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Preface

Res sunt futurae digitales

The emergence of digital sigmal processing as a major discipline began in
the mid 1960s when high speed digital computers became widely available
for serious research and development work. Many concepts that form the
theoretical basis of digital signal processing, such as the Z-transform and
the Fourier analysis, had been familiar, however, to engineers for a long
time. In the ensuing years, this field has matured considerably. Its devel-
opment is intimately tied with advances in the computer field.

The past decade has been marked with phenomenal progress in com-
puter technology. With each stride forward, computers became more accessi-
ble and more affordable to an-everincreasing user community, and the users
discovered more new applications, generating new demands for even more
sophisticated technology. These developments have had a profound impact
on almost all scientific disciplines, and the field of digital signal processing
benefitted greatly from these developments.

In digital signal processing, we deal with signals and systems that age
the discrete-time counterpart of the more familiar continuous-time systems.
The field may be subdivided into two interrelated areas: digital filtering and
spectral analysis. Digital filters can perform the same function that analog
filters do, while the analog approach, in some cases, may be difficult or
unfeasible to implement practically. The use of digital filters offers impor-
tant engineering advantages, such as perfect reproducibility and a guaran-
teed level of performance, the increased ease in changing the filter charac-
teristics, and the possibility of time sharing the same hardware system
among a multiplicity of filtering functions. These advantages alone would,
in many cases, make digital filtering an attractive alternative to analog
processing. There is a further important advantage: the possible modularized
hardware for customized large scale integration. Digital spectral analysis
has been given a tremendous boost by the introduction of the fast Fourier
transform (FFT). These computationally efficient algorithms have gained
widespread use in many diverse scientific disciplines, making possible accu-
racies and resolution that could not even be contemplated before with an
analog approach.

ix



X Preface

The proliferation of the use of digital signal processing can be wit-
nessed by its appearance in a variety of areas of scientific endeavor such
as biomedical engineering, seismic and geophysical research, image process-
ing and pattern recognition, radar and sonar detection and countermeasures,
acoustics and speech research, and telecommunications. In many of these
applications, there is a real ne¢d for the signal processor to operate at
sufficiently high speed as to permit real time processing. At the same
time, these processors must be economically competitive to be within the
reach of a large user community. The field is expanding rapidly, creating
a need for graduating engineers with some exposure and skill in the theory,
design, and implementation of digital signal processors. There are a grow-
ing number of schools offering a course on digital signal processing; howev-
er, a suitable textbook, with emphasis on practical design and implementa-
tions, is still lacking. In addition, since the area of digital signal processing
is relatively new, many of the practicing engineers today may find them-
selves thrust into a job that requires considerable knowledge on digital
signal processing, but have only a limited time to acquire it. The book by
Gold and Rader [1], published in 1969, served these needs for some time.
However, there have been many new developments since its publication.
The more recent books are directed primarily at the graduate level [2—S5].

In this textbook, we have attempted to present a balanced blend of
theory and hardware implementation techniques which, in our opinion,
constitute the essential body of knowledge in digital signal processing. The
material included will enable the reader to enter this important field, and to
follow the published literature and the new developments in this area. We
have directed this book at both the undergraduate engineering students and
the practicing engineers. It can serve as a textbook for a one semester
senior course on digital signal processing with a practical bent. The inclu-
sion of the two actual projects in Appendixes 5.1 and 5.2 should help
students, who are engaged in similar projects, gain valuable hands on
experience in this area. The practicing engineer will find in this text the
basic theory that he needs for a better understanding of this topic, as well
as a large number of specific references to a more detailed treatment of
the various subjects. Furthermore, the computer programs included and the
detailed hardware implementation discussions should prove-to be useful and
directly applicable to some of his current problems at work.

