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Preface

New fields- generally progress through three periods of tech-
nological development. During the first period, the development progresses
via the periodical literature and is coordinated only through the medium of
occasional survey papers. Applications in practice are quite scarce. In the
second phase, monograph-type texts appear and give a comprehensive view
of the field for individuals actively engaged in further development of the
field and applications are recorded by advanced technology groups in
organizations with large resources. Finally, the applications spread to nearly.
all levels of practical activity and in the universities the subject matter of the
field is offered as standard academic fare.

Finite element analysis has only recently emerged from the second of the
phases above. A number of excellent monographic texts have appeared but
a need exists for a text directed toward the conventional course offering and
toward the individual with no prior acquaintance with the field. This book
is intended to serve this purpose. It is oriented toward a graduate level course
for students specializing in solid mechanics. This would include students
enrolled in the fields of mechanical and aerospace engineering, naval archi-
tecture, engineering mechanics, and civil engineering. To the extent that a
bias exists toward one of these fields it is directed toward civil engineers
pointing toward structural engineering practice.

It is also hoped that this text will appeal to engineers already in practice,
both to those seeking an introduction to a technology that was not found
among courses of instruction during their period of formal education and
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xii Preface

to those who are routinely involved in finite element analysis and seek refer-
ence to basic proofs and formulative procedures. Much of the material con-
tained herein in fact achieved realization in conjunction with numerous short
courses offered by the author to engineers in practice.

The subject matter of this text requires some familiarity with the theory
of elasticity and matrix structural analysis, and these imply an exposure to
partial differential equations, the algebra of large-order equations, and the
theory of structural analysis. Although it is the writer’s belief that each of
these topics is given adequate development from basic principles in the early
chapters of the text,’it is the experience of the author that the extent of
coverage of finite element analysis in the usual course offering leaves very
little room for a first-time assimilation of the prerequisities. We hasten to
add, however, that sufficient background in theory of elasticity is normally
found in the modern sophomore or junior year courses described by the
title continuum mechanics. '

The term matrix structural analysis requires clarification since it has been
common to collect under this heading nearly all aspects of procedures related
io digital computer applications in structural engineering. There has been a
trend, however, toward the separation of procedures for constructing and
solving the equations that describe the total structural problem, involving
the connection of simple structural elements, from the formulative aspects
of the elements. The former can be developed in large measure in terms of
such elements as truss and framework members, whose theoretical basis can
be established by only a very modest incursion into the latter area, and it is..
tothis topic that the designation 'matrix structural analysis is applied:

Theoretical developments in finite element analysis have placed great
dependence on the calculus of varjations. We have chosen to exclude this
topic from the group of prerequisite subjects since the writer has found it
unrealistic to expect that students otherwise capable of initiating study in
finite element analysis will have received a formal course in this; topic prior
to'the study of finite element analysis.

The contents of this book are almost entirely devoted to the development
of basic theoretical principles and, with the exception of Chapter |, only
scant attention is given to the practical application of finite element analysis.
There is a wealth of such information available in the open literature, some
of which can be found in the references given at the close of each chapier.
In Chapter 1, in addition to po-traying some representative applications of
the method, we outline its developmental history, give a thumbnail sketch
of the varieties of elements to be explored in later chapters of thetext; and
describe ‘a motivating factor in the method, the concept of the general-
puipose program.

