Longman Mathematical Texts

A short course in

General Relativity

J. Foster
University of Sussex

and
’ J. D. Nightingale



Longman Mathematical Texts

A short course in

General Relativity

J. Foster
University of Sussex

and

J. D. Nightingale
State University of New York,
College at New Paltz

>
RN
||
|

Longman

1111V

London and New York



Longman Group Limited London

Associated companies, branches and representatives
throughout the world

Published in the United States of America
by Longman Inc., New York

< Longman Group Limited 1979

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the
prior permission of the Copyright owner.

First published 1979

British Library Cataloguing in Publication Data

Foster, J
A short course in general relativity. - (Longman
mathematical texts).
1. General relativity (Physics)
I Title Il. Nightingale, J D
530.1'1 QC173.6 78-40859

ISBN 0-582-44194-3

Printed in Great Brnitain by Richard Clay (The Chaucer Press) Ltd, Bungay, Suffolk



Preface

This book provides a short course in general relativity, intended
primarily for senior undergraduates or first-year graduate students
in physics, mathematics, or related subjects such as astrophysics.
Our intention was to produce a book suitable for those who may
only take one course in the subject, typically of one or two terms,
or one semester duration, but it should also serve as an introduc-
tion to the excellent and more comprehensive texts which have
appeared in recent years.

Most students approaching the subject require an introduction
to tensors, which provide the language of relativity, and these are
dealt with in Chapter 1 and the first half of Chapter 2. The latter
half of Chapter 2 discusses the geodesic equations, Chapter 3 the
field equations, and Chapter 4 applies the results learned to
physics in the vicinity of a massive object. Throughout we have
tried to compare new results with their Newtonian counterparts.
Chapters 5 and 6, on gravitational radiation and cosmology res-
pectively, give further applications of the theory, but students
wanting a more detailed knowledge of these topics (and indeed all
topics) would have to turn to the longer texts referred to in the
body of the bock. We finish with an appendix, where special
relativity is reviewed, and presented in a form which makes con-
‘tacts with the general theory easier to establish. Chapters 5 and 6
are independent, and either or both could be omitted to produce
a shorter course. Exercises have been provided at the ends of
most sections, and problems at the ends of chapters. The former
are quite often straightforward (but possibly tedious) verifications
.needed for a first reading of the book, while the latter are con-
ceivably not so necessary.

General relativity is becoming much more of an experimental
subject, and so that the reader may savour something of the way
modern technology is brought to bear on the problems which
beset experimenters, we have given references (mainly to periodi-
cal articles) where appropriate.
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Independently, and quite coincidentally, much of the material
here has been taught during the past decade at both New Paltz
and Susscx, and its consolidation into a single text was the result
of one of us taking his sabbatical leave in England. While respon-
sibility for errors is entirely the authors’ we would like to mention
with gratitude Bob Marchini, John McNamara, John Ray, Eric
Shugart and Stacie Swingle, all of whom have been of assistance
in one way or another, and not least our wives. Early work on
the book owes much to the help and encouragement of Arlene
Nightingale, while the final typescript was accurately produced at
extremely short notice by Jill Foster. Finally, we would like to
thank Professor Alan Jeffrey for his encouragement and the staff
at Longman for their courtcous cooperation.



Introduction

The originator of the general theory of relativity was Einstein,
and in 1919 he wrote [1]: The special theory, on which the general
theory rests, applies to all physical phenomena with the exception of
gravitation; the general theory provides the law of gravitation and
its relation to the other forces of nature. The claim that the general
theory provides the law of gravitation does not mean that H. G.
Wells’ Mr Cavor could now introduce an antigravity material and
glide up to the Moon, nor, for example, that we might produce
intense permanent gravitational fields in the laboratory, as we can
electric fields. It means only that all the properties of gravity of
which we are aware are explicable by the theory, and that gravity
is essentially a matter of geometry. Before saying how we get to
the general from the special theory, we must first discuss the
principle of equivalence.

In electrostatics, when a test particle of charge q and inertial
mass m, is placed in a static field E, it experiences a force qE,
and undergoes an acceleration

a=(g/m,)E. (I.1)

In contrast, a test particle of gravitational mass m, and inertial
mass m; placed in a gravitational field g experiences a force m,g,
and undergoes an acceleration

a=(my/m,)g. (L.2)

It is an experimental fact (known since Galileo’s time) that
different particles placed in the same gravitational field acquire
the same acceleration (see Fig. 1.1(a)). This implies that the ratio
m,/m, appearing in equation (I.2) is the same for all particles,
and by an appropriate choice of units this ratio may be taken to
be unity. This equivalence of gravitational and inertial mass
(which allows us to drop the qualification, and simply refer to
mass) has been checked experimentally by E6tvos (in 1889 and
1922), and more recently and more accurately (to one part in
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Fig. 1.1 Test particles in (a) a gravitational field, and (b) an
electrostatic field.