The six chapters of the book a¢ organized with minimum interdepen-
dence, so that each can be used s:parately as a reference by persons
working in the field for the various topics that these chapters discuss.
Chapter 1 contains the essential theoretical background needed for the
understanding of the main aspects of digital signal processing, and their
relation to the more familiar analog signal processing. Chapter 2 presents
the main design methods of digital filters, including some computer pro-
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grams for their design. In addition to the design of standard filters, we
also consider the design of digital filters for interpolation and decimation, a
process with no counterpart in analog signal processing. Through a number
of examples, we demonstrate the effect that finite word length of the filter
coefficients has on the filter characteristics, and alert the reader to this
important aspect of digital filtering. Chapter 3 is devoted to the fast
Fourier transform and its application to power spectra measurement and to
performing linear convolution. Chapter 4 deals with the problems of the
hardware implementation of general purpose digital signal processors, which
are essentially specialized computers. Chapter 5, on the other hand, deals
with the hardware implementation of dedicated hardware special purpose
digital signal processors which, although ‘less flexible, offer a high degree of
cost effectiveness. Finally, in Chapter 6, we discuss some additional imple-
mentation considerations, arising from the use of finite word length, such as
scaling and limit cycles, which have both theoretical and practical impor-
tance. These should be understood and appreciated in order to design a
successful processor. .

In summary, this book presents, in a concise yet reasonably complete
and directly usable form, the main body of knowledge in the area of
digital signal processing. It is mainly aimed at the undergraduate engineering
student to ease his entrance into this expanding field, and at the practicing
engineer to facilitate his ever more difficult job of staying abreast his field
of endeavor.

Abraham Peled
Bede Liu
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CHAPTER 1

An Introduction to Digital
Signal Processing

1.1 INTRODUCTION

In this chapter we introduce the reader to the basic theory of digital signal
processing, and we also review briefly those topics in signal and system theory
that are pertinent to the study of this field. The material included in this chapter
is intended to provide the necessary background essential for an understanding of
the digital processing of signals that are derived from analog waveforms. The
signals and systems treated in this chapter are entirely deterministic in nature.
There is a parallel body of knowledge concerning stochastic signals. Readers who
are familiar with them will have no difficulty to expand in that direction.

In Section 1.2 we review briefly some aspects of continuous time linear
system theory and proceed to define a discrete time system counterpart. In
Section 1.3 we introduce the Z-transform, which plays a role similar to that of
the Laplace transform in continuous systems. Section 1.4 contains an introduc-
tion to digital filtering. This is followed by Section 1.5, where the digital filtering
of analog signals is discussed. In Section 1.6 we consider the problems of per-
forming the digital filtering with limited accuracy and alert the reader to some of
the problems arising there. Section 1.7 is devoted to the discrete Fourier trans-
form, its properties, and its relationship to the familiar Fourier transform.

The theoretical treatment in this chapter is, by necessity, brief. Although it
will provide the reader with a sufficient background for the understanding of the
rest of the book and the central area of digital signal processing, additional
reading on some of the topics treated in this chapter is advised, should a deeper
understanding be desired.



2 An Introduction to Digital Signal Processing
1.2 CONTINUOUS-TIME AND DISCRETE-TIME SIGNALS AND SYSTEMS

This section begins with a review of the elementary properties of analog and
digital signals, and the response of linear systems to these signals. Analog signals
are those operating in the continuous-time domain, while digital signals operate
in discrete-time. The term digital also implies that these signals have values
limited to discrete levels. The conversion of analog signals to digital signals is
taken up in a later section. Only deterministic or nonrandom signals will be
discussed in this section.

A continuous-time or analog signal may be described by a function of time,
say f(t). Under quite general conditions that are almost always met in engineer-
ing practice, we may take the Fourier transform of f(t). That is, the integral

=]

F(w) = f f(t)eet dt (1-1)

-00

can be evaluated for all, or almost all, real values of w, thus defining a function
of w. Often F(w) is referred to as the spectrum of the signal f(t); or more
precisely, | F(w)|? is called the power spectrum of the signél. There is an
inverse relationship to Eq. 1-1,

f(t) = (1/2m) f F(w)e! dw (1-2)

The two functions f(t) and F(w) form a Fourier transform pair. The analytic
evaluation of the integrals is facilitated sometimes by regarding «w or t as a
complex variable and using techniques of contour integration. The subject of
numerical computation of F(w) from a given f(t) is discussed in Section 1.7.

