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ON FURTHER APPLICATION OF THE FINITE
ELEMENT METHOD TO THREE-DIMENSIONAL
ELASTIC ANALYSIS

Y.R. RASHID *, P.D. SMITH **, N.PRINCE ***

1. Introduction

Departure from the simple constant-strain tetrahedral element (I) in
favor of higher order elements (2) occurred at a relatively early stage in three-
dimensional analysis of elastic structures, and complex elements of various
shapes have been developed in recent years (3-8). The displacement appro-
ximations adopted for these complex elements include complete second and
third order polynomials and various combinations of interpolation functions.
If a simple criterion for selecting a superior element can be defined in terms
of, first, its degree of accuracy and, second, its adaptability to irregular
boundaries, then we clearly already have at our disposal many such elements
which satisfy this criterion quite satisfactorily. It would seem, then, that any
further development of basic element formulation is notgdikely to produce
substantially better alternatives to existing element models, and the point of
diminishing returns may have already been reached.

The three-dimensional computational problem, however, goes far
beyond basic element derivations. For instance, the method of solving the
equilibrium equations, presents significant difficulties and is greatly influ-
enced by the distribution of the element’s nodal degrees of freedom. Other
factors which influence the general problem are : the element’s degree of
accuracy, its adaptability to irregular boundaries and material variations,
the input-output requirements, computation time, and the size and confi-
guration of the problems to be solved.

This paper deals with the three-dimensional problem from this general
viewpoint. The major parameters in three-dimensional analysis are solution
efficiency and accuracy. The paper will discuss the interdependence of these
two parameters on the element model, input-output requirements, and the
method of solution of the equilibrium equations. It will first be demonstrated

. (*) General Electric Co.

(**) Gulf General Atomic..
(***) Gulf Computer Sciences.
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that for a given degree of displacement approximation, the selection of the
finite element model is not independent of the solution of the equilibrium
equations, which is simple verification of the fact that the efficiency of the
element is strongly dependent upon the distribution of the element nodal
degrees of freedom. Secondly, a finite element model will be described, which
provides the desired accuracy but does not overtax the solution process.
Thirdly, a well suited method of solution of the equations for the selected
model will be presented.

2. Element efficiency

The various types of three-dimensional finite element models have
varying influence of the efficiency of the solution of the equilibrium equa-
tions. This is due to the distribution of the nodal degrees of freedom of the
elements. The efficiency parameter is regarded here as the band width of
the system which is the limiting factor in three-dimensional problems of
practical interest. In order to illustrate the influence of this element property
on the bandwidth we idealize a simple structure by the several element
models shown in Table 1, maintaining comparable accuracy in each ideali-
zation, The emphasis, here, is on the relationship between the distribution
of the nodal degrees of freedom in the assembled element aggregate, pro-
vided they are all admissible, and the solution of the equilibrium equations.
Therefore, the element shape would not influence the results and remains as
a free parameter. Types (a) and (b) shown have identical kinematic proper-
ties : they utilize complete third-order polynomial expansion, and they differ
only in the type and distribution of the nodal degrees of freedom. But

Table 1
FINITE ELEMENTS COMPARISON

Finite Element Number of
Element Grid in Terms  Displacement Mumber of Number of  Degrees of Band Number of
Type of Main Nodes Function Main Nodes  Subnodes Freedom Width Tetrahedrons
(a) éb 3X5X 11 Complete 165 2656 8463 1641 480
Cubic
(b) LA IX5X 1 Complete 165 1096 5268 mnon 480
Cubic
(c) 4X7X16 Complete 448 2376 8463 1095 1620
Quadratic!
(d) 4; 4X7X16 Partial 448 0 5376 673 1620
Cubic
e) . 7X13X31 Linear 2821 0 8463 549 12960
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element (c) is based on a complete second order polynomial expansion. Inter-
polation elements fall somewhere between type (c), and (a) or (b). Element
(d), which will be derived in this paper, is based on an incomplete third-order
polynomial expansion that combines a complete second order polynomial
function with six additional cubic terms (*). These element models all have
one thing in common, namely, they contain at least linear variations of the
strains. This level of accuracy seems to be satisfactory for most problems
(11). For ease of reference, the four nodes which define the vertices of the
tetrahedron are called main nodes, and all others are referred to as subnodes.
Consider a strugture, the exact shape of which is not important in the present
context, but which can be idealized by all five types of elements shown in
Table 1. The number of main nodes in each idealization is shown in Table 1.
Type (a) element is used as the basis for determining the finite element
configurations of the other element types. For example, a cubic variation,
such as provided by element (a), can be approximated as three linear func-
tions. Similarly, two cubic segments approximating one curve can be replaced
by three parabolas. This is a more meaningful criterion than using the total
number of degrees of freedom.

