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Prolusioné al Corso.

© G. RAcAH
Direttore d@el Corso

When I was told that, according to tradition, I would have to deliver the
opening address at this gathering, I glanced at, the addresses of my predecessors
in order to discover what that tradition was. ) ‘

I found that there were two categories of opening addresses: if the speaker
were an Italian, it was his- main task to thank the foreign teachers who had
agreed to participate in the courses; if he were a foreigner, his function was
to thank the Societd Italiana di Fisica which had organized the Course.

Being at the same time both an Italian and a foreigner, it is my very pleas-
ant duty to thank both parties. And I should like to start by expressing our
gratitude to the Ente Villa Monastero, our host in this magnificent spot on
the Lake of Como, in this beautiful building which was once the residence of
Marco and Rosa De Marchi- who donated it for the purpose of furthering the

"development of science. o

Next, I should like to thank the Societd Italiana di Fisica, and particularly
its President, Professor POLVANI, who organized this Course in the same exem-
plary manner as he has organized all the preceding courses. I arrived only
yesterday, but I have already had time to see that. everything is in perfect
order.

. The fact that I have been asked to lserve as Director of the School precisely
this year is cause for particular emotion as far as I am concerned, because this
is the first time that the School of Varenna has been named after ENRICO
FERMI, my own unforgettable teacher and the teacher of all of us. It is ap-
propriate indeed that the School should bear his name, not only for the obvious
reasons but also because the lectures he delivered here, in this room, were
the last lectures of his life.

Since I am more familiar with the Mathematics than with the Physics of
Nuclear Spectroscopy, it was not an easy task for me to organize the programme
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for this course; however, I did my best, which means that I tried to find the
best.” I. TALMI and B. MoTTELSON will lecture on Nuclear Structure. They
are typical representatives of two different approaches: the independent par-

ticle model and the collective model. I hope that the clash between these ,

two opposite points of view will be one of the most interesting features of
this course.

G. ArLAGA and G. MORPURGO will lecture on nuclear radiations, and J.

GOLDSTONE will deal with the mdst recent developments in the theory of
Nuclear Matter.

I hope that many of the participants will contribute to the discussion: on
their subjects by recounting their own particular experiences in order to sup-
plement the official lectures. ’ _

- To the lecturers I wish -to express my deep gratitude, and to the parti-
cipants I extend a warm welcome to this School.

-



LEZIONI

Mathematical Techniques.

G. RAcAR

Department of Physics, Hebrew University of Jerusalem

1. - Coupling of angular momenta.

The first task of the theoretical nuclear spectroscopist is to calculate the
energy levels of the nuclei; the second task is to calculate other properties of
the nuclear states, like magnetic moments, quadrupole moments, transition
probabilities, etc. In these lectures we shall mainly concentrate on the energy
levels; some of the other lectures will deal with the other properties.

The official method for calculating energy levels both in atomic spectro-
scopy and in nuclear spectroscopy is first to write down the Schrodinger
equation,

Hy = Ey,

and then to solve it. In atomic spectroscopy the first step is very easy, but
the second step is very difficult if we have an atom with 10, 20, or 102 electrons.
In nuclear spectroscopy even the first step is very difficult, because we do
not know very much about the nuclear forces, and therefore we cannot write
down the Hamiltonian. The difference between the two cases is not so fun-
damental as it seems at first sight, because, if we cannot solve the Schrodinger
equation, the fact that we can write it down is not very helpful.

Since it is impossible to solve directly the Schrodinger equation, the practical
method for calculating energy levels in atomic spectroscopy is to take an
orthonormal set of functions

(1) wa, y)by 1/»’: Y ass

which are as near as possible to the eigenfunctions of the Schrodinger equation
to calculate the matrix elements

(2) (@l D) = [F.par,
and then to proceed by approximation methods.

