Ellis Horwood - Publishers

~ Fundamentals
~ of Computer
Logic

FUNDAMENTALS OF COMPUTER LOGIC

THE ELLIS HORWOOD SERIES IN
COMPUTERS AND THEIR APPLICATIONS

Series Editor: BRIAN MEEK
Computer Unit, Queen Elizabeth College, University of London
The series aims to provide up-to-date and readable texts on the theory and practice of
computing, with particular though not exclusive emphasis on computer applications. Pref-
erence is given in planning the series to new or developing areas, or to new approaches in
established areas.

The books will usually be at the level of introductory or advanced undergraduate courses.
In most cases they will be suitable as course texts, with their use in industrial and commer-
cial fields always kept in mind. Together they will provide a valuable nucleus for a computing
science library.

Published and in active publication ‘

THE DARTMOUTH TIME SHARING SYSTEM
G. M. BULL, The Hatfield Polytechnic

THE MICROCHIP AS AN APPROPRIATE TECHNOLOGY
Dr. A. BURNS, The Computing Laboratory, Bradford University

INTERACTIVE COMPUTER GRAPHICS IN SCIENCE TEACHING
Edited by J. McKENZIE, University College, London, L. ELTON, University of Surrey,
R. LEWIS, Chelsea College, London.

INTRODUCTORY ALGOL 68 PROGRAMMING
D. F. BRAILSFORD and A. N: WALKER, University of Nottingham.

GUIDE TO GOOD PROGRAMMINé PRACTICE

Edited by B. L. MEEK, Queen Ehza eth College, London and P. HEATH, Plymouth
Polytechnic.

DYNAMIC REGRESSION: Theory and Algorlthms

L.J. SLATER, Department of Applied Engineering, Cambridge University and
H. M. PESARAN, Trinity College, Cambridge.

CLUSTER ANALYSIS ALGORITHMS: For Data Reduction and Classification of Objects
H. SPATH, Professor of Mathematics, Oldenburg University.

FOUNDATIONS OF PROGRAMMING WITH PASCAL
LAWRIE MOORE, Birkbeck College, London.

RECURSIVE FUNCTIONS IN COMPUTER SCIENCE
R. PETER, formerly Eotvos Lorand University of Budapest.

SOFTWARE ENGINEERING
K.GEWALD, G. HAAKE and W. PFADLER, Siemens AG, Munich

PROGRAMMING LANGUAGE STANDARDISATION
Edited by B. L. MEEK, Queen Elizabeth College, London and I. D. HILL Clinical
Research Centre, Harrow.

FUNDAMENTALS OF COMPUTER LOGIC
D. HUTCHISON, University of Strathclyde.

SYSTEMS ANALYSIS AND DESIGN FOR COMPUTER APPLICATION
D. MILLINGTON, University of Strathclyde.

ADA: A PROGRAMMER’'S CONVERSION COURSE
M. J. STRATFORD-COLLINS, US.A.

FUNDAMENTALS OF
COMPUTER LOGIC

DAVID HUTCHISON, B.Sc., M.Tech.

Department of Computer Science
University of Strathclyde

=

ELLIS HORWOOD LIMITED
Publishers - Chichester

Halsted Press: a division of
JOHN WILEY & SONS

New York « Chichester - Brisbane - Toronto

First published in 1981 by

ELLIS HORWOOD LIMITED
Market Cross House, Cooper Street, Chichester, West Sussex, PO19 1EB, England

The publisher’s colophon is reproduced from James Gillison’s drawing of the
ancient Market Cross, Chichester.

Distributors:

Australia, New Zealand, South-east Asia:
Jacaranda-Wiley Ltd., Jacaranda Press,

JOHN WILEY & SONS INC.,

G.P.0O. Box 859, Brisbane, Queensland 40001, Australia

Canada:
JOHN WILEY & SONS CANADA LIMITED
22 Worcester Road, Rexdale, Ontario, Canada.

Europe, Africa: T
JOHN WILEY & SONS’LIMITED
Baffins Lane, Chichester, West Sussex, England.

