el

Donald E. Freeman and OlneyR.Perry

 1/0 DESIGN

" DATA MANAGEMENT IN
~ OPERATING SYSTEMS.

1/O Design:
Data
Management
in Operating
Systems

Donald E. Freeman

IBM CORPORATION

Olney R. Perry

H

HAYDEN BOOK COMPANY, INC.
Rochelle Park, New Jersey

Library of Congress Cataloging in Publication Data

Freeman, Donald E
1/0 design.

Includes index.
1. Data base management. 2. Operating

systems (Computers). 1. Perry, Olney R., joint
author. Il. Title.
QA76.9.D3F73 001.6'44 76-54767

ISBN 0-8104-5789-X

Copyright © 1977 by HAYDEN BOOK COMPANY, INC. All rights reserved.
No part of this book may be reprinted, or reproduced, or utilized in any
form or by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying and recording, or in any infor-
mation storage and retrieval system, without permission in writing from
the Publisher.

Printed in the United States of America

2 3 4 5 6 7 8 9 PRINTING

78 79 80 81 82 83 84 85 YEAR

Text design and interior layout: Cobb/Dunlop Publisher Services Inc.

 Preface

This is a book about computer input and output. Specifically,
it is about that portion of an operating system called either the I/O system or
data management. More specifically still, it is about the design of the 1/0
system. It is not about computers, though computers are an important sup-
porting subject, and it is not about programming in the coding sense. When
you have read this book, you should understand what I/O systems are, what
they do, why they do it, how they are organized, and the techniques they
employ. In some ways, the book is a rationalization. It does not crusade but,
rather, it explains and evaluates. It is practical and pragmatic. It describes
technology proven by general purpose use.

Measured by any standard, this book concerns an advanced topic. If
programming is completely new to you, you are advised to start somewhere
else. However, this book is independent and self-contained; so if you have a
general knowledge of programming, why not try it? We have not assumed
that you are versed in any particular programming language or that you are
familiar with any particular computer system, but it will be helpful if you have
some knowledge of some programming language and some computer systems.

This is not a book about IBM. However, quoting the immortal John von
Neumann, “It is unavoidable that our account will be considerably biased by
our own actual efforts in this field. . . .”* On the other hand, the authors have
studied the documentation for the following systems, and this book includes
what we believe is the best in them:

® Burroughs Corporation—Master Control Program

® Control Data Corporation—Scope and Master

® General Electric Company—GCOS III

® International Business Machines Corporation—Operating System/360
and Disk Operating System/360

® Honeywell, Incorporated—Series 200/ Operating System

® National Cash Register Company—Operating System

® Radio Corporation of America—Time-Sharing Operating System and
Input/Output Processing System

® Sperry Rand Corporation—Exec 2, Exec 8, and Real-Time System

You will find the text liberally sprinkled with examples from these
systems. The preponderance of examples from one or another system does not

1 Collected Works of John von Neumann, vol. 5, p. 1.

necessarily indicate its superiority. In many cases, examples were chosen on the
basis that they illustrate a point most clearly without introducing terms at odds
with the discussion.

At the end of each chapter, there is a set of exercises graded easy (e),
moderate (m), and difficult (d). The easy exercises serve as a form of review;
the answers are stated explicitly in the preceding text. Moderate exercises require
that the information previously read be applied directly and properly. Difficult
exercises require that you deal with the implications of the information
previously read. If you are deeply interested in a particular topic, the difficult
exercises will serve as an extension to the text, an extension the less avid reader
can bypass without losing the train of thought.

Donald E. Freeman
Olney R. Perry

INTRODUCTION TO INPUT/OUTPUT SYSTEMS

How I/0 Systems Began/Operating Systems, What
They Do and Why/The I/0 System: An Operating
System Component/ The Computer System/Organ-
ization of the Book/Summary/Exercises

INPUT/OUTPUT DEVICES

Data Preparation Equipment/End-Use Devices/ Mag-
netic Tape/Direct Access Storage Devices (DASD)/
Summary/ Exercises

CHANNEL PROGRAMMING
Data Formats/Channel Commands/Channel-Pro-
gramming Examples/ Summary/Exercises

UNITS OF DATA
Characters and Bytes/Records and Blocks/Files/
Summary/ Exercises

CONTROL STATEMENTS

The Control Statement/Resource Requirements:
Files/Resource Requirements: Devices/ Small-System
Subsets/ Summary/ Exercises

