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PREFACE

These notes study linear methods of approximation which are given by a
sequence (Ln) of positive linear operators. The essential ingredient being
that of positivity. The main theme is to relate the smoothness of the function
f being approximated with the rate of decrease of £ - Ln(f)ll . . This is
accomplished in the usual setting of direct theorems, inverse theoremé, saturation

and approximation of classes of functions.

The fundamental ideas involved in direct estimates can be found in the
pioneering book of P.P. Korovkiq‘and several of the more recent textbooks on
approximation. However, most of the material appears in "book form" here for the
first time. The main exception being the results on approximation by positive
convolution operators, which have considerable overlap with the recent book of

P.L. Butzer and R.J. Nessell.

I have written the notes at a level which presupposes a knowledge of the
fundamental aspects of approximation theory, especially as pertains to the degree
of approximation. Most of the necessary background material can be found in the
now classic book of G.G. Lorentzz. For a good understanding of the material

developed here for convolution operators, I expect that the reader will have to

make several excursions into Butzer and Nessell.

The notes concentrate solely on spaces of continuous function (periodic
and non-periodic) on a finite interval. I have not developed the theory for Lp -
spaces since I know of little in these spaces that goes beyond what is already
contained in Butzer and Nessell. The only examples considered are those which fall
comfortably in the grasps of the general theory. However, I believe that the

reader will find that most of the better known examples are covered.
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CHAPTER 1

PRELIMINARIES

1.1. Introduction. This first chapter will be devoted to stating, generally

without proof, some fundamental results from approximation theory and Fourier
analysis. Proofs can usually be found in the classical books on the appropriate

subject. The material on approximation of functions can be found in the book of

&

from Fourier analysis. There is some middle ground material between approximation

G.G. Lorentzz, while the treatise of A. Zygmund., should be referred to for results

and Fourier analysis, which is best found in the work of P.L. Butzer and R.J.
Nessell. We also quote some results on Chebyshev systems from S. Karlin and W.J.
Studdenl, and orthogonal polynomials from G. Szegﬁl. In the rare instance, that

there is no reference for the exact result we need, a proof will be supplied.

In some cases, proofs of results stated in this chapter can actually be
found in subsequent chapters. For example, Jackson's Theorem is proved in Chapter
2 and the Bernstein Inverse Theorem follows easily from the material in Chapter 8.

However, we do not strive for this kind of completeness.

Most of our notation and terminology will be introduced in this chapter.
Later in the text, when there may be some question as to notation, we will gener-

ally give reference back to the original usage.

1.2. Chebyshev Systems. Cla,b] denotes the space of continuous functions on

[a,b] and C* = C*[—ﬂ,w] , the space of 2T-periodic and continuous functions on
the line. Both of these spaces are equipped with the supremum norm over the

appropriate interval. For example, for f e C[a,b]

[1£]] = sup |£Go)]
a<x<b



We will use the notation || || [a,b] to indicate that the supremum is taken
over [a,b] whenever it is necessary to make it clear which interval the norm
is taken over.

A set of functions {uo,u ...,un} < C[a,b] is called a Chebyshev

l’
system on [a,b] if each function u ¢ sp(uo, ...,un) has at most n zeros
unless it is identically zero on [a,b] . For the periodic case,

*
{uo, ...,un} ccC and any u € sp(uo, ...,un) has at most n zeros on

[-m,m ), unless it is identically zero. The space Un = sp(uo, ...,un) is

called a Chebyshev space . Pn , the space of algebraic polynomialsof degree
< n 1is a Chebyshev space for any [a,b] and Tn the space of trigonometric

*
polynomials of degree < n 1is a Chebyshev subspace DEEREN

. A Chebyshev space on [a,b] can also be characterized by the

following interpolation property.

n
152.1. 'If a :_xo < X, Sl X < b and (yi)i=0 are real numbers then
there is a unique u e sp(uo, ...,un) such that

u(xi) -y 1 % 0.), aen

1f Un is a Chebyshev subspace of C[a,b] with each non-zero
u € Un having n continuous derivatives on [a,b] and at most n zeros

on [a,b] counting multiplicity then we say Un is an extended

Chebyshev space. If for each k = 0,...,n , sp(uo,...,uk) is an extended

Chebyshev system, then we say Un is an extended complete Chebyshev space.

For an extended complete Chebyshev space there is a canoncial basis {ug,...,u,}
described by

.41 u (£) = w_(t)

t
u, (t) wo(t)f wl(xl)dxl

a




X X
ul
u () = w () f: w) (%)) fal vyl o [T G dax g

a

where each Wy is a continuous strictly positive function on [a,b], w_gc(l‘fi )[a,b].
3

* { ®
Leti v e Cla,b] (C°) and Un be a Chebyshev subspace of C[a,b] (C ) .

*
A function u e Un is called a best approximation to f from Un 1f

*
| £-u”] = iy le-ul
ue

The following theorem of Chebyshev gives the existence, uniqueness

*
and characterization of u .,

*
Theorem 1.1 .3uLeticfas Cla bl G femm]) » and {uo, ...,un} be a Chebyshev

: *
system on [a,b]([-m,m]) . Then the best approximation u to f exists
and is unique. If u is any function in sp(uo, ...,un) then u is the

best approximation to f if and only if there exist points

CIEAY SRR A CRGLTS o' s L B S S e 8]

< St
0 1 m ) such that

n+l n+l

f-u alternately takes on the values * “ f-—uH at the points X

PR P lEaRet - 3 R

1.3. Classes of Functions. There are various methods for measuring the

smoothness of functions. The divided difference operator At(f,x) is

defined for t > 0 by

At(f,x) = £x+0), =) £(x)

If f ¢ C[la,b] , then the modulus of continuity of f 1is defined by



variable x . A similar definition
:gnbf taken over the whole line. The

1

ing fundamental properties:

ing, continuous, and w(f,0) = 0 .

