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Preface

This book is devoted to fractional order systems, their applications to mod-
elling and control. It is based on derivatives and integrals of arbitrary (real)
order, fractional differential equations and methods of their solution, ap-
proximations and implementation techniques.

The advantages of fractional calculus have been described and pointed
out in the last few decades by many authors. It has been shown that the
fractional order models of real systems are regularly more adequate than
usually used integer order models.

Applications of these fractional order models are in many fields, as for
example, rheology, mechanics, chemistry, physics, bioengineering, robotics
and many others.

At the same time, fractional integrals and derivatives are also applied
to the theory of control of dynamical systems, when the controlled system
and/or the controller is described by fractional differential equations.

The main goal of the book is to present applications and implemen-
tations of fractional order systems. It provides only a brief theoretical
introduction to fractional order system dedicating almost all the space to
the modelling issue, fractional chaotic system control and fractional order
controller theory and realization.

The book is suitable for advanced undergraduates and graduate
students.

It is organized as follows:

Chapter one is a brief introduction to the fractional order systems. Some
historical notes, definitions and fundamentals are described.

Chapter two is dedicated to Fractional Order PID Controller defining
their stability regions when first order with time delay plant have to be
controlled in closed loop.
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Chapter three is on fractional order chaotic systems. In this chapter,
a survey of well-known chaotic systems is presented. Mathematical models
of nonlinear dynamical systems contain the fractional derivatives. Total
order of the system is less than three, however, the chaotical phenomena,
as for example, in strange attractors can be observed in such systems.

In chapter four the operator s™, where m is a real number, is approx-
imated via the binomial expansion of the backward difference and then a
hardware implementation of differintegral operator is proposed using Field
Programmable Gate Array (FPGA). This building block represents the
basic element to implement fractional order control systems.

Chapter five is devoted to microprocessor implementation of the frac-
tional order controllers. Fundamentals on discrete approximations of a
fractional operator as well as control algorithm for implementation of the
controllers are described. Also presented are three examples of the discrete
fractional order controllers implemented on PIC, PC with PCL card, and
PLC, respectively. A real measurement and obtained results are shown for
each particular case. Some concluding remarks close this chapter.

Chapter six is dedicated to the implementation of the fractional order
PID controller by using the analog counter part of FPGA that is Field
Programmable Analog Array (FPAA).

Chapter seven presents a possible implementation of an Integrated Cir-
cuit by using the switched capacitor technology. The aim of the chapter
is to start a research activity that can provide an integrated circuit imple-
menting differintegral operators.

Chapter eight concludes this book showing an useful modelling applica-
tion of fractional order system on Ionic Polymeric Metal Composite (IMPC)
membranes. Going beyond the IMPC, the proposed modelling approach
shows that it is possible to obtain low order fractional order models instead
of bigger order integer one.

More than 140 references are listed and cited in the book, even if it
cannot be a complete bibliography for this area of interest. Readers can
find many other references related to this topic.

Riccardo Caponetto
Giovanni Dongola
Luigi Fortuna

Ivo Petras
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