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PREFACE

This book is addressed to those concerned with teaching mathematics to
elementary school students. Given that computers are increasingly available
in the classroom, there is a need to consider how these tools can be used
and how they should be used to help students develop sound mathematical
understandings. This book provides guidelines for such use, as well as nu-
merous illustrations and suggestions for specific programs and activities.

To begin with the “big picture,” Part I, Foundations of a New Vision,
poses three critical questions: What are the present problems of elementary
mathematics education? How do students learn mathematics? How best
might computers aid in overcoming the problems and helping students
learn? The answers to these questions can be surprising.

Part II, The Computer as Tutor, Tool, Tutee, introduces three roles the
computer can play in the classroom. It can act as a sophisticated teaching
machine, instructing students and monitoring their progress. It can serve as
a tool for graphing or calculating. It can be programmed by students as they
solve problems and explore mathematical ideas. For each of these roles,
strengths, weaknesses, general guidelines, and specific suggestions are pro-
vided.

Part III, Computers and the Evolving Curriculum, provides detailed
suggestions for using computers to teach the major topics in elementary
mathematics education. Sample computer applications are examined in
depth, and practical ideas for teaching are developed. Extensive lists of
available computer programs are provided at the end of each of these chap-
ters.

Part IV, Focusing the Vision, addresses four important questions re-
garding the implementation of computers into the classroom: When should
we use computers? How can we integrate computer use into classroom rou-
tines? How can we integrate computer-enhanced mathematics with other
subjects? How can we use computers to contribute to the mathematics edu-

cation of students with special needs?
xi



xii PREFACE

Thus, the focus of this book is not on computers per se, but on teach-
ing mathematics with computers. Appropriate use of computers can help
both teachers and students. This successful use, however, is not easily
achieved. The goal of this book is to provide information to teachers who
are willing to accept this challenge for the sake of their students. Such in-
formed, interested teachers will pave the way for others and will gather
immeasurable benefits for their students—and for themselves—along the
way.

Douglas H. Clements
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CHILDREN,
MATHEMATICS,
AND COMPUTERS

You are undoubtedly familiar with computers, at least to some extent.
You've seen computer games and computer programs that give children
practice with arithmetic facts. Whether or not you've actually worked with
computers, the basic picture seems clear. You also have had years of experi-
ence learning, and possibly teaching, mathematics, and have developed cer-
tain impressions. This book offers a glimpse of new views—possibly vi-
sions—of how children can experience mathematics with computers.

I'd like to share visions of computers in mathematics education that
may take a different perspective from those you've already seen. These vi-
sions may help you use computers to teach better mathematics and to teach
mathematics better. But w hy do we need a new view of teaching mathemat-
ics, with or without computers? Doesn’t present-day teaching represent the
“best teaching™?

PROBLEMS IN ELEMENTARY MATHEMATICS EDUCATION

Results of the second and third National Assessments of Educational Prog-
ress (NAEP) in mathematics indicate major deficiencies in students’ learn-
ing of mathematics. According to Carpenter et al. (1980), “students’ per-
formance showed a lack of understanding of basic concepts and processes
in many content areas,” and “it appeared that most students had not
learned basic problem-solving skills, and attempted instead to mechanically
apply some mathematical calculation to whatever numbers were given in a
problem™ (p. 28). Thus, it appears that the dominant focus of school mathe-
matics instruction in the last decade has been on computational skills
(which students are learning fairly well), but that the development of
problem-solving skills and conceptual understandings has been inadequate.
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Indeed, the NAEP provides empirical support for the National Council of
Teachers of Mathematics” (NCTM, 1980) recommendation that teachers of
mathematics provide opportunities for their students to be actively involved
in learning, experimenting with, exploring, and communicating about
mathematics as part of an environment that encourages problem solving.

This sounds grandly impressive. But what does this have to do with
the “basics”? Let’s ask a more basic question: How do children learn mathe-
matics?

THEORIES OF LEARNING MATHEMATICS

Why Theories?

Many teachers seem to believe that the only reason that “theory™ ap-
pears in books and courses is to satisfy some incomprehensible whim of the
professor. It is true that theories in mathematics education are far from
complete and that drawing direct implications for classroom practice is not
always easy. It is equally true, however, that every “fact” gets its importance
from l)cmg described from within the framework of some theory.

