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FOREWORD

This volume is a collection of papers that address some of the crucial issues of auto-
mated manufacturing, particularly issues of flexible automation. A quick scan of the Table
of Contents will reveal that the papers are not very closely related so far as academic
discipline is concerned. Topics ranging from metal deformation to computer vision are
represented in a volume that ostensibly deals with sensors and controls. The complexity
of a flexibly automated factory necessitates an interdisciplinary approach, and at the
very least, it is hoped that workers in one area appreciate the importance of other areas
in advancing automated manufacturing technology.

i The interdisciplinary nature of the problem of flexible automation notwithstanding,

control theory has a central role to play in both organizing the automated factory as a
whole, and in controlling unit processes. The ability of machines in the automated
factory to react intelligently in an uncertain environment is highly desirable if not
necessary. Improved feedback controls and sensors are needed to achieve this objective.
Also, the crucial role of modelling cannot be overemphasized. In many cases, the in-
adequacy of models of robot response, metal cutting metal forming and solidification
processes has inhibited automation. Lastly, the combination of papers on manufacturing
and robotics in a single volume is a natural one, because robots are an essential component
of any flexible automated factory.

The editors would like to thank the efforts of ali those who made this volume possible.
We would like to congratulate the authors, who have produced high quality papers on a
very tight schedule. The careful comments of the reviewers have also contributed much
to the quality of the papers. The efforts of A. Galip Ulsoy of the University of Michigan,
David E. Hardt of Massachusetts Institute of Technology, and W. J. Book of Georgia
institute of Technology are highly appreciated. They have organized the sessions on
metal cutting, welding and solidification processes, and robotics, respectively.

Kim A. Stelson

Larry M. Sweet
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IDENTIFICATION OF DISCRETE TIME DYNAMIC MODELS FOR
MACHINE TOOL FEED DRIVES

P. K. Kulkarni, Graduate Student and K. Srinivasan, Associate Professor
Department of Mecharical Engineering
The Ohio State University
Columbus, Ohio

ABSTRACT

An empirical technique for determining accurate linear discrete time
models of machine tool feed drive dynamics is described here. The equation
error is minimized 1in a least squares sense by appropriate selection of
constant coefficients in a difference equation relating sampled values of the
input and output variables. The identification method is evaluated based on an
accurate digital computer simulation of a typical machine tool feed drive. The
appropriate model order is determined by successful application of available
tests for model order selection in parameter estimation problems. Two types of
models are developed: pulse transfer function models and time series models.
The models obtained represent feed drive behaviour more accurately than do
other models reported in current literature. The identification technique is
mechanizable. When used in conjunction with mechanizable controller design
procedures, the identification technique described here should lead to the
development of digitally controlled high performance feed drive
servomechanisms.

NOMENCLATURE

;\ Integral measure of step response
A(n) Matrix of measurements

ajseeendy Model parameters

bo,...,bm Model parameters

C(n) Matrix of output samples

C(z),Cm(z) Z-transform of c(k) and cm(k)

c,,C Viscous damping coefficients for drive train and tool slide

s

e(k) © Qutput sequence



Estimate of c(k)

Model output sequence

Model matrix determinant

Determinant of M

Determinant ratio

Average of the squared response error
Equation error sequence

Cutting tool load on slide

Pulse transfer function

Velocity loop cascade compensator transfer function

Motor shaft velocity to cutting load transfer function

Open velocity loop feed drive transfer function
Mechanical transmission transfer function

Sum of squares of equation error

Axial spring constant of ball screw

Motor back emf constant

Position loop controller gain

Encoder position feedback éaiq

Model steady state gain

SCR amplifier average gain

Motor torque constant

Velocity feedback transducer gain

Velocity loop controller gain

Armature circuit inductance

Information matrix

Equivalent mass of motor and ball screw inertias
Mass of nut and slide assembly

model order

Element of M

Condition number

Covariance matrix

Matcix of iuput samples

T ——



R(z) Z-transform of r(k)

Ra Armature resistance

r(k) Input sequence

s Laplace operator

i ¥ Discretization interval

t Continuous time

ug Step input magnitude for r(k)

Va SCR control signal

Vm Motor armature voltage

vrv ) Motor velocity reference signal

x Estimate of parameter vector

xp’;p vSlide position and velocity

X Slide position reference signal

z Z transform operator

a Rotation to linear motion conversion factor
em,ém Motor angular position and velocity
i(k) Vector of measurements

T1,12,13,T4 Velocity loop compensator time constants
INTRODUCTION

High performance requirements on machine tool feed drives can be satisfied
by the use of complex control algorithms and/or by mechanical design
improvements. Digital controllers are particularly attractive for  such
applications since they provide for enhanced reliability, better diagnostic
techniques. and greater flexibility [1]. Lower hardware costs resulting from
advances in microelectronics have also made digital conticllers very popular in
recent years. However, in practice, it has been difficnlt to realize the full
potential of digital controllers for improving feed drive performance.