1, — Rendiconti S.I.I. - XV
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In nuclear spectroscopy even this program is difficult to execute, because
we do not know the Hamiltonian and we know very little about the functions.
But if we know some properties of the Hamiltonian and some features of the
functions (1) it is possible to get some information about the matrix elements.
I would therefore like to define the task of the theoretical nuclear spectroscopist
to say as much as possible about the matrix elements (2) by assuming as
less as possible about the Hamiltonian and about the functions (1).

.We shall start by looking what we can say about the eigenfunctions and
how we can build the orthonormal set (1). The first thing we know from the
experiment is that the nucleons are ordered in shells. Mathematically this
means that if we have a single nucleon outside closed shells, the state of this
nucleon will be characterized by a radial quantum number », an azimuthal
quantum number I, a magnetic quantum number m, and a spin quantum
number m,. Moreover we know from the experiment that, except for very
light nuclei, the orbital momentum is strongly coupled with the spin so that
the actual quantum numbers will be nijm. States with the same quantum
numbers nlj will be said to belong to the same shell. In the following we shall
forget about n and I, and characterize in general a shell by the sole quantum
number j, and the states of a nucleon by the symbol |jm).

If we have two nucleons outside closed shells, one in a shell jo and the
other in a shell j, any state of the two particle system will be a superposition
of the states

(3) ljﬂma) |ibmb) = |jamajbmb) )

If we want to classify the states of this system according to the eigenvalues
of the total angular momentum, we have to replace the states (3) with the
states
(4) |alod M) = 3| jamafsms) (jamajomy | jojud M) .

MaMp

The coefficients of the transformation on the right-hand side of (4) are
called the Wigner coefficients. These coefficients have many important pro-
perties which are assumed to be well known; we shall only remember here
the symmetry property

(5) o Gamagomy |ojd M) = (— 1 (jymyfama | jojud M)
which is of particular interest for us.

In the case of three nucleons, the building of eigenfunctions of the total
angular momentum is not unique, and depends on the choice of a particular
coupling gcheme. If the first two nucleons are coupled first, the eigenfunctions
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will be
6) |Jajojed and M) =

— 2 |jamajbmbjcmc)(jam'affbmb I?a s Jab-Mab)(JabMabjcmc | JaberAM);

Mampme M ap

if the last two sets are coupled first the eigenf_unétions will be
(7) |jajbijchM) .

= ° z I jamajbmbjcmc ) (jbmb?'cmc [ jbijbc Mbc ) (?.amanc Mbc l jancJM) ®

MaMmpmeHpe

The first nucleon may also be coupled with the third one.

From the mathematical point of view the three coupling schemes are
completely equivalent. The eigenfunctions of each scheme constitute a com-
plete set of orthogonal eigenfunctions and may also be expressed as linear
combinations of the eigenfunctions of another scheme. The orthogonal substi-
tution which connects (6) and (7) is

. LK

(8) (jajbjc JahJ ]jajbjc chJ) =
= z (JabijM |Jab abjcmc)(juijab ab I?'am;zjbmb) .
Mampme M qp My,

*(Fomofeme | Gof e Moe) (jaMaTpe Mo, | oo M) .

The elements of this substitution can be calculated to be

s e o ididit = (o J» J,
9) (afode Jaod |falofe Joed) = (— 1"V 2y + 1)(2,, + 1) W(; j]b J b)
c - be

where the function W or « six;j-symbol » has the expression

(10) W(‘lb0)_V(a+b—c)!(a—b+c)!(b+c—a)!(d+e~c)!(d-c—{-c)!_
def] (@+b+ec+1)!(d+e+c+1)!
Vw+m— N+l — DTA—bE D) b+ — ) ate—p)l@a— e Nl eti—a)!
@d+b 7+ (et et f+1)!
-3 (—1)9 (g +1)! )
T—a—b—0l(@—d—e—ql(g—d—b—f)l(g—a—e—))!
1 .
(a+bdb+dte—q)l(atc+d+f—q)'(d+o+et+f—q)!