It is interesting to note that the solution time, which for core-resident
Gaussian elimination varies as the square of the band width, can vary by a
factor of two for types (a) and (b), even though they have identical kinema-
tic properties but differ in the distribution of the nodal degrees of freedom.
From the point of view of element efficiency, element (b) is superior to (a).
On the other hand if curved elements are used element (b) may present
some difficulties because the curvilinear surface coordinates are described in
terms of slopes instead of merely nodal coordinate numbers. However, this
disadvantage may be overcome by introducing geometrical sub-nodes, two
per edge, which are used to describe the geometry only [see Reference (6)].
Similar arguments may be applied to elements (c) and (d). Although the
latter involves higher-order displacement approximations and consequently
more degrees of freedom, it is seen to be more efficient than element (c),
even for a similar idealization. In an overall evaluation of all four types,
element (b) offers the best kinematic properties while maintaining the band-
width within manageable limits, and type (d) offers acceptable accuracy, the
simplest input requirements, and the highest efficiency. In general, the
element with the least number of nodes is the most efficient. In view of the
‘alternating component iterative method (9, 70) element (d), or its equivalent,
permits a 12-fold increase in the bandwidth capacity over Gaussian elimina-
tion, compared with a threefold increase for type (c), (a), or their equivalents.

(*) Similar element has been discussed in Reference 4.



436 - THREE-DIMENSIONAL ELASTIC ANALYSIS
3. Mathematical preliminaries

Let X and Y be two sets of rectangular and skew Cartesian axes,
respectively. Then the coordinate transformation

Yi = ¥i (X5, Xz, X3) i=1273 1

involves only the direction cosines of the y axes relative to the x axes. If the
y;’s are normalized, such that

0, = y" i=1223 )

L

Fig. 1. — Tetrahedral Element, with Twelve Degrees of Freedom per Node (Ui, 3Ui/3Xj;i,j, =
1, 2, 3).

where Lo; is the length of edge Oi of the tetrahedron (see Figure 1), then
a third order polynomial complete in the 6 coordinate system can be writ-
ten as

u (91’ 92, 93) = < 1’ 61» 92’ 93, e%’ ega 9%, el 62’ 91 93’ e2 93’ 0:1;’ e;’ eg,

fal

07 8,, 0, 03, 63 65, 0, 03, 67 65, 0, 03,0, 0,05 ) { . 3

%20 J
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The 0 shape functions can be simply derived in terms of the rectangular
Cartezian coordinates X;, X, X; as follows. Let v be defined as

o |

: 'Y=<1,X1,X2, X3> s & (4)

oy

Evaluating y at each of the four vertices of the tetrahedron gives
Yo = Do o, ©)]

where D, is a non-singular 4 X 4 matrix. Substituting for o from Equation
(5) into Equation (4) yields

y = L xg X3 X3 ) [Do]_1 Yo- (6)
Then the 0’s are defined by
{06, 0,0, >=<1x X3 X3 [Do]™ Y, @)
where .
0o =1 —6, — 06, — 0, (€))

It is easy to show that upon substituting Equation (7) into Equation (3), the
resulting polynomial is also complete in the x; coordinates. A complete n*®
order polynomial can also be expressed as a linear combination of all possi-
ble product terms of the four 0; functions such that the order of the products
is exactly n.

