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INTRODUCTION

These are notes of lectures on Nevanlinna theory, in the classical
case of meromorphic functions (Chapter I) and the generalization by
Carlson-Griffiths to equidimensional holomorphic maps f: C* — X
where X is a compact complex manifold (Chapter II). Until recently,
no special attention was paid to the significance of the error term in
Nevanlinna’s main inequality, see for instance Shabat’s book [Sh]. In
[La 8] I pointed to the existence of a structure to this error term and
conjectured what could be essentially the best possible form of this
error term in general. I also emphasized the importance of determining
the best possible error term for each of the classical functions. I shall
give a more detailed discussion of these problems in the introduction
to Chapter I. In this way, new areas are opened in complex analysis
and complex differential geometry. I shall also describe the way I was
inspired by Vojta’s analogy between Nevanlinna Theory and the theory
of heights in number theory.

P.M. Wong used a method of Ahlfors to prove my conjecture in di-
mension 1 [Wo]. In higher dimension, there was still a discrepancy
between his result and the one in [La 8], neither of which contained
the other. By an analysis of Wong’s proof, I was able to make a certain
technical improvement at one point which leads to the desired result,
conjecturally best possible in general. Using Wong’s approach, I was
also able to give the same type of structure to the error term in Nevan-
linna’s theorem on the logarithmic derivative. As a result, it seemed to
me useful to give a leisurely exposition which might lead people with no
background in Nevanlinna theory to some of the basic problems which

now remain about the error term. The existence of these problems and
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the possibly rapid evolution of the subject in light of the new view-
points made me wary of writing a book, but I hope these lecture notes
will be helpful in the meantime, and will help speed up the development
of the subject. They might very well be used as a continuation for a
graduate course in complex analysis, also leading into complex differen-
tial geometry. Sections 1 and 2 of Chapter I provide a natural bridge,
and Chapter I is especially well suited to be used in conjunction with
a course in complex analysis, to give applications for the Poisson and
Jensen formulas which are usually proved at the end of such a course.

I have not treated Cartan’s theorem, giving a second main theorem
for holomorphic maps f: C — P™, because I gave Cartan’s proof in
[La 7], in a self contained way, and it is still the shortest and clear-
est. However, at the end of Chapter II, I give one application of the
techniques to one case of a map f: C — Y into a possibly non com-
pact complex manifold as an illustration of the techniques in this case.
I also have not given the theory of derived curves, which introduced
complications of multilinear algebra in Cartan and Ahlfors [Ah], and
prevented seeing more clearly certain phenomena having to do with
the error term, which form our main concern here. I also want to draw
attention to Vojta’s result for maps f: C — P™ into projective space.
In Cartan, Ahlfors, and Schmidt’s version (the number theoretic case),
it is assumed that the image of f does not lie in any hyperplane. Vojta
was able to weaken this assumption to the image of f not lying in a
finite union of hyperplanes, which he determines explicitly as general-
ized diagonals [Vo 2]. This result gives substantial new insight into the
structure of the “exceptional set” in the linear case. Ultimately, this
and other advances will also have to be included into a more complete
book account of the theory, as it is now developing.

Serge Lang
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TERMINOLOGY AND BASIC NOTATION

By increasing we shall mean weakly increasing throughout, so an in-
creasing function is allowed to be constant. Positive will mean strictly
positive.

The open disc of radius R centered at the origin is denoted D(r).
The circle of radius r centered at the origin is S(7). The closed disc is
D(r).

In C™, the ball and sphere of radius r are denoted

B(r), B(r), and S(r)

respectively.
Let F}, F> be two positive functions defined for all real numbers > rg.
We write
< F

to mean that Fy = O(F,). We shall write
Fl > FQ

to mean that F} < Fy and F, <€ F}.



