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PREFACE

Understanding the origin of spatio-temporal order in open systems far
from thermal equilibrium and the selection mechanisms of spatial struc-
tures and their symmetries is a major theme of present day research into
the structures of continuous matter. The development of methods for pro-
ducing spatially ordered microstructures in solids by non-equilibrium
methods opens the door to many technological applications. It is also be-
lieved that the key to laminar/turbulence transitions in fluids lies in the
achievement of spatio-temporal order.

Let us also emphasize the fact that the idea of self-organization in it-
self is at the origin of a reconceptualisation of science. Indeed, the appear-
ance of order which usually has been associated with equilibrium phase
transitions appears to be characteristic of systems far from thermal equi-
librium. This phenomenon which was considered exceptional at first now
appears to be the rule in driven systems. The chemical oscillations obtained
in the Belousov-Zhabotinskii reaction were initially considered to be ther-
modynamically impossible and were rejected by a large number of
chemists. Now these oscillations and related phenomena (waves, chaos,
etc.) are the subject of intensive research and new classes of chemical oscil-
lators have been recently discovered. Even living organisms have long been
considered as the result of chance rather than necessity. Such points of
view are now abandoned under the overwhelming influence of spatio-tem-
poral organization phenomena in various domains ranging from physics
to biology via chemistry, nonlinear optics, and materials science .

Today, materials science is undergoing a complete revolution.
Indeed, by the use of new technologies ( laser and particle irradiation, ion
implantation, ultrafast quenches, etc. ) it is possible to escape from the
tyranny of the phase diagram and to process new materials with unusual
properties. In order to describe and understand such materials, dynamical
concepts related to nonequilibrium phenomena, irreversible thermody-
namics, nonlinear dynamics, and bifurcation theory, are required.

The development of a theoretical framework to describe and interpret
self-organization phenomena was made easier by the progress of thermo-
dynamics of irreversible processes and by the introduction of the concept of
dissipative structure. In this context it is clear that the nonlinearities of the
dynamics and the distance from thermal equilibrium are at the origin of to
spatio-temporal organization. Similar phenomena appear in very different
systems : spiral waves in chemical systems (but also in the cortex or car-
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diac activity), the aggregation of micro-organisms, and convective rolls as-
sociated with hydrcdynamical instabilities in normal fluids and liquid
crystals. These varied appearances show that these phenomena are not in-
duced by the microscopic properties of the systems but are triggered by col-
lective effects including a large number of individuals ( atoms, molecules,
cells, etc. ).

The role of fluctuations is also very importani in such circum-
stances. Effectively, near instability points, the space and time scales are so
large that the structures are particularly sensitive to even small fluctua-
tions. When different states are simultaneously stable beyond an instabil-
ity, such fluctuations or small external fields may affect the pattern selec-
tion mechanisms. Furthermore, in the case of spatial patterns, the position
and orientation of the structure which are described by phase variables are
usually fixed by the boundary conditions in small systems. This is of course
not the case in large systems where phase fluctuations may trigger the nu-
cleation of defects analogous to dislocations and disclinations. These effects
show the importance of a stochastic description of self-organization phe-
nomena far from equilibrium.

In pioneering fields, such as hydrodynamics or nonlinear chem-
istry, the comparison between theoretical predictions and experimental ob-
servations has long been qualitative but has reached the quantitative level
recently. This is because of new experimental methods using laser and
computer technology and of theoretical progress based on the theory of dy-
namical systems, on bifurcation calculus, and on the development of su-
percomputers which make numerical simulations feasible.

While quantitative and systematic experimental analysis followed
theoretical analysis in the case of nonlinear chemistry, the evolution has
been quite different in the field of hydrodynamics. Despite the fact that con-
vective instabilities and turbulence have been studied for more than a cen-
tury , definite progress in understanding pattern formation, selection and
stability, and the origin of chaotic behavior were achieved only recently It
is worth noting that these problems present severe difficulties. From the
experimental point of view, the absence of any operational definition of tur-
bulence, the lack of sensitivity of traditional measurement techniques to the
temporal behavior of hydrodynamical flows, and a poor resolution of
boundary effects limited the progress until the last decade. From the theo-
retical viewpoint, a major difficulty has been finding analytic solutions be-
cause of the complexity of the Navier-Stokes equations.