Chapter 2 is devoted to the presentation of basic definitions, terminology,
coordinate systems, and properties possessed by all finite element relation-
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ships independent of their mode of formulation. Chapter 3 details one
method of constructing the equations of the complete structure from the
equations of the individual elements—the direct stiffnéss method. Other
methods for accomplishing this objective are outlined or mentioned in later
chapters but, as we have noted, the objective of this text is to concentrate
upon matters of element formulation.
Although we do not exclude one-dimensional members (e.g., axial
members, beam segments) from our development, but in fact employ them
liberally in the exemplification of basic theory, the prime motivation in finite
element analysis is nevertheless the analysis of two- and three-dimensional
continua. An understanding of the basic relationships of elasticity is there-
fore essential to the study of the method and we develop these from basic
considerations in Chapter 4.
Two broad classifications of general procedures for formulation of ele-
ment equations are covered in this text. Direct methods, described in Chapter
5, are appealing in their simplicity and rationale. The direct formulative
process gives considerable insight into those conditions which are met by
‘element formulation and those which are not. Variational methods (Chapter
6) are currently the more popular procedures for element formulation. Such
methods, under well-defined circumstances, are valuable in furnishing assur-
ances on convergence of the numerical solution and in ensuring that certain
formulatuons yleld upper or lower bounds at a given level of analysis refine-
ment. In Chapter 6 we apply the variational methods to elemient formulation
and in Chapter 7 we demonstrate the extension of the same ideas to the
formulatlon of the comple{e structure. Tn this way we establish an alternative
and broader view of system analysis than that given in Chapter 3.
_ At this point it is pertinent to take note of what the author believes to
be a particular feature of this text. At the time of its preparation, all of prac-
tice and the majority of existing finite element theory dealt with finite element
formulations in the class of displacement-based (i.e., stiffness or potential
energy) procedures. Alternative formulations, based on assumed stress fields
and even on both displacement and stress fields, hold considerable promise,
however, and the author can foresee the possibility that all the alternatives
will ultimately be on equal footing in practice. Thus, close attention is given
to these alternatives in Chapters 5 through 7.
_ The portion of the text dealing with basic theoretical considerations con-
cludes with Chapter 8, in which we examine procedures for the functional
representation of element behavior and extend these same ideas to the repre-
sentatation of element geometry. Concepts and formulations established in
this chapter are probably the more generally useful than those dealt with in
the prior chapters since they apply with equal force to nonstructural finite
element analysis.

~ Specific forms of elements are given detailed examination in each of
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Chapters 9 through 12. These encompass plane stress elements (Chapter 9),
solid elements of general and special form (Chapters 10 and 11, respectively),
and plate flexure elements (Chapter 12). By the same token greater emphasis
is placed on references to the open literature than in the previous four
chapters. '

Chapter 13 treats a special form of behavior, elastic instability. The theory
developed in this chapter applies equally well to all types of elements and
for this reason it is expedient to employ once again the simplest types of
elements—axial and frame members.

Three types of problems for assignment are presented. The first category
comprises problems intended to exercise theoretical concepts and contains
problems of the type assigned in traditional structural mechanics courses.
A second category is devoted to intrinsically finite element problems but is
intended for hand-calculation, e.g., the formulation of new element rela-
tionships or the solution of a structure describable by no more than three
algebraic equations. Finally, we present data for problems with known
classical or alternative solutions that are representable by the finite element
method in terms of a relatively large number of equations. The assignment
of such problems may be accomplished in many ways but one scheme the
author has found effective has been to assign a different gridwork to each
student in the class. Correlation of the results in class then gives the added
benefit of describing the accuracy and rate of convergence of the finite ele-
ment solution.

The finite element method is a technology that is wedded to digital com-
puter analysis and it may appear surprising that no coded algorithms are
presented herein. The author believes that few, if any, instructors or inde-
pendent users of this text will find difficulty in obtaining access to widely
distributed general-purpose finite element programs (e.g., STRUDL-II) suit-
able for the performance of the problem assignments discussed above.
Alternatively, simpler finite element programs are found in numerous reports
and texts.

It is conceivable that the subject matter of this text could be covered in
the conventional three-hour per week, fifteen-week course. In the experience
of the author this would require a higher proficiency in the prerequisite
subjects (theory of elasticity, matrix structural analysis) and in the calculus
of variations as well than would be brought to a course by the majority of
students. The instructor may therefore choose to eliminate coverage of one
or more of the last four chapters. In a trimester system, on the other hand,
it would appear feasible to form a sequence of one ten-week course in matrix
structural analysis and two succeeding ten-week finite element courses. The
second finite element course would give latitude for coverage of such
advanced topics as finite element theory and analysis for problems in soil
mechanics, heat transfer, fluid flow, and other nonstructural applications;
nonlinear problems; and the analysis of transients.
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The following is a list of the principal symbols used in this
text. Various other symbols are defined where they appear: this is often the
case with symbols used to designate matrices (especially in Chapter 6), or
which appear only in tables or figures. Symbols which have two distinctly
different meanings are distinguished by subscripting (for example, L denotes
length while L, symbolizes an area or volume coordinate). Subscripts and
superscripts applied to symbols with only one general meaning are not given
below but are rather identified in the text where they appear.