From the physical point of view the three coupling schemes are not equi-
valent, but describe different situations. States of a three-nucleon system,
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which are eigenstates of the energy, do not belong to any of those coupling
schemes, because the matrix of the interaction between the nucleons is not
diagonal in any of the three schemes. However if the interaction betweéen
the nucleons in the states a and b is much stronger than the interaction with
the third one, the energy eigenstates will be very near to the states (6). The
state of the pair a, b which is characterized by the quantum number J,, is
called the parent of the state (6). :

2. — Antisymmetrization.

According to the Pauli principle the eigenfunctions of identical nucleons
must be antisymmetric with respect to permutations of the coordinates. We
shall.indicate all the coordinates of the m-th nucleon by the numeral »n, and
the eigenfunctions, representing eigenstates in terms of coordinates, by brackets.

In this notation eq. (4) becomes -

(11) (12 Ijuijﬂ[) = z (1 ijlﬂna)(:2 ”bmb)(jamajbmb ljaijM) .

Mamy

Permutation of the particle coordinates yields the eigenfunetidns

(12) (21 jofud M) = 2 (2 ]jama)(1 [ema) (jamajsmy | jojud M)

Mgmy

and using the symmetry property (7) these eigenfunctions become

A3) (=17 32 [ jama) (L | joma) (amifama | jojud M) = (— 1)+0=7(12 |Gojad M) .

Mamp

Therefore

(14) (21 [jojod M) = (— 1)lat=7(12 [9sjad M) .

In the particular case j, = j» =17 the eigenfunction on the right side
of (14) coincides with (11), and therefore (12|j2J M) is symmetric or anti-
sSymmetric according to the parity of 2j —J. In the general case j, 5= j» the
eigenfunction on the right side of (14) is different from, and actually orthogonal
to (11), and neither of them has a definite symmetry. We may, however
construct antisymmetric eigenfunctions by taking an antisymmetric combi-
nation of (11) and (14). We indicate antisymmetric eigenfunctions by the
notation (12[}j.j,J M), and write

(13) (12}afod M) = 75[(1? Fafod M) — (21 |fafud M)],
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or

15) (12D T M) = = [(12174o TH) — (— 1y~ (12 o T I,

V9

where the factor 1/v2 preserves the normalization.

Notice that for j, = j, = j the right side of these equations Would vanish
for odd J and would have the wrong normalization for even J. In this last
case we must write

(16) (12}j2T M) = (12|j* I M),  (J even);
(12[}j2J M) does mot exist for odd J.

The equation ‘
an (2] jajed M) = — (— 1)Y=+~ (12]}j,jud M) ,

holds independently ‘of whether j, coincides with j,.
In the case of three nucleons, if j, = j, # j., the analog of (15) is

e [(123 [jafojodand M) — (213 ladojcdwd M) +

+ (231 [fafofeJasd M) — (321 |fafofedavd M) + (312 |jafufedund M) — (132 |fafufedmd M)] .

(]8) (123DjajbijubJM) =

For j, = j, = j. = j the six terms on the right side of this equation are
no more orthogonal; and therefore (18) is no more normalized. In order to
. construct antisymmetric normalized eigenfunections, we start from the eigen-
functions

(19) (12}3|j2d,, I M) = (12[}}2J0M0 )(3]3m)( JMo]mlJoyJM (Jo even),

Mym

which are antisymmetric only with respect to the first two nucleons, and
apply to them the « antisymmetrizator » A defined by

(20)  AQ12}3|j2J,, jTM) =
— L[(A2)3|j2, jTM) + (2811 |2y, §T M) + (31)2 |20, FTM)] -

We reduce now all three terms on the right side to the same coupling
scheme as the first one. The second term is

(21a) (2311 |j2Jo', jI M) =
=% 2J.,+1)(2J'+1>W( ) azsp, oy,
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and the third term is
(210) (BL2|j2d,, jTM) = .