Significant progress have been achieved in the experimental analysis
of instabilities and hydrodynamical flows because of new techniques (laser
velocimetry, cryogenic techniques, image processing, etc. ) , the systematic
use of computer science in data processing and experiment control, and
the linkage with new theoretical approaches based on instability and bifur-
cation theory. On the other hand, the study of the succession of instabilities
obtained by increasing the bifurcation parameter requires nonlinear anal-
ysis which extends far beyond the classical studies in the field. Hence a few
relatively simple systems (Rayleigh-Benard, Taylor-Couette, Benard-
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Marangoni, etc. ) became very popular as prototypes of complex behavior
where nonlinear theories of pattern formation may easily be tested.

Although the Rayleigh-Benard type of instabilities have been dis-
cussed at length in the literature and are still providing new challenges for
theorists and experimentalists, some of their basic aspects bear reviewing.
When a thin horizontal layer of fluid is heated from below or cooled from
above, a temperature gradient is generated across the sample. For small
gradients, the fluid remains in a conductive state but, on increasing the
temperature difference between the horizontal fluid boundaries, the gradi-
ent may reach a threshold where this conductive state becomes unstable.
Beyond this threshold (instability or bifurcation point), convection sets as
cellular structures associated with periodic spatial variations of the hydro-
dynamic flaid velocity field and of the temperature field. Several types of
structures may be obtained according to the working conditions: rolls,
hexagons, squares, traveling or standing waves. On increasing further the
bifurcation parameter, these patterns may in turn become unstable caus-
ing successive bifurcations to occur driving the system to chaos.

From the theoretical point of view, while the first bifurcation may
easily be determined from the Navier-Stokes equation, it is a formidable
task to determine the behavior of the system beyond the hydrodynamic in-
stabilities with these equations. Fortunately, the derivation of amplitude
equations for the patterns led to definite progress in the study of their for-
mation, selection and stability properties. These equations which are usu-
ally of the Ginzburg-Landau type, correspond to reduced versions of the
complete dynamics which contain all the symmetries of the problem. They
may be solved more easily and describe correctly the dynamics of the sys-
tem on long space-time scales close to the bifurcation point.

Because of the permanent interactions between theory, experiment
and numerical analysis, significant progress have been made during the
past 20 years on the mathematical methods of nonlinear dynamics and in
the understanding of simple fluids instabilities. It has become quite clear
that such instabilities manifest themselves in the form of various patterns
which vary from the simple to the complex. More recently, the growth in
the body of knowledge of liquid-crystal hydrodynamics furnished an excit-
ing ground for further experimental observations on the nature of transi-
tions from one pattern structure to another. Nonlinear interactions at the
micro level can explain, to a large degree, the onset and propagation of in-
stabilities at the macro level. Instabilities are saturated through the forma-
tion of what is now commonly known as “dissipative” structures. The ge-
ometry and properties of these structures can be well explained by a compe-
tition between local and nonlocal transport reactions. This framework ap-
Pears to be quite general, at least conceptually, and can be seen in many
physical phenomena (e.g. laser-material interactions, energetic particle-
material interactions, magnetic fluids, plastic instabilities, plasma and
electric systems). General observations of these vastly diverse physical sys-
tems show striking similarities in the nature and occurrence of patterns as
manifestations of instabilities.



Physicists and mathematicians have already observed that beyond
the onset of instability, patterns which form to “dissipate” the instability are
rarely perfect. Imperfections, or defects, can be shown to develop in all pat-
tern-forming instabilities. In some simplified models, one can mathemati-
cally find conditions for defect creation in otherwise regular structures. On
the other hand, it is already known to materials scientists that defects play
an important role in determining material properties. Point defects play a
major role in all macroscopic material properties which are related to
atomic diffusion mechanisms, and to electronic properties in semiconduc-
tors. Line defects, or dislocations, are unquestionably recognized as the ba-
sic elements which lead to metal plasticity and fracture. As a consequence,
the study of the individual properties of solid state defects is at an advanced
level. However, studies of the collective behavior of line defects are still ele-
mentary. At the present time, it is important to note that the collective be-
havior of point defects is well described within the rate theory framework,
in analogy to the concepts developed earlier for chemical kinetics.
Theoretical description of point-defect interactions can be described as reac-
tion-diffusion equations. On the other hand, major theoretical challenges
are encountered in the development of statistically based models of the col-
lective behavior of line defects. Nonetheless, significant progress has been
made in the field of dislocation dynamics and plastic instabilities over the
past several years.