CHAPTER 1
NEVANLINNA THEORY IN ONE VARIABLE

In the first part of this chapter we essentially follow Nevanlinna, as in
his book [Ne]. The main difference lies in the fact that we are careful
about the error term in Nevanlinna’s main theorem. That this error
term has an interesting structure was first brought up in [La 8], in
analogy with a similar conjecture in number theory. Although Osgood
[Os] did notice a similarity between the 2 in the Nevanlinna defect
and the 2 in Roth’s theorem, Vojta gave a much deeper analysis of
the situation, and compared the theory of heights in number theory
or algebraic geometry with the Second Main Theorem of Nevanlinna
theory.

In [La 2] and [La 3] I defined a type for a number « to be an

increasing function v such that
— log|a - §| — 2log ¢ < log ¥(q)

for all but a finite number of fractions p/q in lowest form, ¢ > 0. The
height h(p/q) is defined as

log max(|pl, |q]).

If p/q is close to a then log ¢ has the same order of magnitude as the
height, so log ¢ is essentially the height in the above inequality. A
theorem of Khintchine states that almost all numbers have type < 9 if

1
qu(q) R
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The idea is that algebraic numbers behave like almost all numbers,
although it is not clear a priori if Khintchine’s principle will apply
without any further restriction on the function . Roth’s theorem can
be formulated as saying that an algebraic number has type < ¢ for
every € > 0, and in the sixties I conjectured that this could be improved
to having type < (log ¢)'*¢ in line with Khintchine’s principle. Cf.
[La 1], [La 3], [La 4] especially.! Thus for instance we would have the

improvement of Roth’s inequality

C(a,e)

_P s _ClxE)
o ql 2 Plog g1+

which could also be written
—log]a - B| —2log ¢ < (1+¢€)loglog ¢
q

for all but a finite number of fractions p/q. However, except for quadratic
numbers that have bounded type, there is no known example of an alge-

braic number about which one knows that it is or is not of type (log ¢)*

for some number £ > 1. It becomes a problem to determine the type

for each algebraic number and for the classical numbers. I'or instance,

it follows from Adams’ work [Ad 1], [Ad 2] that e has type

Clog q

¥(q) = Tog Tog ¢

with a suitable constant C, which is much better than the “probabilis-
tic” type (log ¢)'*e.

In light of Vojta’s analysis, it occurred to me to transpose my con-
jecture about the “error term” in Roth’s theorem to the context of
Nevanlinna theory, in one and higher dimension. Transposing to the

analytic context, it becomes a problem to determine the “type” of the

1Unknown to me until much later, similar conjectures were made by Bryuno [Br]

and Richtmyer, Devaney and Metropolis [RDM], see [L-T 1] and [L-T 2].
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classical meromorphic functions, i.e. the best possible error term in
the second main theorem which describes the value distribution of the
function. It is classical, and easy, for example, that e* has bounded
type, i.e. that the error term in the Second Main Theorem is O(1).
Two problems arise here:

e To determine for “almost all” functions (in a suitable sense) whether
the type follows the pattern of Khintchine’s convergence principle.

e To determine the specific type for each concrete classical function,
using the specific special properties of each such function: p,0,T,(, J,
etc.

I am much indebted to Ye for an appendix exhibiting functions of
type corresponding to a factor of 1 — ¢ in number theory. Until he gave
these examples, I did not even know a function which did not have
bounded type.

In [La 8], using the singular volume form of Carlson-Griffiths or a
variation of it, I was not able to prove my conjecture exactly, with the
correct factor of 1 + ¢ (I got only 3/2 instead of 1).

P.M. Wong brought back to life a method which occurs in Ahlfors’
original 1941 paper, and by this method he established my conjecture
with the 1+ €. I pointed out to him that his method would also prove
the desired result with an arbitrary type function satisfying only the
convergence of the integral similar to the Khintchine principle. The
role of the convergence principle becomes very clear in that method,
which is given in the second part of this chapter. The method had
also been tried improperly by Chern in the early sixties, and we shall
have more to say on the technical aspects when we come to the actual
theorems in §4. Ahlfors’ method was obscured for a long time by other
technical aspects of his paper, and I think Wong made a substantial
contribution by showing how it could be applied successfully. I should
also note that H. Wu also proved the conjecture with 1+¢ (unpublished)
by the “averaging method” of Ahlfors. But the method used by Wong

11



lent itself better to give the generalized version with the function .
Developing fully the two problems mentioned above would create a

whole new area of complex analysis, digging into properties of meromor-

phic functions in general, and of the classical functions in particular,

which up to now have been disregarded.