=3 VeIan@r D T (1 1) wes i ja .
7 J J

The contributions of these two terms are equal if J'—dJ, is even, and
opposite if J'— J, is odd. Since J, 18 itself even, the expansion of (20) contains
only terms with J' even. Introducing (21a) and (21b) into (20)bwe get

B2 AQASIP o, JTH) = 3 (231727, JIMNT | ATy, (I, T, even),

where

(23) (' [AT)|Jy) =

', _1 2 \f\— jj Jo _
= (J0|A(J)]J)_3-6,,,°+§\/(2J0+1)(2J +1) W(j 7 J,).

No antisymmetric eigenfunctions of three nucleons exist for those values
of J for which every (J"|A(T) |Jo) vanishes. When these eigenfunctions exist,

the functions (22) are still not normalized and have to be divided by \/N,.(J )
where ) : )

(24) N @) =3 (AW |

7'

Since. the antisymmetrizator A is normalized in such a way that it leaves
invariant a function which is already antisymmetric, it satisfies the equation

(25) ' A*= 4,

from which we get that
(26) » No(J) = (Jo|AWT)|T) .
Therefore the functions

@7) (128} 2T M) = (J,| A(T) | T,) 2 (12}3 (0", jTM)(T'| A(T)|T,)

are normalized antisymmetric eigenfunctions of the configuration j2. .
It should be emphasized that for different values of J, these eigenfunctions
are not orthogonal or even linearly independent. In many cases they are
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actually identical. This fact is easy to understand, because eq. (25) shows
that the antisymmetrizator A is a projection operator, i.e. an operator which
transforms every function into its orthogonal projection in the subspace of '
the antisymmetric functions. It is then evident that by projecting into a
subspace a complete set of orthogonal vectors of the whole space, we get a
set of vectors which are linearly dependent. This set of linearly dependent
functions can easily be replaced with an orthogonal set by the well known
orthogonalization proéedures of vector algebra. These orthogonal antisym-
metric eigenfunctions are, in general, no longer characterized by the quantum
numbers J,, but by different quantum numbers «. A general antisymmetric
eigenfunction has then the form

(28) (123} jPad M) = 3. (12}3 520", jJ M)(2J", j, J]}jad)
- I
and the coefficients of this expansion satisfy the equation

(29) S (Lol AW [T NGy by IT} jPad) = (5200, b, J]} P0d)
7
which identifies them as eigenvectors of the matrix 4 corresponding to the
eigenvalue 1.

In conclusion the states (19) have a well defined parent, but are not anti-
symmetric, the states (27) and (28) are antisymmetric but have no well defined
'parent Therefore the coefficients of the expangion (28) are called « coeffi-
cients of fractional parentage ». ' '

The estension to antlsymmetnc functions of r nucleons belonglng to the
same shell is almost immediate. These eigenfunctions will be obtained by
starting from eigenfunctions (12 ... r — 1}7|j™tady, j, J M), which are antisym-
metric only With'respect to.the first »r —1 nucleons, and by taking those
linear combinations of them,

(30) (2.1} M) =3 (12 ...r — 1}r|j2'Jd’, j, JM)(j ' T, j, I} jrad) ,
d . a'J

which are antisymmetrical with respect to all the nucleons. The coefficients
of these linear combinations will satisfy the equations

(31) z (“oJo |A(J) |°‘/J’) (jr=2'd’, g, J[} jrad) = () ooy, 7, Jl}j’“J) )

o’
where

(32) (@d" |A(T) |%0]o) = 6“0Jo‘lA(J) la'd") =

i | 1‘—1 i ‘ - 'Jn JI
— .—6a,a(§, T (— 1) \/2 1)(2J" ] .
Fhendrnt T 1 3 VETEDRITD W (] ]

(e d it " gy J) (2" Gy Ty it and) -
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3. — The energy matrix. Part L.