Physical systems which comprise many interacting entities (e.g. flu-
ids, solids, plasmas, etc.) have been described at different levels. (1) The
most fundamental and detailed level is a description based on the equations
of motion (EOMs) for the individual entities. Hence, the framework of
Newtonian or quantum mechanics is appropriate. (2) A higher level in the
hierarchy is statistical mechanics, where the concern is with distribution
functions in phase space, rather than the individual EOMs. Thus we are
able at this level of description to discuss collective properties such as diffu-
sion, conduction, viscosity, permeability, etc.. (3) The description of contin-
uum mechanics is more appropriate for studying macroscopic length and
time scale resolutions. Navier-Stokes, continuity and compatibility equa-
tions provide the primary vehicles for a macroscopic description of the con-
tinuum. At this level, constitutive relations are needed to complete the
framework. It is hoped that such constitutive relations are derivable at the
statistical mechanics level. However, this is not usually the case. More
often, a phenomenological model is used to obtain the needed constitutive
relations. (4) Continuous media deform generally homogeneously if the ex-
ternally perturbing field induces small deviations from equilibrium.
Critical levels of non-equilibrium perturbing field lead to dynamical insta-
bilities in the continuous distribution of matter and to the eventual emer-
gence of patterns or dissipative structures. In past few decades astonish-
ingly rapid progress has been made in our understanding of the nature of
pattern-forming instabilities. The appropriate framework at this level of
analysis is nonlinear dynamics, where the dynamical equations which de-
scribe the bifurcations and instabilities are obtained from appropriate con-
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Fig. 1: Schematic representation of a hierarchical framework for
describing material instabilities, patterns, and defects.
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tinuum equations. Thus from Navier-Stokes or reaction-diffusion equa-
tions, for instance, one is able to develop dynamical equations of the
Ginzburg-Landau type, which are capable of describing the instabilities in
a manner reminiscent of phase transitions in thermodynamic systems. (5)
Solutions of these dynamical equations lead to conditions where “defects”
are obtained in otherwise periodically perfect structures. This has, in fact,
already been observed in several systems, most notably in liquid crystals.
At this level of description, the system characteristics are manifest in the
dynamics of interaction between such defects, and one may be able to de-
velop the framework of “defect dynamics”. This ascension of levels is shown
schematically in Fig.1.

Physicists, chemists, material scientists, and mathematicians have
the goal of developing a unified framework for explaining pattern-forming
instabilities and defects. To this end, the proceedings of this meeting repre-
sent a combination of lectures and contributed presentations on patterns,
defects, and material instabilities and we hope that this ASI has advanced
this goal within the community. We are grateful to the NATO Scientific
Affairs Division, to the Directorate General for Science, Research and
Development of the Commission of the European Communities, to the
CNRS (France) and to the International Solvay Institutes for their gener-
ous financial support. Special thanks are also due to the secretarial staff in
Brussels and Cargése, in particular Ms M.F.Hanseler and N.Sardo, for its
efficiency.

N. M. Ghoniem D. Walgraef

January 1990



CONTENTS

PREF ACE i i e e VIl

ONE-DIMENSIONAL CELLULAR PATTERNS
P. Coullet ANd  G.IOOSS oreeeieeeeeeieeeeeeeeessieessssrirerstesesnessessasassesssessinssssessassnsns 1

DEFECTS AND DEFECT-MEDIATED TURBULENCE
R 07 S OO P SOV PO PPRUR S 7

PHASE DYNAMICS - THE CONCEPT AND SOME RECENT DEVELOPMENTS
HLR. BTAIA .oooiveeiiiniiriiicecinsasisrnnesrensarsrssemersssssesassersnsstenesreeseseenssioansssmmssimmnnren 25