10'") by Dicke and his coworkers (in the 1960s). In contrast, the
ratio g/m; occurring in equation (I.1) is not the same for all
particles (see Fig. [.1(b)).

With these preliminaries over, we may now consider the
principle of equivalence, and it is instructive to do so from the
point of view of Einstein's freely falling elevator. If we consider a
projectile shot from one side of the elevator cabin to the other,
the projectile appears to go in a straight line (the elevator cable
being cut) rather than in the usual curved trajectory. Projectiles
that are released from rest relative to the cabin remain floating
weightless in the cabin. Of course, if the cabin is left to fall for a
long time, the particles gradually draw closer together, since they
are falling down radial lines towards a common point which is the
centre of the Earth. However, if we make the proviso that the
cabin is in this state for a short time, as well as being spatially
small enough for the neglect of tidal forces in general, thén the
freely falling cabin (which may have X, Y, Z-coordinates chalked
on its walls, as well as a cabin clock measuring time T) looks
remarkably like an inertial frame of reference, and therefore the
laws of special relativity hold sway inside the cabin. (The cabin
must not only occupy a small region of spacetime, it must also be
non-rotating with respect to distant matter in the universe [2].)
All this follows from the fact that the acceleration of any particle
relative to the cabin is zero because they both have the same
acceleration relative to the Earth, and we see that the equivalence
of inertial and gravitational mass is an essential feature of the
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discussion. We may incorporate these ideas into the principle of
equivalence, which is this: In a freely falling (non-rotating)
laboratory occupying a small region of spacetime, the laws of
physics are the laws of special relativity [3].

As a result of the above discussion, the reader should not
believe that we can actually transform gravity away by turning to
a freely falling reference frame. It is absolutely impossible to
transform away a permanent gravitational field of the type
associated with a star (as we shall see in Chapter 3), but it is
possible to get closer and closer to an ideal inertial reference
frame if we make our laboratory occupy smaller and smaller
regions of spacetime.

The way in which Einstein generalised the special theory so as
to incorporate gravitation was extremely ingenious, and without
precedent in the history of science. Gravity was no longer to be
regarded as a force, but as a manifestation of the curvature of
spacetime itself. The new theory, known as the general theory of
relativity (or general relativity for short), yields the special theory
as an approximation in exactly-the way the principle of
equivalence requires. Because of the curvature of spacetime, it
cannot be formulated in terms of coordinate systems based on
inertial frames, as the special theory can, and we therefore use
arbitrary coordinate systems. Indeed, global inertial frames can no
longer be defined, the nearest we can get to them being freely
falling non-rotating frames valid in limited regions of spacetime
only. A full explanation of what is involved is given in Chapter 2,
but we can give a limited preview here.

In special relativity, the invariant expression which defines the
proper time 7 is given by

c?dri=n,, dX* dX", (1.3)

where the four coordinates X°, X', X? X' are given in terms of
the usual coordinates T, X, Y, Z by

X°=cT, X'=X, X'=Y, X's=Z (1.4)

(See Section A.0, but note the change to capital letters. See also
Section 1.1 for an explanation of the summation convention.) If
we change to arbitrary coordinates x*, which may be defined in
terms of the X* in any way whatsoever (they may, for example,
be linked to an accelerating or rotating frame), then the
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expression (1.3) takes the form

c’dr’=g,, dx* dx", (L.5)
where
aXPaX”
Buv = Moo 5w 9x

This follows from the fact that dX* =(9X"/0x*)dx*. In terms of
the coordinates X*, the equation of motion of a free particle is

d’xX*/dr*=0, (1.6)
which, in terms of the arbitrary coordinates, becomes
d’x* dx"dx”
7+
dr~ dr dr