Matrices are denoted by boldface letter within the symbols [ ] (for a
rectangular matrix), { ] (for a column vector) and | | (for a row vector).
The definition of the boldface matrix symbol applies also to the lightface
(that is, the non-boldface), subscripted, terms of the matrix. For example,
the definition of the n > 1 vector {a} applies to the individual components
a,...a,...a, The boldface symbol used to denote a matrix is often used
in the non-boldface, unsubscripted form of a scalar with entirely different
meaning, although in some cases the same meaning is preserved.

Overbars denote specified quantities. Primes -denote differentiation.

A Aréa
[A] Matrix relating stresses to joint forces.
[@] Kinematics matrix. Coefficients of the relationships be-
tween element joint and global joint displacements.
a Dimension
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(i = 1, 2, 3). Coeflicients in area coordinate equation.
Constant in Poisson equation.
Matrix relating assumed displacement field parameters
to strain field. .
(i=1, 2,3,4). Coefficients in' volume coordinate equa-
tion.
Plate flexural rigidity.
Matrix relating joint displacements to strain field.
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Degree of freedom
Elastic modulus
Matrix of elastic constants
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Global flexibility matrix.
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‘Identity matrix.

Value of integral.
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St. Venant torsion constant.

Jacobian matrix.

Global stiffness matrix.

Element stiffness matrix.

Length.

Area (i = 1, 2, 3) or volume (i = 1, 2, 3, 4) coordinate.
Direction cosines.

Vector of joint bending moments.

General internal moment vector in plate bending (line
moments) and components,

Order of polynomial series.

Element mass matrix.

Number of sides of a polygon.

Matrix of shape functions.

Number of degrees of freedom.

Null matrix and vector.
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Vector of global nodal forces.

Number of elements.

Matrix of coefficients of a polynomial series.

Shear line loads in plate flexure.

Distributed load intensity.

Residual.

Static equilibrium matrix, relating element forces to each
other.

Central matrix in generalization of one-dimensional
interpolation function to two dimensions.

Radial coordinate; number of constraint equations.
General surface and surfaces where displacements and
stresses are prescribed, respectively.

Stress matrix, connecting joint displacements to com-
ponents of stress field.

Stress matrix, connecting joint displacements to stresses
at specified points,

Coordinate.

Vector of constants in constraint equations.

Surface (boundary) traction vector and components.
Thickness.

Strain energy and complementary strain energy.

Surface (boundary) displacement vector.

Displacement components (in interior and of surface
points).

Potential and complementary potential of applied loads.
Volume.

Work.

Descriptor of displacement field variation.

Body force vector and components.

Cartesian coordinates.

Coefficient of thermal expansion.

Beta function (Sect. 8.3.1).

Vector of parameters of assumed stress field.

Gamma function (Sect. 8.3.1); warping constant (Sect.
13.3.2).

Cross-derivative d.o.f. [Eq. (12.31)].

Transformation matrix.

Vector of nodal point displacements.

Variational operator; infinitesmal change.
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Xix

General strain vector (includes both normal and shear
strain).

Normal strains.

Nondimensional spatial coordinates.

Angular displacement (angle of measure in Ch. 11).
Vector of curvatures in plate bending, and components.
Hessian matrix.

Vector of Lagrange multipliers.

Poisson’s ratio.

Vector of stress field shape functions.

General functional.

Energy functional (subscripts and superscripts denote
specific type).

3.1416. ..

Material mass density matrix.

General stress field vector (includes both normal and
shear stresses).

Normal stresses.

Vector of node point stresses.

" Shear stresses.

Temperature change above ambient or stress-free state.
Thermal conductivity.

Stress function

Vector of node point stress functions.

Angle of measure or circumferential angular coordinate;
Weighting factor in weighted residual integral.

Loading function for plate bending.

Mixed format force-displacement matrix.

Vector of eigenvalues.
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