TRANSIENT PATTERN DYNAMICS : GENERAL CONCEPTS AND THE
FREEDERICKSZ TRANSITION IN NEMATICS

M. San Miguel and F. Sagues ......cocooiiiiieniiine i 35
LOCALIZED STRUCTURES IN REACTION-DIFFUSION SYSTEMS

G. Dewel and P. BOICKMAaNSs ......ccoccocciommiiriiieimieiiriinin e e et evsaiinnaecnaees 63
KINETIC MODELS FOR DEFECT POPULATIONS IN DRIVEN MATERIALS

D. Walgrael ....cocoiiioieieiin it e e 73
EXTERNAL NOISE AND PATTERN SELECTION IN CONVECTIVELY
UNSTABLE SYSTEMS

R J. DEISSIET ouviiieiirieiiireeiiirsssivras seessrmse s san s saeeseansseoneeranssssannsssansssbasassnsnns 83

SECONDARY INSTABILITY OF TRAVELING INCLINED ROLLS IN
TAYLOR-DEAN SYSTEM
O (3171 ;1 ST SO U PO U N PPP {9

EXPERIMENTS ON THE FORMATION OF STATIONARY SPATIAL
STRUCTURES ON A NETWORK OF COUPLED OSCILLATORS
T. Dirksmeyer, R. Schmeling, J. Berkemeier, H.-G. Purwins ........... 91

STUDIES ON INSTABILITIES AND PATTERNS IN EVAPORATING LIQUIDS
AT REDUCED PRESSURE AND/OR MICROWAVE IRRADIATION
G. Bertrand, M. Lallemant, A. Steinchen, P. Gillon,
P. Courville and D. SIUETZa.......ccciiiviiiriiiiieiiiienn e 109

DIRECTIONAL SOLIDIFICATION : THEORETICAL METHODS AND
CURRENT UNDERSTANDING
H. L VIME tvuiiiunieessieeereoeannsresaneensenrmarenssssnneressnsssnsesnansoennssnansseneenerassansssmnsmes 123

NEW INSTABILITIES IN DIRECTIONAL SOLIDIFICATION
OF SUCCINONITRILE
P.E. Cladis, J.T. Gleeson and P.L. Finn ... 135



vi

STATIONNARY CELLS IN DIRECTIONAL SOLIDIFICATION

M. Mashaal and M. Ben AMAT .....oooiiiieiieieteriee e eeeeeteseeeeeeeeeee e 147
RECENT PROGRESS IN THE THEQORY OF THE GROWTH
OF NEEDLE CRYSTALS

M. Ben Amar and Y. POMEAU ..ovvviiieiiie ettt ee e 159

STRUCTURAL INVARIANTS AND THE DESCRIPTION OF THE LOCAL
STRUCTURE OF CONDENSED MATTER
A.C. Mitus and A.Z. PatashiNSKil ...cccoceerevviriiririisiiiressiisesessssscesosessesnnnssss 185

STRUCTURAL ASPECTS OF DOMAIN PATTERNS IN CERAMICS
AND ALLOYS
Ch. Leroux, G. Van Tendeloo and J. Van Landuyt .......cccoeevinnrivveninnnn 195

SELF-ORGANIZATION IN FAR-FROM-EQUILIBRIUM REACTIVE
POROUS MEDIA SUBJECT TO REACTION FRONT FINGERING

P. Ortoleva and W. CREI ... e e vreres s e e es e e 203
NONLINEARITY AND SELFORGANIZATION IN PLASTICITY
AND FRACTURE

E.C. AGfANLS .eeeiiieiiiiieiieeec et ettt e e e e e ee e e e e e e e s e et aaee e s aaesseranns 221
PLASTIC INSTABILITIES AND THE DEFORMATION OF METALS

H. NEURBUSET .ooveiiieiiiieieeeietitttt et eee et vas e e oamer b eemseeeaner mastosreeses 241
DISLOCATION PATTERNS AND PLASTIC INSTABILITIES

L.P. Kubin, Y. Estrin and G. Canova ......cccoecceireeeeeeeeeeceeeircseereeessoressesnanns 277
NUMERICAL SIMULATION OF DISLOCATION PATTERNS DURING
PLASTIC DEFORMATION