North and South America and the rest of the world:
Halsted Press: a division of

JOHN WILEY & SONS

605 Third Avenue, New York, N.Y. 10016, U.S.A.

British Library Cataloguing in Publication Data
Hutchison, David
Fundamentals of computer logic. —
(Ellis Horwood series in computers and their applications).
1. Electronic digital computers — Circuits
2. Logic circuits
1. Title
621.3819°5835 TK7888.4 80-42028

ISBN 0-85312-258-X (Ellis Horwood Ltd., Publishers — Library Edn.)
ISBN 0-85312-305-5 (Ellis Horwood Ltd., Publishers — Student Edn.)
ISBN 0470-27117-5 (Halsted Press)

Typeset in Press Roman by Ellis Horwood Ltd.
Printed in Great Britain by Butler and Tanner Ltd., Frome, Somerset.

COPYRIGHT NOTICE: © David Hutchison/Ellis Horwood Ltd. 1981

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the permission of Ellis Horwood Limited, Market Cross
House, Cooper Street, Chichester, West Sussex, England.

Table of Contents

Preface e e e 7
Chapter 1 The Structure of Computers .
1.1 Introduction.uiim i it 9
1.2 Computerlogic. . .. vt ittt it et e e e 11
1.3 Structurallayers . s soww ss s mmms sisnsems s osms s s v i 5 oa 22
Chapter 2 Logic Building Blocks
2.1 Logic symbolisi « : sesnss svnusmssemas s muss s s 5mas b 24
2.2 Booleanalgebra.ttt 30
23 Logicfamilies.c it 35
24 Integrated circuit buildingblocks 44
Chapter 3 Combinational and Sequential Logic
3.1 Representation of logic circuits 57
3.2 Cambinational logicdesign, 65
3.3 Sequentiallogicdesign.............c0iiiiiiiiii.. 90
Chapter 4 Logic Circuits in Practice
4.1 Designexamplesot 110
4.2 Circuit problemsin practice. 131
4.3 Analysisoflogiccircuits. i it e 140
4.4 Other approaches to logic implementation 143
Chapter 5 Computer Logic Design
5.1 Computerlogiccircuits.ttt 150
52 Controlstructure.viitie it 164
5.3 Microprogrammingt e 173

!

6 Table of Contents
Chapter 6 The Hardware/Software Interface ‘
6.1 Interdependence of hardware and software. 178
6.2 SUMMATY. v ittt init it enenneenasan 185
Reading List. i i i i 187
APPendix « s « s s es omwm s wowE e smBET 6 8 HHETE s FEEE 5 F s 193
INAEX . o ottt e e e e e e 207

Author’s Preface

This book describes the structure of computers through a study of their underlying
logic circuits. The approach used is to present the material in a bottom-up way,
starting with a description of the basic building blocks of logic circuits and pro-
ceeding in a series of layers to build a picture of how computers are designed and
constructed. Although the material is principally concerned with computer hard-
ware, some attention is paid to the mutual dependence of hardware and software
requirements in computer design.

While the book is aimed primarily at first- and second-year undergraduate
students at Universities and Polytechnics — in computer science, microprocessor
studies and related engineering subjects — the approach is intended also to
benefit those with an interest in computers from a mainly hardware point of
view. Those who wish to learn about logic building blocks and their use in
designing logic circuits, but not necessarily their application in computers, are
also catered for since these topics — the core of the book — are essentially
self-standing. A little background knowledge is required: a familiarity with
binary numbers and an acquaintance with the notion of programming. The
reader who has attended a short course on computer appreciation will be well
prepared.

Chapter 1 sets the scene of the book by presenting a brief history of com-
puters and outlining the structural layers of a modern computer. In Chapter 2
the building blocks of logic are introduced from both an abstract and a physical
point of view: the theory of Boolean algebra and the implementation tools of
integrated circuits (‘chips’) are brought together. Chapter 3 classifies logic cir-
cuits into the combinational and sequential varieties, and describes techniques
for designing both types of circuit, with worked examples in each case. Further
worked design examples are presented in Chapter 4, along with other aspects
of the uses of logic circuits in practice. Several logic circuits used in computers
are introduced before Chapter 5, which illustrates how the circuits fit together
to implement the major functional units in a computer. Particular attention is
paid to the design of arithmetic and control units. The last Chapter, 6, discusses

Author’s Preface

the interdependence of hardware and software in computers and ends by com-
menting on the implications for computer design of new hardware technologies
and advances in software techniques.