Let’s look at a nonmathematical example. You have undoubtedly
heard parents espouse the modern equivalent of “spare the rod and spoil
the child.” What theory lies behind this belief? Something like the following:
Children share a certain natural tendency such that, without punishment
(preferably physical punishment), their inherent selfishness and desire to
break rules would grow without bounds. You have also undoubtedly heard
a different opinion (usually from the pdrcm of some young visitor who is
tearing apart large portions of your house): “I don’t want to stifle his curios-
ity and creativity, and besides, boys will be boys.” Two theories are probably
operative here: first, a misinterpretation of Freud's ideas about repressions;
second, an impression that there is a natural tendency for males to misbe-
have vigorously, and that there is not much anyone can do about it. Under-
standing a bit about the theories that underlie their prescriptions would
help these parents apply the theories more consistently and effectively. It
also would help them apply them more correctly! One of these notions is
invalid, the other (Freudian psychology) woefully misapplied.

In the preceding section we referred to two different approaches to
mathematics education. One stated that learning is primarily a constructive
process in which students take responsibility for building their knowledge;
the other, that children have to be taught basic skills. Both are based on
beliefs about mathematics and theories about how children learn. What are
these theories? Is one more valid than the other? Are they incompatible? In
this section we begin to answer these (lueslmns The rest of the book will
build on this beginning, based on the premise that:

Without practice, theory is a flower not smelled or seen, a library whose dust-
covered books are not read.

Without theory, practice is a mere bag of tricks, a trivial compendium that,
in mathematics education especially, may hurt more than it helps.
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The Two Voices of Piaget

Piaget did not directly study teaching or classroom learning. Neverthe-
less, his investigations of the process of learning and the nature of knowing
have profound implications for education. He stated two major ideas.

The first voice: The child actively constructs knowledge. Piaget believed
that knowledge is not a state children are in, but rather a process in which
they are engaged. Children know about balls and bouncing because they
have played with balls and other objects that bounce. Thus, children con-
struct their own knowledge. They learn by inventing.

But what of mathematics? \I.nhc we can accept that children learn
about bouncing balls on their own, but can children really invent mathemat-
2cs on their own? One interesting research study provides an answer. Groen
and Resnick (1977) measured how long preschoolers took to solve simple
addition problems. They found, as they expected, that it took longer for
these children to solve 5 + 3 than it took them to solve 4 + 2, because the
children would count 4 fingers (or other objects), then count 2 fingers, and
then count all 6. Naturally, counting 5, then 3, then all 8 took more time.
As they measured the children’s responses over time, however, an amazing
and unexpected thing happened. The times no longer fit the same pattern.
Children began solving 2 + 8 faster than 4 + 5. The researchers examined
the response times and discovered what was happening: The children were
now starting with the larger of the two addends (e.g., 8) and counting up
(or “counting on”) from that number (e.g., “eight ... nine, ten”). This took
less time (even less time than did “five ... six, seven, eight, nine”). During
the research study, these 4-year-old children had invented, on their own, a new and
sophisticated method of solving addition problems—a method they had never been
taught!

This study is not the only one showing such results. We now know
that students of all ages invent their own solutions for solving mathematical
problems. Unfortunately, they are not usually rewarded for such inventions
(most of which are never even recognized by the teacher). They are often
told to “do it the right way.”

Piaget believed that children must be engaged in direct action with
the content of the curriculum. He also believed that this occurred too infre-
quently in school.

If the aim of intellectual training is to form the intelligence rather than to
stock the memory, and to produce intellectual explorers rather than mere
erudition, then traditional education is manifestly guilty of a grave deficiency.
(Piaget, 1970, p. 51)

Piaget suggested that educators provide children with things and ideas
to manipulate that will make them conscious of problems and will encour-
age them to find answers for themselves. Because real comprehension in-
volves reinvention by the child, the teacher should be less the giver of les-
sons and more the organizer of engaging, problematic situations.

Is the need for this type of education as urgent today as when Piaget
wrote? The NAEP results indicated that students “perceive their role in the
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mathematics classroom to be primarily passive. ... They feel they have little
opportunity to interact with their classmates about the mathematics being
studied, to work on exploratory activities, or to work with manipulatives”
(Carpenter et al., 1980, p. 36). Remember, too, that problem solving was
their weakest area. It is no wonder that the National Council of Teachers
of Mathematics recommends that students be actively involved in learning,
experimenting with, exploring, and communicating about mathematics.

The second voice: Development proceeds through stages. A stage is a pe-
riod of time in which a child’s thinking reflects a particular mental struc-
ture. Piaget’s periods follow an invariant sequence, with each period build-
ing on and incorporating the previous one. The sensorimotor period starts at
birth and ends at about 2 years of age. Infants’ learn through sensory and
motor activity. They begin with reflex actions and gradually integrate them
into exploratory and experimental actions.

The second period, from approximately age 2 to 7, is the preoperational
stage. Children learn to use images and l.mguagc Il]esc symbol systems be-
gin to free thought from concrete action. However, there are limitations to
thought during this period. The symbols cannot be manipulated to produce
completely logical thought sequences. Preoperational children’s thought is:

Centered. They find it difficult to take another’s point of view. They also “cen-
ter on,” or consider, only one aspect of a situation and ignore other aspects.
Irreversible. They cannot move back and forth between situations, relating be-
fore to after.