An alternate form to (3) is then given by
u (8o, 04, 05, 03) = € 65, 03, 03, 03,03 8,, 0, 63, 65 65, 0, 63, 65 83, 0, 63, 67 0,,
D, 02,0705, 0, 02,03 0,,0,03, 0,0, 0,,0,0,0;,0,0;00,050060, > (B |

.9

{ B2o

If u, (0,, 0., 0;) and u, (8,, 0,, 0., 0;) are two n** order polynomials of the
type shown in Equations (3) and (9), having coefficients o and 3 respec-
tively, then the following relation exists

a=ARf | 10)
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where A is an m X m matrix. If u, is complete, then a necessary and suffi-
' cient ‘condition for u, te be complete is

det |[A| # 0. 11)

It is easy to verify that det | A| = = 1 for any n.

4. Element displacement Field

The basis for selecting an admissible polynomial expansion of order n
of the displacement field is that it must be continuous through out the solid
and must have piecewise continuous derivatives up to and including the n*
derivative. Continuity is guaranteed, if the displacement on any face of the
tetrahedron is uniquely determined by the nodal degrees of freedom of the
element on that face. In addition, the displacement along any edge should
be uniquely determined by the nodal degrees of freedom of the element on
that edge. These gequirements are automatically met, if, for example, com-
plete cubic polynomial representations are selected for element types (a),
(b) and (c). However, for incomplete polynomial expansions, such as the
one required for element (d), the problem is not so simple. In addition to
continuity, which is a global requirement on the displacement field, the dis-
placement functions of each element must satisfy certain fundamental pro-
perties dictated by convergence requirements. These can be formulated as a
simple rule : first, constant strain states must be fully represented, and
secondly, higher-orders terms should be included only if all the lower-order
terms are present. A displacement function that satisfies these local require-
ments and the global continuity requirement is given below for the w,
displacement component.

Uy (Xy, X, X3) = < 05 _(-)f, 03, 03, 60 05, 65 05, 0, 03, 0, 65, 0, 05, 0, 65, 05 65,

oy

02 0,, 62 05, 63 0,, 63 0,, 63 05 > { . ) (12)

373

The first ten terms of ‘Equation (12), by the argument of Section 3, form a
complete second-order polynomial. The six cubic terms were selected by
experimentation from a rather limited set of alternatives. A property of
Equation (12) that provides a necessary condition for inter-element compa-
tibility is that it reduces to nine independent terms on each of the four
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faces, and to four independent terms on each of the six edges of the tetra-
hedron. This can be verified easily by substituting the equations of the
plane and the line respectively into Equation (12). The equation of the
plane opposite node i, for example, is simply

0. = 0, (13)
and the equations of the line opposite nodes i and j are
6o=0) .
o, =0 [’ 1) (14)

An obvious disadvantage of Equation (12) is that it does not possess nodal
symmetry in the contributions of the cubic terms, which introduces some bias
in the element’s deformation characteristics. However, intuitively and on the
basis of limited experience, since the bias is confined to the higher-order
terms, it does not have a significant effect, especially in the overall aggregate
of elements, where the bias tends to cancel out due to the arbitrary nature of
the element orientations.

5. Admissibility of strains as nodal unknowns

Single valued strains at the nodes is not generally admissible in non-
homogeneous solids. In most practical problems, however, material inhomo-
geneities can exist in one of two forms. The first involves a slight variation
from region to region due to age, as in concrete structures, for example, or
due to temperature dependent properties under nonuniform temperature
fields. The second form arises in composite solids where materials of largely
different properties are jointed together, such as in welded or reinforced
structures. In the former type, the inconsistencies arising from forcing all
the strains and rotations to be single-valued at the nodal points are of little
significance and can be ignored. In the second class of structures, however,
the inconsistencies may not be so easily ignored. In structures where there is
distinct separation between the various material constituents, thin layers of
elements having average material properties may' be inserted at the joints.
The inconsistencies are not completely removed, but they somewhat averaged
out over small regions. Where this type of approximation is not acceptable,
elements of types (a) or (c) should be used.