An Appendix contains a sample of typical literature available from a semi-
conductor manufacturer, describing some of the integrated circuits with which
logic circuits, and computers, can be constructed. In the text the importance
of referring to, and understanding, such data sheets is emphasised. The Reading
List contains chapter-by-chapter recommendations for further reading. No
references are included in the text but the annotations with each title in the List
direct the reader to suitable sources for specific topics.

Students using this book as a course text will greatly benefit from a short
practical course which illustrates the use of integrated circuits in logic design
and implementation. Both the practical work and the choice of any design
problems for students to tackle are best left to the discretion, and ingenuity, of
the course lecturer.

Thanks are due to the second-year students of Computer Science at the
University of Strathclyde who have helped, wittingly or otherwise, to evolve
the approach used in this book by their participation in the course on Logic
Design during the past three years. My thanks in general to my colleagues in
the Department of Computer Science, and in particular to Miss Agnes Wisley
and Mrs Margaret McDougall for their help in typing the manuscript. Brian Meek
(the Series Editor) and Michael Horwood have helped give this book shape and
direction and I am most grateful to them. Lastly, the book would never have
been written without the help and support of two people, Ian Campbell and
Ruth Hutchison.

Glasgow, August 1980

CHAPTER 1

The structure of computers

1.1 INTRODUCTION

Computers have two major ingredients: hardware and software. Hardware is the
collective term used to describe the physical units of the computer — the pro-
cessor, memory and peripheral devices, including all mechanical and electronic
components. Software, on the other hand, refers in general to the programs
which cause the computer hardware to obey specific sequences of instructions.
The physical realisation of software is either a set of instructions, written in a
particular language, on a piece of paper or a pattern of binary digits (bits) in
the memory hardware of a computer.

Very often a distinction is made between system software and applications
software. System software, sometimes referred to confusingly as simply soft-
ware, is a set of programs written by the manufacturer or supplier of the hard-
ware (or in some cases by the users themselves). This software consists of an
operating system which controls the basic functions of the hardware, and a set
of utility programs such as language translators, editors and debugging aids.
Depending on the intended application area of the computer its operating
system may provide more or less extensive facilities: in a large multi-access
machine the operating system may have to service the widely-different needs of
its many concurrent users and support a complex file system held on magnetic
discs and tape. At the opposite extreme a small single-user computer may require
an operating system which simply allows single programs to be loaded and started,
and memory locations to be inspected and their contents altered. All computers
require some system software which enables users to operate them easily. The
extent to which utility programs are provided also depends on how the computer
is used: systems on which programs are constantly being developed would
typically have available a variety of high-level language compilers and a file
editor, whereas dedicated systems in which the programs are fixed and proven
may provide no such utilities along with the operating system.

Applications software, usually written by users or software houses, tailors a
computer system (already provided with system software) to a particular task

10 The Structure of Computers [Ch.1

or application. Typically applications software is written in a high-level pro-
gramming language such as COBOL, FORTRAN or Pascal, and in this way the
hardware features of the computer are hidden from the programmer. The
compiler translates the user program into machine-code instructions, the form in
which the computer can understand the programmer’s intentions. Interaction
with the outside world, via the peripheral devices, is handled on behalf of the
programmer by the operating system; the programmer simply indicates the need
for input or output by means of a high-level statement such as read(X) or
print(X) in the program text. In special circumstances, such as cases in which the
speed of operation of programs is critical, applications may be programmed in
assembly language, a symbolic form of the machine-code which computers
understand. The central part, or kernel, of an operating system is often written
in this machine-oriented form. Applications written in assembly language also
rely on the presence of an operating system to control the resources of the
computer hardware and to provide a machine-independent user interface.

In very general terms the structure of a computer system can be illustrated
as in Fig. 1.1. This shows the three components introduced above — hardware,
system software, and applications software — ordered in a hierarchy or a set of
layers. The computer hardware is the lowest, or most basic, of the layers, while

user level

applications software

system software

computer hardware

Fig. 1.1 — The broad layers of a computer system.

Sec. 1.2] Computer Logic 11

the highest layer in the computer hierarchy is the user level. Strictly speaking
the user level is not a part of the computer as such; this is indicated by the
dashed lines in the diagram.