I, §1. THE POISSON-JENSEN FORMULA AND
THE NEVANLINNA FUNCTIONS

By a meromorphic function we mean a meromorphic function on the
whole plane, so its zeros and poles form a discrete set. A meromorphic
function on a closed set (e.g. the closed disc D(R)) is by definition

meromorphic on some open neighborhood of the set.

Theorem 1.1. (Poisson formula) Let f be holomorphic on the
closed disc D(R). Let z be inside the disc, and write z = re'¥. Then

19
f(2) = / f(Re*)Re T 2D
—z2m
; R? — r? dé
— R 16 =7
/f( ‘ )R2 —2Rcos(8 — )+ r2 271
0
T o Re¥ +2df
= /Re f(Re’e)eTH— + 1K for some real constant K.
Re¥ — z 27

0

Proof: By Cauchy’s theorem,
f(©) i0) d9
£(0) = o / a¢ = / f(Re

Let g be the antomorphism of D(R) which interchanges 0 and =.
Then
f(z) = foyg(0).

12



We apply the above formula to f o g. We then change variables, and
use the fact that gog =id, ( = g(w), d¢ = ¢'(w)dw. For R = 1,

Z—Ww

g(w) = 1 —wz’

The desired formula drops out as in the first equation. The identity

Re*® + 2 R? — 2

*Re® —z R*- 2R cos(8 — @) + 12

R

is immediate by direct computation. The third equation comes from
the fact that f and the integral on the right hand side of the third
equation are both analytic in z, and have the same real part, so differ

by a pure imaginary constant. This concludes the proof.

For a € D(R) define

R? — Gz

GRr(z,a) = GRre(2) = m.

Then GRr, has precisely one pole on D(R) and no zeros. We have
|GRr,a(2)| =1 for |z] = R.

Theorem 1.2. (Poisson-Jensen formula) Let f be meromorphic
non constant on D(R). Then for any simply connected open subset of
D(R) not containing the zeros or poles of f, there is a real constant

K such that for z in the open set we have

2
o Re'® + 2 df
1 = 16 e 7
og f(z) = [ loglf(Re®) 7t 5
0

- Z (ord, f)log Gr(z,a) + iK.
2€D(R)

The constant I depends on a fized determination of the logs.
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Proof: Suppose first that f has no zeros or poles on S(R). Let

h(z) = f(2) H(}%Z—__a:)) orda f

where the product is taken for a € D(R). Then A has no zero or pole
on D(R), and so log h is defined as a holomorphic function to which
we can apply Theorem 1.1 to get the present formula. Then we use
the fact that the log of a product is the sum of the logs plus a pure
imaginary constant, on a simply connected open set, to conclude the
proof in the present case.

Suppose next that f may have zeros and poles on S(R). Note that
6 +— log|f(Re')|

is absolutely integrable, because where there are singularities, they are
like log |z| in a neighborhood of the origin z = 0 in elementary calculus.
Let R, be a sequence of radii having R as a limit. For R, sufficiently
close to R, the zeros and poles of f inside the disc of radius R, are the
same as the zeros and poles of f inside the disc of radius R, except for
the zeros and poles lying on the circle S(R). The left hand side of the

formula is independent of R,. Let

on(6) = log |f(Rne®)]  and  o(6) = log| f(Re™)].

Then ¢, converges to ¢. Outside small intervals around the zeros or
poles of f on S(R), the convergence is uniform. Near the zeros and
poles of f on the circle, the contribution of the integrals over small

@-intervals is small. Hence

2T 2m
o Re'® + 2 df . Re'® + 2 db
1 Ry ———— gy 22T 27
/ og |f(Rne )lRe'9—227r converges to/log|f(Re )lRe“’ — 5
0 0

thus proving the formula in general.
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