6. Element stiffness derivations

Instead of discussing the derivation of stiffness matrices and force

vectors, which generally follows a standard procedure of matrix algebra we
give the quantities of interest directly and discuss the simplifications, made -
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possible by the particular form of the displacement functions, Equation (12).
The element stiffness matrix and force vectors are of the form :

»

K = | AT H A, dv, (15)
JV
5
F, = | AT H E dv, (16)
F, = | AT B dy, a7
F, = | AT s dzZ, (18)
2 .

where T indicates matrix transpose
K Stiffness matrix, (48 X 48)
H Elasticity matrix, (6 X 6)

A. Matrix function relating the strains to the nodal unknowns,
(6 X 48)

A, Matrix function relating the three displacement components to the
noda] unknowns, (3 X 48)

E Thermal strain vector function, (6 X 1)

B Body force vector function, (3 X 1)

S Surface traction vector function, (3 X 1)

F. Nodal force vector due to the tehrmal strains

F, Nodal force vector due to the body forces

F, Nodal force vector due to the surface tractions
V  Element volume

¥ Element surface where tractions are specified

Equations (15) through (18) can be simplified by taking advantage of the
properties ‘of the 0 functions and further reducing the matrices A, and A,.
From the strain-displacement relations

e = Lu, (19)

.where L is the‘ well known 6 X 3 strain-displacement matrix differential
operator and ¢ and u are the strain and dlsplacement vectors, respectively.
From Equation (12) we have

u = OQa (20)
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where @ is given by

é 0 0
®=106 ¢ 0 (21)
0 0 ¢

and ¢ is' the 16 term row vector defined in Equation (12). The generalized
displacement vector o consists of three sets of o’s from Equation (12). Upon
substituting Equations (20) and (21) into Equation (19), and after some
manipulation, we obtain ’

E = q/x \llo o. (22)

Evaluating ¢ in terms of the nodal displacement vector v (displacements
and their derivatives) gives

= 0"V, 23)
where @, is a block diagonal matrix, consisting of three 16 X 16 constant

matrices obtained by evaluating @ and its three derivatives at each of the
four nodes of the tetrahedron. Equations (22) and (23) combine to give

e = VY Vo ' v, (24)
from which
A, = Y, Yo 05 (25)
Also combining Equations (20) and (23) gives
u=oa;"'y, (26)
which defines A, as follows :
| A, = ® @ @7

The matrices (), and ¢, are easy to derive and are defined in the appendix.
The matrix (), is defined in the following equation :

A 0. 0 0 0 0]
0 A 0 0 0 0
0 0 A 0 0 o0
Ve =

0 0o o o o Al (28)
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where
A= < 63’ e%’ 9;, 9%, eO 919 e0 92’ 6; 93, e1 925 91 931 92 93 > (29)

This is the 10-term complete second order polynomial. Substituting A, in
Equation (15) gives

K = [® ' ¥} f VI HY, dv yp @5 (30)

The matrix function T H{, in Equation (30) is a 60 X 60 symmetric
matrix that can be partitioned into 6 X 6 submatrices, each of which is of
size 10 and has the form

[‘I’I H \llx]ij = hij [}"T )"]’ ia J = 1’ 2’ seey 6, (31)

where the subscripts ij identify’ the 10 X 10 submatrices, and h;; are the
elements of H. The integration in Equation (30) is performed on the matrix
(AT™\) only once. This involves volume integrals of the type

. 6 Vplq!r)
I, LG, 0 0, dv PFatrsdl’ 32)

area integrals over the tetrahedron faces of the type

' 2A(p!q)
I, = P06 dA = ——— =, 33
2 .[Alj (p+q+2)| ()
and, finally, line integrals of the type
L
I, = P dL = 34
3 J’L 91 d P e 1 ( )
In the above expressions
1 :
A" element volume, 6 det | D, | [see Equation (5)]
p> q, r Integer powers
i, j, k distinct subscripts, 0, 1, 2, 3
A triangular area on which tractions are specified
L length of the element edge on which a line load may be specified

The above integrals may be extended to integrands involving higher products
of 0 functions by substituting Equation (8), (13), and (14), respectively.
This gives

L = V/8:
L = A/ Bz (35)
I, =L/ ﬁs

‘where @B; are functions of p, q, r, and s, and are listed in Table 2.
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7. Solution of the equilibrium equations

The method of solution used here is the alterning component iterative
method that was presented in detail in References 9 and 10, for a general
m-component system (m is the number of nodal degrees of freedom). This
method is well suited for the element of four nodes and sixteen degrees of
freedom (type d), for which m = 12. The method was adapted to thin-shell*
problems (12) where the nodal unknowns were grouped in four components
(m = 4).