For example, you might show a child two rows of blocks, matched one
to one:

DORDOOO0
(o )

While he or she is looking, spread out one row and ask: Do the rows have
the same number of blocks, or does one row have more?

DD0O0ROO0
DODOO0OD0DOOD

The child probably will center on the length of the row, ignoring the density
(how close the blocks are to one another), and state that the second row
contains a greater number of blocks. The child does not see that one could
reverse the action by moving the second row back into one-to-one corre-
spondence with the first. Chtldren do not conserve number; they do not
believe that the number of objects in a group remains the same (is con-
served) when the spatial arrangement of the objects is changed.
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From about age 7 to 12, during most of the elementary school years,
the child is in the period of concrete operations. Children can think logically,
applying such operations as classification, ordering, reversibility, and con-
servation (of number, and also of length and area). They can decenter, tak-
ing others’ perspectives and taking into consideration several aspects of a
situation. They can reverse their thinking: for example, they might under-
stand that any addition can be “undone” by a subtraction operation.

But these students have not vet ac hieved the final period of formal
operational thought. When they do, th(*) will be able to deal with abstractions
and hypotheses that have no direct connection to the real world. They will
be able to think about ideas, about thoughts themselves. They will grasp
such abstract notions as proportion. They will address problems systemati-
cally, scientifically.

Many theorists and teachers believe with Piaget that students actively
learn mathematics. They manipulate objects and ideas in a continuous proc-
ess of building up their own understandings. Not everyone, as we shall see
in Chapter 4, believes that students’ thought is absolutely “bound” by a
given developmental period (actually, Piaget would have agreed to an ex-
tent). However, knowledge of these stages of cognitive growth is invaluable
to teachers for understanding the thinking processes (and “errors”) of their
students.

Richard Skemp: One Name (Mathematics),
Two Subjects

In the words of Richard Skemp, there are “two effectively different
subjects being taught under the same name, ‘'mathematics’™ (1976, p. 22).
One subject, instrumental mathematics, consists of a limited number of “rules
without reasons.” The other, relational mathematics, is “knowing both what to
do and why.” It involves building up conceptual structures from which a
learner can produce an unlimited number of rules to fit an unlimited set
of situations. As Skemp continues, “what constitutes mathematics is not the
subject matter, but a particular kind of knowledge about it” (p. 26). From
this perspective, the current elementary mathematics curriculum is defi-
cient because it neglects relational understanding. There is too much em-
phasis on instrumental understanding—formal symbolism and naming—
and not enough on analysis, synthesis, and pml)lcm solving—on meaning.

To Skemp, mathematics is a system of concepts that becomes orga-
nized at increasingly higher levels of abstractions. To learn these concepts,
students need examples, such as meaningful applications of arithmetic op-
erations (e.g., subtraction). Such concepts, once learned, serve as meaning-
ful examples for higher-level concepts. Rote or instrumental learning actu-
ally blocks later learning, because students do not build the necessary
mental structures that support higher-level concepts.

Two Kinds of Worthwhile Mathematical Thinking

Skemp’s arguments seem plausible; children should develop thinking
processes. But don't they need practice for mastery? An answer to this ques-
tion has come from research in psychology. There are two different types
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of worthwhile mathematical thinking. One, automatic thinking, involves fast,
effortless performance. If certain skills and facts are not learned well, too
much of children’s thinking (cognitive processing capacity) is used up, and
there is not enough left for higher-level problem solving. For example, chil-
dren ultimately have to be able to count forward and backward from any
number, without having to “think about it” too much.

The other kind of thinking is reflective thinking. Here, children are con-
sciously aware of the problem and the solution processes they use to solve
it. Although it is still true that children need lower-level skills and knowl-
edge to become “experts,” they also need to develop reflective thinking at
each stage of their development of mathematical knowledge. Therefore,
from the earliest years they need to be challenged to solve problems based
on the skills and l\n()\\le(ltrc they currently possess. This helps them orga-
nize all their knowledge into strong, useful frameworks upon which future
learning can be built.

Wait. Why is “automatic” thinking good, but “rote” or “instrumental”
mathematics bad? Aren’t these really two names for the same thing? No.
Automatic thinking is necessary, but it can be distinguished from rote recita-
tion of facts or mechanical processing of numbers. Students who have auto-
matized a process they have learned with understanding can—at any
point—pause and explain what they are doing and why. Students who have
learned by rote cannot; they are on a meaningless treadmill of mechanical
manipulations.

In somewhat simplified terms, then, we actually want students to act

FIGURE 1-1 Jon Secaur contemplates a problem-solving program with his students.
(Photo by Gary Harwood.)