Accurate dynamic models of feed drives are essential for the design of
complex digital control algorithms. However, reported work in the literature
on digital feed drive control has, with a few exceptions, used only simple
linear first or second order models of feed drive dynamic behaviour [2,3]. The
importance of modeling structural resonances for the control of high
performance feed drives has been noted by Douglass et al [4] and by Stute et al
[5]. 1In view of the presence of pronounced nonlinearities in machine tool feed
drives, such as Coulomb friction and the relationships governing SCR firing,
experimental techniques for identifying discrete time models of feed drive
dynamics are very useful and have been described by Bollinger et al [1] and Van
Brussel and Vastmans [6]. The technique described in these references are,.
however, not versatile enough to model structural resonances. Previous
modeling work has also ignored feed drive response to cutting forces in spite
of its practical significance. The usefulness of modeling this effect is that
it would enable feed drive stiffness to be improved by cutting force
measurement and appropriate controller design, in applications where this is
desirable.



Two identification techniques to obtain more accurate models of feed drive
dynamic behaviour have been described and evaluated by Kulkarni et al [7].
Firstly, discrete time models were generated by deriving continuous time models
based on analytical and/or empirical methods and then forming discrete time
versions of these models. Secondly, existing identification techniques for
direct determination of discrete time models with reduced computational
requirements and hence suitable for microprocessor implementation [8] were
modified and evaluated. Neither of the identification techniques was easily
mechanizable. Model accuracy was good but cou be improved further by direct
determination of the 2n-1 coefficients in an n order pulse transfer function
so as to explicitly minimize a measure of the modeling error. Such a technique
would be mechanizable, which is advantageous if the controller design and/or
adjustment is also automatically performed. In fact, the lack of mechanizable
identification and controller design procedures for more sophisticated control
algorithms is one of the reasons for the continuing popularity of simpler but
well tested analog or digital feed drive control algorithms, even in current
generation CNC machine tools.

An empirical technique for determining accurate linear discrete time-

models of machine tool feed drive dynamics is described here. The feed drive
models include the effects of command inputs to the feed drive and of cutting
forces. The equation error is used as a measure of modeling error and is
minimized in a least squares sense by appropriate selection of constant
coefficients in a difference equation relating sampled values of the input and
output variables. The identification method is mechanizable and is evaluated
based on an accurate digital computer simulation of a typical machine tool feed
drive. The appropriate model order is determined by application of available
tests for model order selection in parameter estimation problems. The models
obtained here are evaluated for a variety of feed drive operating conditions of
interest and significance and compared with models described in an earlier
paper [7]. The implications of the proposed models for controller design are
summarized.

Feed Drive Dynamic Model and Simulation Details

The Advanced Continuous Simulation Language (ACSL) [9] was used to
implement a dynamic model of the feed drive. The model parameters chosen
correspond to a 3-axis contouring horizontal machining center. The model
proposed by Middleditch [10] for the mechanical components of the feed drive
was incorporated in the simulation. The model includes the lowest resonant
frequency of the feed drive transmission and nonlinear Coulomb friction as
well., The SCR power amplifier is of the single phase, full wave type and
drives a permanent magnet DC servomotor coupled directly to a lead screw.
Details of the digital computer simulation, particularly the nonlinear SCR
amplifier operation, are given by Johnson [11]. ’

A block diagram of the linearized feed drive model for a single axis is
shown in Figure 1. The symbols are defined in the Nomenclature section of the
paper. The SCR amplifier nonlinearity is omitted in the block diagram and it
is represented by a constant gain term, KS R’ though the simulation includes an
accurate representation. Analog control og the velocity loop is implemented by
using the motor shaft velocity as the feedback variable. The compensator in
the forward path of the velocity loop includes 1lag compensation at low
frequencies to improve the feed drive stiffness to cutting loads. Lead
compensation is implemented at high frequencies to increase the closed velocity
loop bandwidth without significantly increasing the excitation of the
mechanical resonance.