=0, (I.7)

where
ax* 9*X*
X ax*ax”’

| -
rwr_

as a short calculation (involving the chain rule) shows. Einstein’s
proposals for the general theory were that in any coordinate
system the proper time should be given by an expression of the
form (I.5), and that the equation of motion of a free particle (i.e.
one moving under the influence of gravity alone, gravity no
longer being a force) should be given by an expression of the
form (1.7), but that (in contrast to the spacetime of special
relativity) there are no preferred coordinates X* which will reduce -
these to the forms (I.3) and (1.6). This is the essential difference ;
between the spacetimes of special and general relativity. The
curvature of spacetime (and therefore gravity) is carried by the
g.., and as we shall see, there is a sense in which these quantities
may be regarded as gravitational potentials. We shall also see that
the ' are determined by the g,,, and that it is always possible
to introduce local inertial coordinate systems of limited extent in
which g,, =m,, and I'’;,=0, so that equations (I.3) and (1.6) hoid
as approximations. We thus recover special relativity as an
approximation, and in a way which ties in with our discussion of
the principle of equivalence.

Because the introduction of curvature forces us to use arbitrary
coordinate systems, we need to formulate the theory in a way
which is valid in all coordinate systems. This we do by using



Introduction xiii

tensors, the necessary algebra for which is developed in Chapter
1: the way these fit into the theory is explained in Chapter 2. It
might be thought that this arbitrariness causes problems, because
the coordinates lose the simple physical meanings that the prefer-
red coordinates X* of special relativity have. However, we still
have contact with the special theory at the local level, and in this
way problems of physical meaning and the correct formulation of
equations may be overcome. The basic idea is contained in the
principle of general covariance, which may be stated as follows: A
physical equation of general relativity is generally true in all coordi-
nate systems if (a) the equation is a tensor equation (i.e. it pre-
serves its form under general coordinate transformations), and (b)
the equation is true in special relativity. The way in which this
principle works, and the reason why it works, are explained in
Section 2.6.

General relativity should not only reduce to special relativity in
the appropriate limit, it should also yield Newtonian gravitation as
an approximation. Contacts and comparisons with Newtonian
theory are made in Sections 2.7, 2.8, 2.9 and 2.10, and exten-
sively in Chapter 4, where we discuss physics in the vicinity of a
massive object. These reveal differences between the two theories
which provide possible experimental tests of the general theory,
and for convenience we list here the experimental and observa-
tional evidence concerning these tests, the so-called five tests of
general relativity.

1. Perihelion advance. General relativity predicts an anomalous
advance of the perihelion of planetary orbits. The following (and
many more) observations exist for the solar system [4]:

Mercury 43.11+0.45" per century,
Venus 8.4+4.8" per century,
Earth 5.0+1.2" per century.
The predicted values are 43.03", 8.6" and 3.8" respectively.

2. Deflection of light. General relativity predicts that light de-
viates from rectilinear motion near massive objects. The following
(and many more) observed deflections exist for light passing the
Sun at grazing incidence:

1919 Greenwich Observatory 1.98+0.167,
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1922 Lick Observatory 1.82+0.20",
1947 Yerkes Observatory 2.01+0.27",

1972 Mullard Radio Astronomy Observatory, Cambridge
(using radio sources and interferometers) 1.82+0.14".

The predicted value is 1.75".

3. Spectral shift. General relativity predicts that light emanating
from near a massive object is red-shifted, while light falling to-
wards a massive object is blue-shifted. Numerous observations of
the spectra of white dwarfs, as well as the remarkable terrestrial
experiments carried out at the Jefferson Laboratory [5] verify the
general-relativistic prediction.

4. Time delay in radar sounding. General relativity predicts a
time delay in radar sounding due to the gravitational field of a
massive object. Experiments involving the radar sounding of
Venus, Mercury and the spacecrafts Mariner 6 and 7, performed
in the 1960s and 1970s, have yielded agreement with the pre-
dicted values to well within the experimental uncertainties [6].

5. Geodesic effect. General relativity predicts that the axis of a
gyroscope which is freely orbiting a massive object should precess.
For a gyroscope in a near-Earth orbit this precession amounts to
8" per year, and an experiment involving a gyroscope in an orbit-
ing satellite is (at the time of writing) being prepared [7].