N.M. Ghoniem and R.J. AMOGEO ....ooooiumeneeieee e s eeeeeeeeeeeeeeneeeev i 303
PATTERN FORMATION DURING CW LASER MELTING OF SILICON

K. Dworschak, J.S. Preston, J.E. Sipe and HM. Van Driel ................... 331
IRRADIATION-INDUCED CAVITY LATTICE FORMATION IN METALS

JH. EVANS ciiiiiiiiieiiiriieiiireee e erieiercessineteses ssstnssbaessesessssnsnssssnses snssensnessnne 347
THE FORMATION OF CLUSTERS OF CAVITIES DURING IRRADIATION

SIM. MUIPRY oottt e bbb 371
A MESOSCOPIC THEORY OF IRRADIATION-INDUCED VOID-LATTICE
FORMATION

P. HAhner and W. FIANK .oocceciiveiriiciiiieeneieeissee i eseeseeas seeeeseenesrsesssnnnessess 381
INDEX ..ottt ittt e ettt e s te e seasssecaatsaneses s aaesbeaaas s st an s s e en s mmsntessstesenaseeesaeesies 383



ONE-DIMENSIONAL CELLULAR PATTERNS

P. COULLET and G. IOOSS

Institut de Mathématiques et de Sciences Physiques
Université de Nice - Parc Valrose

06034 Nice cedez

France

ABSTRACT. A classification of the generic instabilities that one-dimensional cel-
lular patterns can suffer is presented.

1. Introduction

Stationary cellular patterns are frequently observed in nature. Recently a classi-
fication of the various bifurcations of one-dimensional periodic patterns has been
proposed [1]. In this paper we summarize these bifurcations on the basis of sym-
metry considerations.

Our initial hypothesis is the existence of a one-dimensional stationary cellular
pattern which can be described by a solution Up(z) of an evolution equation

U = f(U) (1)
where U = (U, ...,Un) are, for the sake of simplicity chosen to be scalar quantities.

This evolution equation is assumed to describes one-dimensional physical systems
which are invariant under the following symmetries

Teo : t—t4+ 86 (2)
Ty : r—>z+40 (3)
P : T — - (4)

Since U is a scalar PU(z) = U(—z). The solution Uy which describes the periodic
cellular pattern is such that

TeUy = Uy (5)
TaUO = U() (6)
PU, = U, (7)

1

D. Walgraef and N. M. Ghoniem (eds.), Patterns, Defects and Materials Instabilities, 1-6.
© 1990 Kluwer Academic Publishers. Printed in the Netherlands.



In words, Uy is stationary, periodic in space with a period a, and can be chosen
even by an appropriate coordinate change.
2. Normal modes of a perturbation

The stability analysis of Uy proceeds as follows. Let
U(z,t) = Us(z) + u(z,t) (8)

where u(z,t) is a small perturbation. At the first order in u(x,t) the equation for
the perturbation reads

Au=0 (9)

where A = 0; — L(z) and L(x) = 0f(U)/0U|y=vy(s) is the Jacobian operator. A
has the following properties:

[A,T5] =0 (10.a)
[A,Te] =0 (10.d)
[A,P}]=0 (10.¢)

where [A, B] = AB — BA. These properties are now used to solve Eq. (9). Since A
commutes with Ty, T, and P, they have a common spectral decomposition,

u= Zujej(:):,t) (11)
J

where, in the space of bounded functions, a typical element of this basis

ej(z,t) = Bj(z)ezp(s;t) (12)
is such that
Toej(x,t) = Agej(z,t) (13.a)
with A\g = exp(s;6) and
Teej(zr,t) = Agej(z, 1) (13.5)

with |A;| = 1. The eigenfunction of the discrete translation T, are Bloch functions.
They have the general form B(z) = n(z)exp(ikz), with Ton(z) = n(z). The
condition of boundness (|A.| = 1) is satisfied by three different type of eigenvalues
(spatial analogs of Floquet multipliers)

(a) Ao =1
(b) Ao = exp(id), exp(—i¢)
(c) Ag = —1
In case (b), in general, ¢/27 # n/m. The corresponding Bloch functions are