Details of the Identification Method

The feed drive dynamic model to be obtained will be used in conjunction
with mechanizable controller design procedures. Off-line identification and
controller parameter selection are quite adequate for the application since the
feed drive parameters are subject only to long term change due to factors such
as component degradation and wear. Moreover, since controller design is
generally more conveniently performed with parametric models, the result of the
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i{dentification method should be a parametric model such as a pulse transfer
function.

A linear model of the feed drive dynamics is preferred btecause of the
resulting simplification of the identification [12] and controller design
problems. The SCR amplifier is a highly nonlinear element and would result in
the feed drive behaviour being nonlinear. However, the closed motor shaft
velocity loop behaviour is less strongly nonlinear because of the linearizing
effect of feedback [7]. Though a linear model of the overall feed drive
dynamics is acceptable for this reason, proper evaluation of any proposed model
should include evaluation of model accuracy for a variety of input types and
The controller design procedure should also emphasize robustness of the
controller.

A deterministic formulation of the identification method is used because
of the relative insignificance of random effects on the system dynamic
behaviour. Sampled values of the input and output signals, generated by
periodic sampling of the signals, are used to determine the coefficients in a
pulse transfer function. Figure 1 indicates the need for determining models of
the feed drive response to the reference input V to the closed velocity loop
and cutting loads F,. Though the identification’ method described below can be
modified easily to accommodate the multiple-input case, application of the test
inputs one at a time is more practical. Hence the identification method is
formulated below for the single-input, single-output case. '

Let the input and output sequences be r(k) and c(k) and their one-sided

Z-transforms R(z) and C(z) respectively.

o
-k
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k=0
Lo+
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Figure 1. Block Diagram of Lineavized Feed Drive Model for a Single Axis



The identification method determines parameters in the pulse transfer function
G(z) that best represents the ratio C(z)/R(z) of the transforms C(z) and R(z).

-1 -m
b0+b1z * oo +bmz c(z) .
Glz) = -1 “m  R(z) {2}
1+ a.z + ... +az
1 m
The error measure considered here is the.equation error ee(k) defined as
) m m
e (k) =c() - § & bor(-1) - I aic(k—i)}
i=0 i=1
= c(k) - (k) k =0,1,...,n (3)

where c(k) is equal to RHF expression within curly brackets and is the
predicted output for the k  ‘instant based on the measured input and output
sequences. The sum of the squares of the equation error sequence over the
period of observation, J, 1is minimized by appropriate selection of the
parameters bo....,bm and apseeesay in equation (3).

n
J= I e “(k) (4)

The problem, as formulated, is a standard parameter estimation problem. A
recursive algorithm for the parameter estimation is summarized in Appendix A.
Details of the derivation can be found in standard textbooks on parameter
estimation [13].

The equation error minimization scheme described above provides accurate
parameter estimates if the system being identified is linear and if the signal
to noise ratio is high. In the presence of measurement noise, parameter
estimates are biased. Enhancements of the simple least squares method to
reduce the bias have been devised primarily for the case of random measurement
noise [1l4]. Their usefulness in the present application, where system
nonlinearity 1is more significant than measurement noise, has yet to be
established.

An alternative error measure that is used in parameter estimation problems
is the sum of the squares of the response error or output error. Response
error minimization requires more computational resources for implementation as
compared to equation error minimization. Also, unlike equation error
minimization, the parameter estimation scheme is iterative and may not converge
[15]. Such a technique is therefore not amenable to mechanization.

The recursive algorithm for equation error minimization, described by
equations (1)-(4) and (A-1)-(A-5), was chosen because it was simple to
implement. The need for enhancements of the method can be judged only on the
basis of the accuracy of the identified models and the performance of feed
drive controllers designed using the identified models.

Motor shaft position and velocity are feed drive response signals that are
easier to measure than slide position and velocity. Simulated feed drive
response to step or pulse reference inputs to the velocity loop do indicate
resonant oscillations in the motor shaft velocity [7]. However, these
oscillations are more directly a consequence of the pulse-like nature of the
SCR amplifier output. Therefore, motor shaft velocity signals cannot be used
to obtain proper models of the feed drive mechanical transmission resonance
unless the sampling action of the SCR amplifier is explicitly modeled. The
resulting discrete-time feed drive model would involve multirate sampling and
would be too complex to be useful.