0 and t > 0, then w(f,At) < (Ml)w(f,t) .

-1 -1
< t2 then t, w(f,tz) S 2:1 w(f,tl) . »

The conditions (1.3.1.) and (1.3.2.) characterize the modulus of
: co;ttinuity—v:-in the sense that if w is any function which;‘hn‘s--t'h"éhe. two
properties, then w is a modulus of continuity of u.function in cClajhl:
(namely w(t-a)) .
When w is a modulus of continuity, we denote by Cw(M) the set of

all functions f for which

W(E,6) < Ma(t) 0 <t <bua

The notation Cm stands for the union of all the Cm(M) , M> 0 . Sometimes,

we will need to have a compact set and so wewill restrict the norms of the

functions by ”f I _<_M° and denote this new class by Cm(M’Mo) > 4 :
The most important case here is when w(t) = t s WEEHS O & ateleg

which are called the Lipschitz o classes. The common notation is -

Lip "L Similar rotations, Lip(a,M) and Lip(a,M,Mo) are used
t




for Ct“(M) and Cta(M’Mo) s

For higher smoothness, we let w(r)(a,M,Mo, ...,Mr) denote the

set of functions for which

Hf(i)H:Mi f= 00, e
w(t) Le) <M 0<t<bea
When we do not restrict the norms of the f(l) then we denote this class by

W(t)(u,M) . The class W(r)(a) is the union of all the classes

W M), M5 0.

th
We denote by Lir)(M) , the class of all functions f whose r

derivative is < M a.e.. Lir) is the union of all the LirzM). The classes

Lir) and WO

(1) are the same.

We can also get at higher smoothness by using higher order divided
differences. The rth order divided difference AE is defined as the
r-fold composition of At with itself. The rth order modulus of

continuity is then given by

| A

w_(£,h) = sup HAi(f,x)H [a,b-rt] 0<h
0<t<h
Particularly important is the second order modulus of continuity since
its behaviour cannot be characterized in terms of the first order modulus
of continuity.
If 0<a <2, we define the class Lip*(a,M) as the collection

*
of all functions f e Cla,b] (C [-n,n]) such'that

w,(£,8) < 2m ¢ .



B all M's . For 0. <o <1

In fact, there are constantsgui,nz:ﬁnd

Lip(a,M) € Lip' (a,M,) < Lip(a,M) (1.3.5)

& :

Similarly, for 1 < a < 2 , the classes Lip o and W(l)(a) are the same.

Again a relation like (1.3.5.) holds. When o = 2 , we can say more

PR e Ak i (1)- HIo0 Sq JQL 1398 7 5% W

Lip (2,M) = W77 (1,2M) K130y

*
When o =1 , the class Lip 1 is properly contained in Lip 1 .
5 (%
The class Lip 1 is commonly referred to as the class of quasi-smooth functions,
aléo called the Zygmund class. The class of smooth functions‘S _ consists of

3

all functions f such that

wz(f,t) = -ot)

Given a function in C[a,b] , it is sometimes necessary to define f
outside [a,b] in such a way that as much smoothness as possible can be
retained. It is always possible to extend f to‘get a new function g defined

on the entire line (see Timanl s Ps.121), Syikh
wy(gst) < Swy(f,8) 0 <t < %(b-a) (L3474

where now in the definition of wz(g.t) the norm is taken over all

-0 < ¥ < ©




* N
1.4. Fourier Series. If f € C , the complex Fourier coefficients of f are

defined by

2o = 2= [Mee™ e k=0, +1,...
-1

and the real Fourier coefficients by
1 m 20 L % 0. 1.2
8, (6) = ["(t)coskedt , b (£) = = ["£(t)sinke, k= 0,1,2; ... -
-7 -7

Thus, the Fourier series of f is

T A gy WD B v
f*‘Z f(k)e = + 2 a, (f)coskx + b, (f)sinkx = z KACE %)
A 2 ko k £ e

Related to this is the conjugate series

2(-bk(f)coskx + a, (f)sinkx) (1odil)
i

*
25 £ & C then (l.4.1.) 1is the Fourier series of a function %‘ 4"..1[—1r,11] :

\

We call g the conjugate function of f and write g =f . ;

The 1':5-}l partial sum of the Fourier series of f is denoted by
n
s (£,x) = Z A, (£,%)

Similarly, for a Borel measure du defined on [-m,7) , we define the

complex Fourier coefficients of du by

v 1 -ikt
Wk = 2= [T e rauce) . Km0 el

=8



In the case that du 1is an even measure, then the sine terms drop and

oo V 2 o o0
duy ~ Z u (k)elkx e z 0. coskx
e 2 j i
where
ok = % f“coskt du(t)
-

We call the pk's the real Fourier coefficients of du .

*
1f £ and g are in C [-m,n] then the convolution of £ with' g

is

() 0 = = [TE(t) glx-t)de (144.2.)

il

*
The function fxg is also in C [-m,m] and has the Fourier series

trg ~.2. 1 400 Aikie T (ko)

-0

More generally we can define the convolution of f with a measure

dy by replacing g(x-t)dt by du(x-t) in (1.4.2.) . Then fxdy - 8. dn

%
C>[—n,w] and (1.4.3.) also holds with duy in place of g . 1In particular

if' dy 18§ even then

©

fxdu ~ ] oo A (£,%) (1.4.4.)
(o]

It is important to point out that the factor 2 that appears 40 FI0L B3 5)

arises since we:. used %- rather than %; dn- (1:4,2:) . The only Tefgon

for doing this is that the formula (1l.4.4.) comes out in a more convenient

'