After having seen how to build wave functions of a nuclear system which’
-may be hoped to be fairly near to the real eigenfunctions, we can go back
to the problem of calculating the energy matrix. In the shell-model approxi- .
mation we write the Hamiltonian as :

63 H = 3[T,+ Ur) + Lo, 3)] + 37,

i<k

where the summation is extended only to the particles outside cloged shells,
T, is the kinetic energy of the i-th particle, U(r,) its potential energy in the

field produced by the closed shells, and V. the interaction between the par-
ticles ¢ and . '

If we assume that in the zero-th approximafion the external particles move
independently in the central field U(r), the single-particle functions will be
eigenfunctions of

(34)' ’ ,H‘. = Tz‘ & U(Tl.)' + Ci(si'li) ’

eorrespondiﬂg to the eigenvalues &, and the problem will reduce to the cal-
culation of the matrix of the last term of (33). '

~ For a system of two particles outside closed shells we have to calculate
the matrix of V,,. Since the single-particle functions are the product of a
radial function (1/r)R,,(r) times a function of the angular and spin coordinates,
if Vip= V(r,) with 13, =12 + 12 — 217, cos ‘Wz, We shall separate also here
the radial dependence from the angular dependence by expanding V(r,,) into
a series of Legendre polynomials of cos Wss. '

(35) ) ) V(r,) = z Vi(r1y 72) Py (COS y,) .
k
Then the matrix elements of V(r,) get the form

- (36) g ’(nalajanblbij M I V(ry) InCZCjcndldde M) =
= z Rk(nalanblb, nclcndld)(lajalbijM |Bk(cos W) | ljlajad M) ,
E

where thé R* are the generalized Slater integrals

B7)  R¥molamyly, ncl.mgly) = f / Ryt (11) Ry, (1) 041y, 75) R,y (g )Rnp (o) dry dr, .
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The calculation of the matrix elements of P,(cos w,,) is a purely algebrical
problem, which can be solved exactly, because the expressions of the Legendre
polynomials and of the angular eigenfunctions are well known. The calculation
of the-generalized Slater integrals requires the knowledge of the v.(r,, r,) and
of the radial eigenfunctions. In atomic spectroscopy the wv.(ry,7s) are very
well known, while in nuclear spectroscopy they are almost unknown. But
also in this case the difference is not very fundamental, because in both cases
the radial eigenfunctions are known only very ’roughly, and if in a product
of five functions four are known only roughly, the knowledge of the fifth is
not very decisive.

However, in atomic spectroscopy we can manage to proceed without
knowing the radial eigenfunctions. For the first approximation we need only
the diagonal elements of the interaction matrix, which for two equivalent
electrons in LS-coupling, are o

(38)  ((nl):LM |e?[ry, | (nl)*LM) = 3 R*(ninl, ninl)(1* LM | Py(cos wy,) |I2LM) .
k

Since the matrix elements of Py(cos'm,,) are different from zero only if &
is even and not larger than 21, we can express the theoretical energies of 21+1
differential levels by only I 4 1 Slater integrals, and it is possible to compare
theory and experiment without actually calculating the Slater integrals. The
resultz of this comparison show that in many cases the agreement is qualita-
tively good, but quantitatively unsatisfactory, and we can say that even in
atomic spectroscopy the first approximation of the pure shell model does
not give satisfactory results. ' ‘

In nuclear spectroscopy even a comparison of this kind is impossible
because, as we have already heard from Dr. GOLDSTONE, the nuclear forces
do not depend only on the distance between the nucleons, but also on the
spin orientations and on the symmetry of the eigenfunctions. The number
of independent Slater integrals is therefore multiplied by four and becomes
much larger than the number of levels in a two-particle configuration.

The results are much more interesting and satisfactory in configurations
with three or more particles in the same shell.

For a three-particle configuration the matrix of Vi, -+ Vi, + 'V, may be
eagily obtained from (j2J|Vy,|j%J) by the formula

(39) (jan | Vie+ Vs + Vza-”%‘"]) =
L33 (Rl 18", 4y )G | Ve )G, T|7%0T) -
o

For more than three particles we have two equivalent methods for calcu-
lating the matrix

(40) (o |3 Vaeljra'd) -
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The first method is a recursion method, and calculates the matrix for j»
from the matrix for j=—1:

@) (|3 Valirwd) =

n . <L 5
— P z (7"“"{17"_1“1J1 7‘77 J)(?""'l“le!E Vi |j™= l‘lel)( " 1"‘1‘]1, Iy Jl}f’ “’J

1,7y

the factor n/(n — 2), which appears in this formula, is the ratio between the
numbers of pairs in the configurations j» and j-1.