Each layer provides a set of facilities for the one above. The architecture of
the computer hardware determines the nature of the machine features which
the system software has to handle; the type of use of the computer system
influences the facilities which the system software offers to the applications
programmer; and lastly, but very importantly, the applications level should
provide a friendly set of facilities to the users. The boundary between one layer
and the next is termed an interface: as we go from the hardware to the user
level the interface facilities offered are more and more high-level, in other words
further from the low-level machine features and somewhat closer to a form
which people can easily understand. The man-machine interface, as the highest-
level interface is called, is increasingly important with computer systems finding
their way into every office and factory, where non-expert users are called upon
to operate them.

The scope of this book falls well short of the man-machine interface, and
short also of applications software. It deals with computer hardware, and to
some extent with the interface between hardware and system software. More
specifically the book is about computer logic, the electronic rather than the
mechanical aspects of computer hardware — the logic circuits as opposed to the
moving parts such as magnetic discs or line printers. The remainder of this
chapter outlines the context in which the main material of the text is set.

1.2 COMPUTER LOGIC

To explain the meaning of computer logic let us look a little more deeply into
the hardwate layer of the computer system. It should be borne in mind that in
this book we are dealing exclusively with digital as opposed to analogue com-
puters. Analogue computers represent information in the form of continuously
varying voltages or currents and are used in special-purpose applications like the
design of automobile suspension systems where the physical system can be
modelled or simulated by the computer.

A brief history

Digital computers represent information in discrete binary (two-valued) form
and have evolved from the calculating machines of the last century, including
Charles Babbage’s design for an Analytical Engine (1837) and Hollerith’s Electric
Tabulating System (1889). The first electronic computer was the ENIAC (1946),
inspired by a memorandum of J. W. Mauchly in 1942 within the Moore School

12 The Structure of Computers [Ch.1

of Electrical Engineering at the University of Pennsylvania. The ENIAC (Elec-
tronic Numerical Integrator and Calculator) took three years to build and was
large-scale in every way. It contained some 19,000 valves, weighed 30 tons and
consumed 200 kilowatts of electricity. It was also extremely fast by the stan-
dards of the day, being able to multiply two 10-digit decimal numbers in 3 milli-
seconds. However, the effort of programming the ENIAC was such as to dis-
courage its use for any other than extensive computational problems, since it
had to be programmed manually by plugging and unplugging sets of connecting
wires. Data could be entered using a punched card reader, and results output on
punched cards or on an electric typewriter. A large team was responsible for the
design and construction of the ENIAC, most notably J. P. Eckert and J. W.
Mauchly who in 1947 jointly founded a company to produce computers com-
mercially. One of their first products was called the UNIVAC (Universal Autom-
matic Computer). Later their company became the UNIVAC division of the
Sperry-Rand Corporation, which along with IBM began selling computers
successfully in the early 1950s.

Another member of the Moore School team, John von Neumann (1903-
1957), is credited with the idea now seen as the final step in the development of
the general-purpose computer. This is the idea of a stored-program machine in
which program and data share a common memory. The most important conse-
quence is that programming is made very much easier; thus the computer possesses
a generalised instruction set, fixed into its hardware, and the program — consisting
of a sequence of appropriately chosen instructions — can be read in via a punched-
card reader in the same way as the data. An additional consequence, one that has
had less lasting significance, is that programs can be made to modify their own
instructions.

There is evidence to suggest that others before von Neumann had the
notion of a stored-program computer, notably Konrad Zuse (in his 1936 paper),
who produced in Germany in the 1930s a series of mechanical and electro-
mechanical computers called Z1, Z2 and Z3; A. M. Turing, whose 1936 abstract
model of a computer — called a Turing machine — formed the basis for much
of the present-day knowledge of the theory of computation; and even Charles
Babbage, although in his case perhaps the suggestion is closer to speculation than
in the others. However, it is certain that von Neumann’s draft report on the
EDVAC (Electronic Discrete Variable Computer) written in 1945 contains the
earliest documented presentation of the stored-program idea. The EDVAC was
the successor to ENIAC and contained several design changes which originated
during the ENIAC project. The main differences were that it was a binary
rather than a decimal machine and that it had a much larger memory: 1K (or
1024) 40-bit words of mercury delay-line main store, plus a secondary, slower
magnetic store 20K words in size. This machine did not become operational
until 1951.