Slide position and velocity measurements provide more information on the
transmission resonance than motor shaft position and velocity and are chosen as
the feed drive response signals, here. The result is a better numerical
conditioning of the matrices (A" (n)A(n)) to be inverted, as required by
equation (A-3). 3

Step and pulse reference inputs to the closed velocity loop are expected
to be adequate to excite the mechanical transmission resonance, especially if
slide velocity or position are measured. A step input of the disturbing force
F. 1is appropriate for modeling feed drive compliance to cutting loads since the
compliance has dominant low frequency components. All of the test inputs' are
easy to implement in practice.

A small value c¥ the sampling interval improves the accuracy of the
discrete time model of the feed drive, since such a model really represents the
discrete equivalent of z continuous time system subject to continuously varying
input signals. Since the model is to be used for digital controller design,
the sampling interval depends also on the required closed feed drive position
loop bandwidth and the control law computation time. A sampling interval of 4
msec seems approprinte hwere for modeling accuracy and control effectiveness.
This time interval iu alzo adequate for reasonably complex control computations
to be performed by a =2cutrol computer based on an Intel 8086/8087 processor -
coprocessor system [l6].

A lower 1limit un tle model order m in equation (2) is determined by the
maximum time delay #n the SCR amplifier operation and the sampling interval
chosen. For the single-phase, full-wave SCR amplifier and a 60 Hz power line
frequency, the maximum time delay is 8.33 msec. The minimum model order m, for
a sampling interval of 4 msec, is three. The minimum model order would be
lower for a three-phase SCR amplifier.

Unbehauen and Gahring [17] have described a number of tests for the
determination of the correct model order in parameter estimation problems. The
testing methods, when performed together, were shown to determine the correct
model order accurately. Five of these tests are relevant for the current
application and are described briefly in Appendix B, along with another test
suggested by Isermann [18]. The different model order tests were generally
consistent in their indication of the appropriate model order, as described in
the results below.

Identification Results

Determination of xp(z)/Vtv(Z)

The response of the slide velocity x_ to a step input of the reference
signal V_ to the closed velocity loop (F [ 0) was used to determine the pulse
transfer’ function x_(z)/V_ (z). The magnitude of the step input was 1.0 Volt
and corresponded toPa s1idd velocity of 2.65 m/min (105 in/min). This value of
slide velocity is about 25% of the maximum slide traverse velocity of 10.00
m/min (400 in/min). 100 samples each of the input and output signals were
obtained at a sampling rate of 250 Hz and used by the identification algorithm.
The slide velocity was used as the output signal instead of the slide position
since the signal oscillations due to the transmission resonance were more
pronounced in the former.,

Pulse transfer function models of the form of equation (2) and of orders
two to six were identified for x (z)/V_ (z). Table 1 indicates the results of
applying ‘the model order testsPdescribed in Appendix B. The error values
listed are the average values of the squared errors per sampling instant. The
equation error is the error measure minimized by the identification algorithm
and 1s about an order of magnitude lower than the response error. It is the
magnitude of the response error that is indicative of model accuracy. Though
direct minimization of the response error is difficult as mentioned above, the
results indicate that reducing the equation error does reduce the response
error. ’
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Table 1. Results of Model Order Tests
for x_/V__ (2)
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Figure 2. Response of Simulated System and Third Order Least Squares
Models to Unit Step Input of Vrv




The model order tests, when applied to the results in Table 1, indicate

that the appropriate model order is three. An increase in the model order from
two to three resultad in the largest reduction in the error measures. The
condition number registered a sharp increase for an increase in the model order
from three to four. Poor numerical conditioning of the identification problem
for model orders of four or higher is also indicated by the determinant ratio
test. The polynomial test requires examination of the zeros and poles of the
pulse transfer function. For a model order of four, there is a near
cancellation of a pole and a zero. The remaining poles and zeros approximate
those for the third order model well. Isermann's step response invariance test
[18] indicates that the model response changes significantly for a change in
the model order from two to three but does not change when the model order is
increased to four. The model step response changes somewhat when the model
order is increased to five but, in view of the results from the other tests, a
model order of three is chosen as the most appropriate one.
B Figure 2 shows a plot of the simulated system response and the response of
the third order model to a step input of V_ of 1.0 volt., Model parameters are
indicated on the figure. The model response is a very good approximation. of
the simulated system response. In view of the SCR amplifier nonlinearity, the
response of this third order model to rectangular and triangular pulse inputs
of V was determined and compared to the system response. The results are
showgvby Figures 3 and 4. The rectangular pulse height and duration were 1.0
Volt and 16 milliseconds respectively. The triangular pulse height and
duration were 0.5 Volts and 100 milliseconds respectively. Model response to a
variety of other inputs was also evaluated and compared with system response.
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Figure 3. Response of Simulated System and Third Order Least Squares
Models to a Rectangular Pulse Input of Vrv - Size 1V,
Duration 0.016 seconds
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0.05 seconds £