The second method seems a more direct meihod, but it requires the knowl-
edge of the eigenfunctions of j» as linear combinations of the eigenfunctions

of jn—z?'z:
“2)  (2..n)jrad M) =

=>(12..n—2}n—1 n "2y, §2dy, I M)(jm20d;, j2,, J[}j"J) :

LoCATA

The coefficients of this expansion, which may be called coefficients of
fractional grand-parentage, are given by the formula

(43) (i"2aady, j20y, JRirad) = 3 (j"2oudy, j, I 1) -
&,

-3

(s Ihred) 1 VETE D@L O (5 1),
\ 2

and may be used for calculating the matrix (40):

(44) (j"dJ l E V.'k |j"a'J) =

= %n(n = 1) z (7o {]j"—zalJn %2y I)(§20e | Via | §202) (20, 25, J]}j"“’J) .

%3717y

For practical calculations the first method is more convenient, because

the calculation of the coefficients (43) is rather cumbersome; but on the other
- hand eq. (44) has the advantage of being a closed formula and not a recursion
formula, and is therefore more convenient for proving general properties of
the matrix (40).

In atomic spectroscopy the agreement between theory and experiment
for the configurations I” is similar to that for the configurations I* which means
not very satisfactory; but if in eq. (44) we substitute the theoretical expressions
of (I2L,|Vy;|I*L,) with the experimental values E(2L,), or more generally if
we consider the values of (I*L, | V32 |12L,) as freely adjustable parameters, the
agreement is very much improved. Of course in a formula with freely adjustable
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parameters, an increase of the number of parameters always improves the
agreement, but the question is how ‘much the agreement is improved. For
instance, in the configurations 3d* we cannot get a good fitting of four terms
with three adjustable parameters, while in the configurations 3d* and -3d°
we can very well fit twelve or more terms with only five parameters.

In nuclear spectroscopy the substitution of (j2J|V,|j2J) with E(j2J) does
not increase the number of parameters, and even decreases it. Moreover it
has the advantage that it does not require any assumption about the shape,
8pin dependence and symmetry dependence of the nuclear forces. The agreement
with the experimental data, in the few cases where it was possible to check
it, seems also to be good, as we shall hear later in detail from Dr. TALMI.

We want therefore to discuss why the substitution of (j2J|V,|j2J) with
E(j*J) improves the agreement so much.

The first thing we have to understand is why E(j2J) and (j2J | Vy,|j2J)
are different. The fact that they are different :::eans that our approximation
is not good, and that if we are working in the pure shell-model scheme we
are not allowed to neglect the non-diagonal elements of the energy matrix (2).

These non-diagonal elements have the form (j2J | V,|j'j"J), and contribute
to the energy in second approximation by an amount

b

R
(45) 5 01 Vis |17

iiv 26— ey — &

which will be the difference (in second approximation) between KE(j2J) and
G| Viz|72).

Now it can be shown that the matrix elements which connect the configu-
ration j* with the configuration j"—2%j'j” have the expression

(46) (7n“‘]| Vz‘klf""'_2“1Ju 'y, J) =

= [ n(n — D)FGrad iy, 1*%sy D) | Jua 35" 2)

and therefore the second-order éffects of these matrix elements will change
the diagonal elements of (44) by the same amount by which they would be
changed when we substitute in their expression (j2J|V,,|j%J) with E(j2J).
This does not mean that this substitution takes into account all second
order effects, because (46) holds only if both j' and j” are different from j.
This method does not account in the right measure for the second order pertur-
bations produced by the configurations j7~j’, but we think that these effects
are less important than the effects produced by the configurations j"—2j'2,
and therefore conclude that the substitution of (j2J|V;|j2J) with E(j2J)
takes into account the most important part of the second-order effects.
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This conclusion agrees with the theory of Brueckner, according to which
the substitution of the theoretical interaction with an « effective » interaction
makes it possible to introduce into the first approximation the most important
contributions of the higher approximations.