Meantime a report written for the U.S. Army Ordnance Department in 1946

Sec. 1.2] Computer Logic 13

by Burks, Goldstine and von Neumann proposed a methodology for designing
computers. This report was the first of a series which led to yet another machine
called the IAS. In effect its proposals summarise the characteristics of first-
generation digital computers. Burks, Goldstine and von Neumann suggest the

following features:

main units: control

arithmetic

memory

input/output communication
program and data sharing the memory
binary internal forms
a synchronous clock system
the use of subroutines

- possible adder hardware, but multiplier software

the use of an accumulator register
parallel operation for memory accessing
diagnostic/single-step provision.

All these features are to be found in the majority of present-day computers.
They characterise what has become known as the von Neumann machine. A
schematic diagram of such a machine is shown in Fig. 1.2. This gives us an
outline description of the typical hardware structure of a computer.

memory
central processing unit (CPU) input/output
control)
. input
unit
arithmetic and
p) output
logic unit (ALU)

Fig. 1.2 — Outline computer structure.

14 The Structure of Computers [Ch.1

There are three main parts:
(1) the memory, in which program and data co-reside.

(2) the central processing unit (CPU) which in turn has two components —
the arithmetic and logic unit (ALU) in which all calculations are per-
formed, the results being held in the associated accumulator register;
the control unit, whose job it is to fetch and obey program instructions
from the memory, and to co-ordinate the activities of the other units.

(3) input and output units, which respectively read information into the
computer and print it out.

In the late 1940s and early 1950s many computers were built. In Britain
there was notable work at Manchester and at Cambridge. Probably the first
working stored-program computer was a small experimental machine built at
Manchester University in 1948 by F. C. Williams and T. Kilburn. The range of
machines produced at Manchester culminated (much later, around 1961) in the
famous ATLAS computer which had a one-level store, the forerunner of the
present-day virtual memory systems in which the (fast) main memory and the
(slow) magnetic backing store are seen by the programmer as effectively a single
large memory. At Cambridge M. V. Wilkes and others designed and built the
EDSAC (Electronic Delay Storage Automatic Calculator), a machine modelled
on the lines of the EDVAC. It was completed in 1949 and had a fixed program
which could nowadays be described as an assembler and loader, an early contri-
bution to programming aids.

Following on from the early days of computer design, from about the
mid 1950s, we can identify the emergence of the second-generation machine.
These were characterised by improvements in both hardware and programm-
ability. Perhaps the most important hardware innovation was the replacement
of the vacuum tube by the transistor, a semiconductor device invented at Bell
Telephone Labs. by J. Bardeen and W. H. Brattain. This permitted computers
to be built which were smaller and more reliable, and consumed less power.
Not until the surface-barrier transistor was developed in 1954 by Philco did the
operating speed of computers improve significantly, however. Thereafter the
development of discrete transistor technology continued with the introduction
of logic families called direct-coupled transistor logic (DCTL), diode-transistor
logic (DTL), and resistor-transistor logic (RTL). These represented efforts
continually being made by the manufacturers to improve the performance of the
basic elements of computer hardware. A key aim was to reduce the cost of the
elements, while nevertheless also improving their speed and reliability.

Alongside the new technology of transistors in characterising second-
generation machines stands the introduction of high-level programming languages
as a major aid to speeding up the process of computer programming. The inten-
tion of the high-level language was to permit programming to be problem-oriented
and machine-independent. A compiler (or translator program) converts the high-

Sec. 1.2] Computer Logic 15

level language programs into machine-code specific to the computer which will
run the program. FORTRAN (Formula Translation) was the first widely-used
high-evel programming language. It was developed by a group at IBM under the
direction of John Backus between 1954 and 1957. COBOL (Common Business
Oriented Language) followed in 1959, intended mainly for business applications,
in contrast to Fortran which was designed specifically to be used in scientific
work. ALGOL (Algorithmic Language), specified in 1960 and revised in 1962 by
an international committee including, amongst others, John Backus and Peter
Naur, was another important language designed during the second generation of
computers. Other languages, now obsolete, were being designed and compilers
implemented. The first system software was now beginning to be produced by
computer manufacturers and was supplied as part of a package along with the
computers themselves. This early system software tended to consist of compilers
and rudimentary operating systems.