()  Ba)=n) | (k=0)
(b) B(z) = n(x)exp(?kgm),n(ac)hexp(—zkox) (k= ko)
(<) B(z) = n(z)exp(irz/a) = ij(z) (k=m/a)



In case (a), the eigenvector has the same period as the basic pattern Up and the
corresponding eigenvalue is generically simple. In case (b) it is bi-periodic (modu-
lation with a period 27 /ko generally irrationaly related to a). The corresponding
eigenvalue is generically double. In case (c), the eigenvalue is generically simple
and the eigenvector has twice the period of the basic pattern. The spectral decom-
position can be pushed further when one takes into account the parity. In case (a)
the eigenspace naturally splits into two components which correspond to the twa
eigenspaces of P, namely the even functions of z (Png(z) = nge(z)) and the odd
function of z (Pno(z) = —no(z)). The same property is true for case (c), where
7(z) splits into even and odd parts (jg(z) and 7jo(z) respectively). In case (b),
the eigenspace has already a dimension two, no further splitting occurs since even
and odd functions of z can be generated in this space. The spectral decomposition
is summarized in Table I (Case I and Case II respectively correspond to real and
complex s).

Anéx)cS[

oy ;
{<B>\ An(x)e®
(a

(An (x)ckox + c.c)t:st

b}
(©) Aﬁéx)CSt
D or” R
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Bler Anéx)c
Te T, P Anﬁ(x)cSt +cce

(l), st
I B)\ Aﬂéx)e + C.C
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)
Ble AﬁéX)GSI +cc

Table 1

3. Instabilities

A bifurcation occurs whenever Re(s) = 0. Replacing s by 0 or Ziwg, the previous
table turns into the classification of the ten generic instabilities that one-dimensional
periodic patterns can suffer [1]. Case (I) corresponds to stationary bifurcations.
The associated marginal eigenvector does not break time translations. Case (II)



corresponds to oscillatory or Hopf bifurcations. The marginal eigenfunctions do
break time translations. In case (a) the discrete translational symmetry T, is not
broken. Case (b) and case (c) do break it. Case (b) is associated with a spatial
modulation of the pattern and case (c) corresponds to a spatial period doubling
bifurcation. In case () the parity is not broken, while it is in case (8). In case (b)
the parity is also generically broken.

4. Normal forms

As usual, the next step in the bifurcation analysis consists in establishing the equa-
tions for the amplitudes of the weakly off marginal modes. We first remark that
u = 8;Up(z) is a solution of Eq. (9) with s = 0. It is a straightforward consequence
of the translational symmetry (T¢) which has been broken by the cellular pattern
Uo(z)

Oz f(Uo(z)) = L(2)8:Up(z) =0 (14)

A simple way to account explicitely for this degree of freedom (phase order param-
eter) consists in replacing Eq.(8) by

U(z,t) = Up(z + ¢) + u(z + ¢,1) (15)
together with an orthogonality condition

(u,0:Up) =0

where (V,W) = [ f:: 2 Vij(x)W;j(z)dz. In order to get the equations for the phase
and amplitude perturbations, we now insert (14) into Eq. (1) and keep only first
order terms in ¢ and u

e = (Lu,8,U) /|8, Up? (16.a)
O = L{z)u (16.b)

where L(z)u = L(z)u — 8;Up(Lu,d;Uo)/|0:Us|*. These equations describe, in the
linear theory, the coupling between the phase order parameter ¢ and the amplitude
modes. Near an instability, in the linear approximation, u becomes one of the
eigenmodes given in Table I, where s = 0 or s = *iwy. The amplitudes of these
marginal modes turn into order parameters associated with the instability. Center
manifold theorem allows to express, near the bifurcation threshold, the amplitudes
of all other modes in terms of the order parameters. The equations for ¢ and
for these order parameters are the normal forms associated with the bifurcation.
Simple symmetry arguments can be used in order to establish the form of these
equations.

5. An example of bifurcation: the parity breaking instability.

Let us now illustrate this method for finding the amplitude equations. Case (I1.2.5)
corresponds to a stationary instability characterized by a mode which has the same
period than the basic cellular pattern, but with a different parity. From Table I one