Consider next the response of a linear time-invariant system to a signal as
depicted in the block diagram of Figure 1.1. The output g(t) and the input f(t)
are related by a superposition integral of the form

oC

g = [ h(ft - ) dr (1-3)

-00

where h(t) is the unit impulse response, which is the response of the system at
time t due to a unit impulse input at time 0. With a simple change of variable
t'=t—7, Eq. 1-3 can also be written as
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(=]
g0 = f(rHh(t = 1) dr' (1-4)
-00
LINEAR TIME-
INVARIANT SYSTEM

INPUT OUTPUT

h(t) I

f(t) g(t)

Figure 1.1 Continuous-time signal and system.

The right hand side of Eq. 1-3 or Eq. 1-4 is commonly called the convolu-
tion of the two functions f(t) and h(t), often denoted by f(t)*h(t). By a well-
known theorem in Fourier integrals, we have

G(w) = H(w) F(w) ‘ (1-5)

where G(w), H{w), and F(w) are respectively the Fourier transform of g(t), h(t),
and f(t). H(w) is called the transfer function of the system.

It can be shown that for an input signal of the form f(t) = A e*!' the output
is simply

g(t) = A H(w,) & (1-6)

Since e/“!* corresponds to a sinusoidal signal of frequency w,, we see that the
response of a linear time-invariant system to a sinusoidal input is a sinusoidal
signal of the same frequency. The amplitude of the output sinusoid is A | H(w)) |,
which is equal to the input amplitude multiplied by the magnitude of the complex
number H(w)), and the phase by which the output lags the input is simply the
argument Arg H(w,). H(w) is seen to characterize completely the response of
the system to pure sinusoidal signals, and is, therefore, called the frequency
response of the system. '

We now turn our attention to discrete-time signals. A discrete-time signal is
a sequence of numbers, {x_ }, where the index n may vary over a finite or an
infinite range. When it is desired to display explicitly the range of n, say
N<n<M, we shall use the notation {x }y, or {x,},_yu. Although the most
commonly encountered discrete-time signals are the samples of analog signals at
uniform intervals, these are by no means the only types of discrete-time signals.
The arrival times of automobiles at a toll booth, a record stored on a memory
device in a computer system, and the attendance at successive home games of the
New York Mets during a season are all examples of discrete-time signals. Other
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common terminologies used for these signals are sampled data signals and digital
signals. However, strictly speaking, the term digital carries with it the implica- .
tion that each sample value x_ is also digitized or quantized to a discrete set. In
this book, we shall use discrete-time and digital interchangeably.

A number of commonly encountered elementary signals are illustrated in
Figure 1.2. The first signal consists of a single unit sample at n=0. That is,

1 n=0
=1, n#0 (1-7)

This particular signal is called a unit sample signal or, more popularly, a unit
impulse signal, even though there is no impulse in the signal. The second signal
is a unit step,

1 n>0 : (1-8)
X = -
=1 0 n<o
The last one is a sinusoidal signal
x, = sin(an+b) -0 < n< (1-9)
I
(a) ﬁ—o—m—l—o—o—o—a—o—o—o—n
|
(b) —o0—0o—o0 I I I I ]7 I a

