions moving the systems between two states. We could abstract
this to a system in which a and b actions move the system between states P and Q.

Chapter 1: Scene Set 5

b

Devising laws over behaviours for such generalised models allows us to make
subsequent interpretations as to how a particular instantiation will behave.
Renaming the general (a,b) in terms of the particular gives us the light system
(on,off), the flag system (raise,lower), and the clock system
(tick, tock). The benefit of taking abstract views is that one system contain-
ing certain action sequences is the same as any other with the same sequences;
only the action and state names are changed to better reflect the system modelled.

Instead of the pretty, but difficult to manipulate, pictures, we can represent a
model’s actions and subsequent state changes in terms of formulae. ‘A system in
state P can engage in action a and in so doing move to state Q. The states P and
Q represent agents — they portray, in mathematical terms, the behaviour of an
associated real-world system. Agent P is defined by expression a—Q.
pdef a0
In other words, ‘Agent P can engage in action a and in so doing become agent Q.
Similarly ‘Agent Q can engage in action b and in so doing become agent P’
Qdfpp
Finally, the complete system can be expressed as a recursive equation. ‘Agent P
can engage in actions a then b and so become agent P again’
P df a5bP
These general action and agent names can be instantiated to particular systems.
LIGHT “f of f5on—LIGHT
FLAG %f lower—raise—FLAG
CLOCK %f tick—tock—CLOCK
And so on.

Such state- and action-based mathematical models are not new. In the world of
electronics, Meally-More diagrams, a type of labelled transition system, are used
to design and check the correct operation of digital circuitry. In the field of com-
puter systems vector diagrams, showing how processors change state when they
engage in software instructions, have long been used to check if a program per-
forms correctly.

The ability to model single objects is only part of the picture. Objects do not exist
in isolation. Something must raise the flag, switch on the light, hear the clock tick,
etc.. Objects exist in environments with which they interact. For example, when
we observe and record an object’s actions, the observer is part of that object’s
environment. The existence of environments means that an object must engage in