Apart from changes in technology and software, the architecture and logical
design of computers were developing too. Second-generation machines tended to
have a floating-point arithmetic unit; index registers and indirect addressing
became standard; with magnetic core main memory the design of the CPU
tended to be strongly influenced by the timing of memory accesses; and syn-
chronous operations (that is linked to a common timing source) became very
widely used.

Previously, asynchronous operations dominated: in this scheme the com-
ponent parts of an operation (some slow, others fast) were allowed to proceed
at their own pace, and job completion signals indicated that the next phase
could begin. In computers of the second generation onwards the cycle of events
within the machine was controlled by a central clock, both CPU and memory
operations being synchronised from its timing pulses. The use of index registers
was pioneered by the Manchester University team: these fast-access storage
locations in the CPU allowed modification of memory addresses and were
particularly intended to help improve the efficiency of machine-code programs
produced by compilers. Together with indirect addressing, the presence of index
registers extended the memory addressing capabilities of computers in line with
the requirements dictated by high-level languages. Experience with software was
influencing the design of computers considerably. Applications, too, influenced
their design. The requirement for very powerful computational facilities was
satisfied by the widespread use of floating-point arithmetic units.

Details apart, the general structure of computers as specified by von Neumann
and his colleagues was still the same — the three main parts, CPU, memory and
input/output — and has remained so ever since. Moving on beyond 1960 the
trend was still to improve the speed, size (and inevitably cost) and programm-
ability of computers.

As with the previous generation, third-generation computers are most
strongly characterised by a technological innovation, in this case the use of

16 The Structure of Computers [Ch.1

integrated circuits (ICs). Instead of the former discrete components, the semi-
conductor industry began producing monolithic ICs on which the equivalent
of several transistors were fabricated. This newest advance took place in the
early 1960s, with Fairchild and Texas Instruments well to the fore amongst
the semiconductor manufacturers. It was, however, Sylvania which first pro-
duced the logic family which has remained popularly in use up to the present
day: transistor-transistor logic (TTL). With higher packing density of compo-
nents and improved switching speeds, ICs enabled computers (and other digital
logic devices) to be much smaller and faster. It is alternatively suggested that
third-generation machines are mainly characterised, from the programmer’s
point of view, by multiprogramming operating systems based on large capacity
magnetic drum and disc stores. Certainly all of the major computer manu-
facturers set out to implement such operating systems, although it cannot be
claimed that many had success until much later in the 1960s. One of the most
successful third-generation machines was IBM’s System/360, which was avail-
able in a variety of different configurations to meet the needs of the individual
customer. These machines, in common with the majority being produced at the
time, were very large, powerful mainframe computers.

About the middle of the 1960s a somewhat different type of machine
began to appear on the market. This was the minicomputer, characterised by
short word lengths (of some 12 to 24 bits) and modest hardware and software
facilities. These machines were built to satisfy a new, but soon growing demand
for dedicated computers in industrial applications. Digital Equipment Corporation
(DEC) was one of the first manufacturers, with its PDP series, to sell mini-
computers.

Although more powerful computers continued to be designed, the trend
towards smaller machines accelerated as whole new applications areas in industry
and commerce revealed themselves. This trend was helped along considerably
by the increasing performance/cost ratio of integrated circuit technology. In
1964 Texas Instruments introduced a standard TTL product line called semi-
conductor network (SN) series 54. Although this was intended primarily for the
military market, TexasInstrumentssoon produced a lower-cost,lower-specification
version called series 74. This logic family originally packaged up to about twelve
transistor equivalents on one IC: this level of integration is called small-scale
integration (SSI). In 1969 medium-scale integration (MSI) was introduced,
packing from twelve up to a hundred transistors onto an IC.

Large-scale integration (LSI) soon enabled upwards of a hundred transistors
to be packaged together on one monolithic structure. With this level of integra-
tion manufacturers saw that they could produce an IC containing enough logic
to implement a small CPU. In 1971 Intel brought the first microprocessor into
the marketplace, the 4-bit 4004. Soon 8-bit microprocessors, notably Intel’s
8080 and the Motorola 6800, became very_widely used products.

The increasing levels of integration and the lowering of IC component