This type of grouping, which can be done selectively, proved to be a
very convenient feature of the method, where optimum convergence rates
can be tailored to the physical problem being solved. As is well known,
iterative methods for flexible structures such as thin shells can bg hopelessly
slow in converging. The rate of convergence of the alternating component
method can be greatly influenced, however by simply grouping the unknowns
in their order of importance (see Figure 1). Also by permitting m to be an
input parameter, component grouping can be varied to accothmodate larger
band widths, since the bandwidth limitation in this method is B/m, where
B is the bandwidth of the total system. It might be of interest to note that m
equal to unity implies Gaussian elimination, which, in the present context, is
least efficient from the point of view of core storage and solution time. In
the other extreme where m can take on the maximum number of nodal
degrees of freedom, twelve in the present case, very large bandwidths can be
treated. However, in slowly convergent problems, such as in thin shell struc-
tures, for example, such luxury in bandwidth is obtained at the expense of
the number of iteration cycles. Three-dimensional solids problems solved to
date by this method require an average of ten to fifteen cycles. This number
" may be doubled for thin-shell structures of for ill-conditioned problems.
Figure 3 shows solution times for a three-component scheme. In the follo-
wing we summarize the essential procedure of the alternating-component
iterative method adapted to 12 components.

The governing system of equations of a finite element aggregate compo-
sed of type (d) elements may be written in the followmg partitioned matrix
form :

F® =K @QV,Q i=12..12 36

where P and Q are lists ‘of field and source points, respectively, F;(P) and
Vi(P) are load and displacement subvectors, respectively, and K; ,(P Q) are
the stiffness coefficient matrices of order N where N is the number of nodal
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points. The block over-relaxation iterative form of Equation (36) is given by

i-1
Vi (P)("" 1) _ Vi (P)(s) + (‘oKi-il (P, Q) [Fi (P) _ j;l Kij (P, Q) Vj (Q)(s+ 1) _

- E K;; (P, Q V; (Q‘)F”] i=1,2 .., 12, 37
j=i

where 1 < w < 2 is the over-relaxation factor and s is the iteration cycle.

. In order to make further use of Equation (37), we take advantage of the
bandedness of the system and assume that the list of mesh points P can be
partitioned into M point groups P,, P, ..., Py, where coupling of one group
extends to the two adjacent groups only. Equation (36) can: be partitione&
further as follows :

12 M _
Fi(P) =3 ¥ K;; Py Qp) V5 (Qp) * _ 1,2, v M (38)
ji=1p=1 1 Vs 2, sosg 12

TABLE 2. — Volume, Surface and Line Integrals

P q r s B B- B
0 0 0 0 1 1 1
1 0 0 0 4 3 2
2 0 0 0 10 6 3
1 1 0 0 20 12 6 .
3 0 0 0 20 10 4
2 1 0 0 60 30 12
1 1 1 0 120 60 —
4 0 0 0 35 15 5
3 1 0 0 140 60 20
2 2 0 0 210 90 30
2 1 1 1 420 - =
1 1 1 1 840 — —
2 1 1 0 . 180 —

Iy this form, the component matrices K, (P, Q) in Equation (38) are block- -
tridiagonal, i.e., K;; (P, Qp) are non-zero for (e — 1) < < (a+1). Further,
in order to avoid confusing notation, Equation (37) may be written

V, @Y = vV, (P)® + oAV, (P)SV (39)
“in which ' g
AV, ®®*D = K;' (P, Q R; (Q¥*Y, . (40)
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