4. — The concept of seniority.

The methods developed in the preceding sections are sufficient in prin-
ciple for calculating the coefficients of fractional parentage (cfp) and the
energy matrix for é,ny configuration j». But the calculations are in general
very long and the results very complicated; we want therefore to look for -
methods which may simplify the calculations and the results.

The cfp are defined by eqs. (29) and (31) as eigenvectors corresponding
te the eigenvalue 1 of the antisymmetrizator 4. If this eigenvalue is not.
simple, the eigenvectors are not uniquely defined, and we may change the
set of basic eigenvectors and the scheme of the energy matrix by a unitary
transformation. It is our purpose to choose the scheme in such a way, that
both the cfp and the energy matrix will be simplified as much as possible.
This does not mean that the energy matrix will be diagonal in this scheme;
but we shall see that there are good reasons for thinking that this scheme is
not very far from the scheme in which the energy matrix is diagonal.

The method we use for building a particularly simple state of the confi-
guration j7, is to start from a state of the configuration j°, to add to it
3 (n — v) pairs of nucleons, each of which has resultant angular momentum
equal to zero (« saturated pairs»), and to antisymmetrize the eigenfunction.
If the original state of the configuration j° did not contain saturated pairs,
* we shall say that the new state has a «seniority » ».

A state of seniority v has many properties which are similar to those of
the original state of the configuration j°, because a saturated pair has not
only a vanishing angular momentum, but also vanishing multipole moments
of odd order. Therefore all the multipole: moments of odd order are equal
in the original state and in the final state.

The multipole moments of even order do not vanish in a saturated pair,
but they do not have a definite orientation and can take any orientation which
is not forbidden by the Pauli principle. The number of allowed orientations
is j +3%—wv, and it may therefore be shown that the expectation value of
a multipole moment of even order for a state of seniority » may be calculated
by multiplying the value for the original state of the configuration j* by a
« depolarization factor» (j + 3 —n)/(j + 3 —v).
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The number of saturated pairs may be measured by the operator

47) Q=2 qu,

i<k

where ¢, is a two-particle operator which vanishes if the angular momentum
of - the pair is different from zero, and has the value 2j + 1 if the pair is
saturated: ‘

(48) (7% | €12 |7*d) = (2] + 1)0,, -
For a state of seniority » the operator ¢ has the eigenvalue
(49) | Qn, ) = } (n —v)(2j + 3 —n—0);

this value is smaller than t(n —2)(2) + 1), because the antisymmetrization
reduces the weight. of the saturated ‘pairs.

In a scheme where @ is diagonal we shall substitute for the quantum -
number o« the seniority number v and a further quantum number g, which
will only distinguish, if necessary, between states with the same seniority and
the same value of J. States of seniority v will have the same value of p as the
state of j° from which they originate. It follows that the coefficient of fractional
grand-parentage (j"~*v,f,J, j* J, = 0, J[} j*0BJ). will be different from zero only
if », = v and B, = f, and substituting @ for V in (44), we get

2 +38—n—
G0 G, o, Thiop) = |/ e b b

If we express y(j*) as linear combination of y)(j'.'—l;i) with (j"-1) as linear
combination of y(j"~2j2), express on the other hand u(j”) as linear combination
of y(j"=%?) with w(j—2) as linear combination of v(j*~%), and compare the
two expansions, we obtain
(61)  (jm2'B'T’, (j2)o, I i*W!B' ) ( o g, If}j™opd) =

= (i"‘av'ﬁ’J 'y §y I §"-20pJ )(i"‘“vﬂJ y (12)0y I} §™0B)

and owing to (50),

(52) (i’ B'd’, §, J}j*opd) =

_ Y= 2j+3—n—0)(n—2) . ., . in_ay,
_V(n—v’—l)(2j+4—n—'v’)n Y ”ﬂJ.’?’Jl}’ v8T) .