Finally, let us say something about the notation used in this
book. Wherever possible we have chosen it to coincide with that
of the more recent and influential texts on general relativity.
Greek suffixes (u, v, etc.) have the range 0, 1,2, 3, while English
suffixes from the middle of the alphabet (i, j, etc.) have the range
1,2, 3. The signature of the metric tensor is —2, 1.e. ngo= 1,

MNi1= M2 =MN33 = —1. Rather than use gravitational units in which
the gravitational constant G and the speed of light ¢ are unity,
we have retained G and ¢ throughout, expect in Chapter 6 where
c =1. In the sections on tensor algebra, tensor analysis and curva-
ture, the underlying space or manifold is of arbitrary dimension,
and we have used English suffixes from the beginning of the
alphabet (a, b, etc.) to denote the arbitrary range 1,2,..., N.
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Where an equation defines some quantity or operation, the sym-
bol = is used on its first occurrence, and occasionally thercafter
as a reminder. Important equations are displayed between parallel
lines.

Notes
1. The Times, London. 28 November 1919,
2. This statement is related to Mach’s principle. For a discussion. sce

Weinberg, 1972, §3

3. Some authors distinguish between weak and strong equivalence. Our
statement is the strong statement: the weak one refers to freely falling
particles only, and not to the whole of physics.

. The figures are taken from Duncombe. 1956,

. See Pound and Rebka, 1960,

. See Shapiro, 1968: Shapiro et al.. 1971: and Anderson et al.. 1975.

. See the paper by Everitt, Fairbank and Hamilton in Carmeli et al..
1970.
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Vectors and tensors

1.0 Introduction

In this first chapter we deal with some algebraic preliminaries,
namely the concepts of vector spaces, their duals, and spaces
which may be derived from these by the process of tensor multi-
plication. The treatment is quite general, though restricted to real
finite-dimensional vector spaces, and we pay particular attention
to the effect of changes of bases on components, since this aspect
is of particular importance when the ideas developed here ~re
applied to general relativity in subsequent chapters.

1.1 Vector spaces

We shall not attempt a formal definition of a vector space, but
assume that the reader has some familiarity with the concept. The
excellent text by Halmos is a suitable introduction for those new
to the concept [1].

The essential features of a vector space are that it is a set of
vectors on which are defined two operations, namely addition of
vectors and the multiplication of vectors by scalars; that there is
a zero vector in the space; and that each vector in the space has
an inverse such that the sum of a vector and its inverse equals
the zero vector. It may be helpful to picture the set of vectors
comprising a vector space as a set of arrows emanating from
some origin, with addition of vectors given by the usual paral-
lelogram law, and multiplication of a vector by a scalar as a
scaling operation which changes its length but not its direction,
with the proviso that if the scalar is negative, then the scaled
vector will lie in the same line as the original, but point in the
opposite direction. In this picture the zero vector is simply the
point which is the origin (an arrow of zero length), and the in-
verse of a given vector is one of the same length and in the same
line as the given vector, but pointing in the opposite direction.
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- In this text our scalars are real numbers, so our vector spaces
are termed real. More generally, the scalars could be taken from
any field F, giving a vector space over F. We denote the field of
real numbers by R, and to distinguish vectors from scalars the
former will be printed in bold-faced type (0, e, v, A, etc.).

The notion of linear independence is of central importance in
vector-space theory. If, for any scalars A', ... A,

A+, 4+ ARy =0 (1.1.1)

implies that A'=A?=-.-=XX =0, then the set of vectors

{vi. vy, ..., v} is said to be linearly independent. A set of vectors
which is not linearly independent is linearly dependent. Thus for a
linearly dependent set {v,, ..., vy} there exists a non-trivial linear
combination of the vectors which equals the zero vector. That is.
there exist scalars A', ..., A%, not all zero (though some may be)
such that

AV HA%v, 4+ ARy =0, (1.1.2)

It is appropriate here to say something about notation. In the
above we have labelled the vectors with a subscript and the sca-
lars with a superscript. At first sight it may be thought that the
use of a superscript will lead to confusion with powers, but since
we are mainly concerned with linear properties, powers seldom
arise; when they do, bracketing removes any ambiguity, e.g. (A')
denotes the square of A'. As we shall see, the use of subscripts
and superscripts leads to a remarkably efficient notation, the effi-
ciency of which is further improved by Einstein’s summation con-
vention. This is that if in any expression the same letter appears
as a superscript and also as a subscript, then summation over all
possible values of the letter is implied. For example, the linear
combination

5

K
AVt ARy = ) A%y,

a=1
appearing above is written simply as A“v,, the range of summa-
tion from a =1 to a = K being gleaned from the context. If in
any expression we have more than one range of summation, then
distinctions may be made by using different alphabets (or different
parts of the same alphabet) for different ranges. We shall in gen-
eral use small English letters a, b, c, etc., to denote a general
range from 1 to N, and small Greek letters u, v, o, etc., to