The model response agreement with the system response denoted by Figures
2-4 is far better than that of any models previously proposed. In particular,
note that the slide velocity predicted by the model is in phase with the system
slide velocity in all of these figures, whereas the two models proposed and
evaluated by Kulkarni et al [7] predicted outputs that differed in magnitude
and phase from the system response. Therefore, estimates of additional state
variables such as slide acceleration obtained using an observer based on the
third order model proposed here would have the correct polarity though their
magnitudes may be incorrect. State variable feedback controllers which use
these state estimates can therefore be expected to be more effective in
improving feed drive performance. In fact, the limited feed drive performance
improvement achieved using state variable feedback controllers and reported by
Johnson et al [16] can be traced in part to model inaccuracy.

Determination of xp(z)/FL(z)

The response of the slide position x_ to a step input of the cutting load
F_ ' (V = 0) was used to determine the inse transfer function x_(z)/F, (z) for
tke o%%n position loop. The magnitude of the cutting load wag’10236N (2300
1bf), which is close to the rated slide thrust load. The sampling rate and the
number of samples used were the same as before. .Slide position was used as the
output signal instead of the slide velocity in order to increase the
significance of low frequency components in the output signal relative to the
high frequency components caused by the mechanical transmission resonance. The
dominant components in feed drive compliance to cutting loads are at lower
frequencies [16]. Hence the need for accuracy in modeling the low frequency
components of the. feed drive response to cutting loads. The low frequency
components can be detected in the slide velocity also but would require much
higher model orders.
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Pulse transfer function models of the form of equation (2) and of orders
two to five were identified for x_(z)/F, (z). Table 2 indicates' the results of
applying the model order tests dBscribed in Appendix B. The model tests for
x (z)/F, (z) are less conclusive than for % _(z)/V__(z) but suggest that a model
oBder Jf four is appropriate. An increase in e model order from three to
four results in a tenfold reduction of the equation error. Further increase in

Model Order, m 2 3 4 5
Eqyatiog ercor 0.4243 x 107! 0.1623 x 107, 0.5014 x 1072 0.4021 x 1022
em? (fc (04567 x 10°%) (0.1747 x 1074 0.5397 x 107°) | (0.4328 x 10°5)
Regponsg error 0.7360 x 107} 0.9467 x 107} 0.5645 x 107} 0.5771 x 107}
(£t%) (0.7922 x 1074 (0.1019 x 1073 (0.5861 x 1074 | (0.6212 x 107%)
Condition number 0.2246 x 10'° 0.1044 x 10*! 0.1627 x 10%2 0.6132 x 10'3
Determinant 0.6370 x 10° 0.3111 x 10 0.1040 x 102 0.3713 x 1032
Determinant ratio 0.4884 x 107 0.3343 x 10° 0.3570 x 10°
DV(m)
i 0.2172 x 102 0.2637 x 107 0.2087 x 102 0.2050 x 102
Poles 0.4440 0.9631 0.7890 0.7937
0.9531 0419710, 1835 0.9420 -0.5435
0.3970210.8801 0.9393
0.3976210.8776
Zeros 0.2781 -0.0487£10.8512 0.8433240.74010 | -0.8283210.1237
-1.0615 0.8707210.4017
Table 2. Results of Model Order Tests for
x [F_(z
p/ L( )
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-0.046 _, | = a; = -2.20390, a, = 0.69288
(-1.5x107°)
s by = 0.978346x104, b, = -0.98599x10~4
& < f
o -0.061 .
L (-2.0x10 °)
- -
®
-0.076
(—2.5x10—3) . \.\‘
~es <
\.,.\.\___\ _
-0.092 _, - St ains
(-3.0x10"°)
-0.107 _,
(-3.5x10 7)
0,122
(-4.0x10-7) T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
t, sec

.- Figure 5. Response of Simulated System and Fourth Order Least Squares
Models to a Step Input of FL ~ 10230N(2300 1bf)
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