1,

Figufé 1.2 Three commonly encountered digital signals:
(a) unit impulse, (b) unit step, (c) sinusoidal signal.
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A discrete-time system operates on an input digital signal to produce an
output digital signal. A linear time-invariant discrete-time system can be de-

scribed by the input-output relationship

[ 2]

yn= Z xm hn-m (]'10)

m=-00

where {x_ } and {y_} are, respectively, the input and output signals, and {h_} is
the impulse response of the system. That is, h is the response of the system at
n, due to a unit sample input at 0. By letting n—m=k, so m=n—-k , Eq. 1-10
becomes

o0
Y xuhy (1-11)

k=-00

This is depicted in Figure 1.3. The right hand side of Eqs. 1-10 and 1-11 is
called the convolution sum of the two sequences {x .} and {th }. When the
sequence th } has only a finite number of nonzero terms, we say the system has
a finite impulse response (FIR). Otherwise, the system is said to possess an
infinite impulse response (IIR). If h = 0 for n < 0, we say the system is causal
or physically realizable.

A large class of linear time-invariant discrete-time systems can also be
described by the linear constant coefficient difference equation

M L
= Yax, - 2 bV, (1-12)
k=0 k=1

where {x_} is the input, {y } is the output, and a,a,,...,ay,,b,,...,.b, are constants
that determine the characteristics of the system. It is possible to convert Eq.
1-12 to an equation of the form of Eq. 1-10. However, we shall defer lhe
discussion of this topic for the time being.

The reader is undoubtedly familiar with the important role that Fourier and
Laplace transforms play in continuous-time signals and systems. In an analogous

{!"} {yn}

—  —=

Figure 1.3 A linear time invariant discrete-time system.
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manner, the study of discrete-time signals -and systems is facilitated by the
Z-transform. This is the subject of the next section.

. 1.3 THE Z-TRANSFORM
(a) Definition and Some Examples

Given a sequence {x_}, its Z-transform is defined by

= -]
X(z) = Y x,z" (1-13)
n=-00
where z is a complex variable and plays a role similar to that of the variable s in
the Laplace transform. The series on the right side of Eq. 1-13 converges, when
z takes on values in a certain region in the complex plane. For many commonly
encountered signals the series can be summed in close form. {x_} is called the
inverse Z-transform of X(z).
Let us illustrate this with a few examples.

Example 1
& 0 (114
X = -
" { 0 n<0
According to Eq. 1-13
oC [>.2]
X(z) = 2 c'z" = E (czH"
n=0 n=0

which is a geometric series. It convergesif |cz'| < 1, or

lz]>1lcl (1-15)
If Eq. 1-15 is satisfied, then the convergent series has a closed form expression
1 .
X(z) = ———, lzl| > |¢| (1-16)
1—-cz %

A special case of interest is when ¢ = 1. Then {x_} is simply the unit step, Figure
1.2b, and X(z) = 1/(1-z") for |z| > L.

Example 2

x, =c'nl o< n<® (1-17)



* 1.3 The Z-Transform 7

with |c| < 1. We bteak the infinite summation of Eq. 1-13 as follows

-1

X(z) =2 clnlgn +2‘C|"IZ

n=-0C n=0
-1 )
=2 c"z" + Ec“z"
n=-00 n=0
o oo
- 2 c"z" + 2 chz™ - (1-18)
n=1 n=0

The first series converges if |cz|] < 1 or |z| <_1/|c]|, and the second series
converges if |z| > |c], according to the previous example. Since |c| < 1 as
given, |c| < 1/|c|. Thus, if z lies in the ring |c| < |z]| < l/IcI both
infinite series in Eq. 1-18 will converge, and we have

cz 1
X(z) = +
1 —cz 1 —-cz!
el lel < Izl <1/lel  (1-19)
= sy cl < |zl < C -
(1 = cz)(1 = cz'h)
Example 3
: n=0 (1-20)
X = -
" {0 n#0 ‘

This is the unit impulse sequence, Figure 1.2a. We have in this case,

X(z) =1 (1-21)

Example 4

: n=N (1-22)
X = -
" { 0 n#N
This is a shifted unit impulse sequence. Again, straightforwardly,

X(z) = zN | (1-23)