DEVICE ALLOCATION

Device Inventory/Static Allocation of Devices/
Dynamic Allocation/ Automatic Volume Recogni-
tion/Summary/ Exercises

OPENING AND CLOSING FILES
Communication Mechanisms/File Processing/Sum-
mary/ Exercises

STORING AND RETRIEVING DATA
Access Methods/Buffering/ Summary/ Exercises

THE 1/0 SUPERVISOR

A General Description of the I/O Supervisor/Some
Important Details of the I/0 Supervisor/Summary/
Exercises

24

82

107

125

146

176

10 DATA STAGING

11

12

13

14

15

16

17

18

19

20

Data Entering or Leaving the System/Staging of
Data Files/Staging of Work in Process/Summary/
Exercises

THE SEQUENTIAL ORGANIZATION OF DATA

The Organization of Data/Sequential Organization
of Data/Uses of the Sequential Organization/Organ-
ization Conventions/Sequential-File Processing/Sum-
mary/ Exercises

THE INDEXED ORGANIZATION OF DATA
An Indexed Organization Example/Storage Areas/
Indexed-File Processing/Summary/Exercises

THE DIRECT ORGANIZATION OF DATA
Key Transformation/ Bucket Definition/ Overflow-
Record Handling/ Summary/Exercises

LINKED-LIST ORGANIZATION

Lists, Chains, and Indexes/ Fundamentals of Chains/
Understanding the List Organization/Data Structures
and Their Processing/ An Example: IDS/Evalua-
tion/ Summary/ Exercises

LABELS

Volume Labels/File Labels/User Labels/Nonstan-
dard Labels/ Summary/Exercises

CATALOGS AND SPACE ALLOCATION
Catalogs/The Volume Table of Contents/Storage
Space Allocation/Summary/Exercises

PROGRAM LIBRARIES

Library Requirements/Library Organization/Library
Processing Tools/ Summary/ Exercises

OPERATING CHARACTERISTICS

Reliability/ Availability/ Serviceability/ Account-
ability/ Operability/ Recoverability/ Practical Ability/
Summary/ Exercises

PRIVACY AND SECURITY

Exposures and Threats/ General Countermeasures/
I/0 System Countermeasures/Summary/Exercises
PRESERVING THE USER’S ENVIRONMENT

Device Independence/Data Independence/Integrity/
Summary/ Exercises

Index

197

209

227

247

267

289

302

317

329

340

353

365

:Introduction to
Inpu’rIOu’rput Systems

The 1/0O package was the seed pellet injected into the gathering
cloud of ingenuity hovering over the computer industry. This
was in 1958 or thereabouts. . . . Leo J. Cohen

An 1/0 (input/output) system is the programmed component
of an operating system that stores and retrieves data. I/O systems are the
spectacular achievement of a few dozens of people working in groups separated
geographically and administratively. Surprisingly, the philosophies and tech-
niques developed by these groups are quite similar, similar enough to constitute
an emerging I/0 system science. This book is devoted to that new and fascinat-
ing science, but before we plunge into that main study, courtesy requires that
we give some attention to history. Beyond that, good judgment requires atten-
tion to the operating system environment within which an I/O system must
perform.

Computer systems are a new phenomenon. The industry points with
patronizing pride to Charles Babbage, whose machines and ideas in the nine-
teenth century were far ahead of his time.! But modern computer systems all
use the stored program idea, and stored program machines date only from
World War II. Many of the outstanding senior people in the computer industry
today were already well into their professional careers when the first stored
program computers were being built. I/O systems are much newer still, the
most ancient of them dating from 1958 or thereabouts.

Before 1950, calculating machines were much less flexible than modern
computers. Remington Rand, a parent of the present Sperry Rand Corporation,
had a line of punched card handling products whose activities could be con-
trolled somewhat by positioning mechanical levers. IBM had card machines
whose actions could be altered by control panel wiring. An important fore-
runner of the modern computer was the Card Programmed Calculator (CPC),
a system composed of several of IBM’s card machines interconnected by elec-
trical cables. As the name implies, the CPC was programmed by a deck of
cards. Each complete pass of the cards might cause computation of one pay-
check or one stage of a numerical approximation process. The instructions in
the cards were interpreted by control panel wiring.

In the late 1940s John von Neumann authored several important papers
describing a stored program computer, a computer where instructions would

1 Neither high precision machining, electronics, nor an appreciative society assisted
Professor Babbage in his magnificent efforts. The serious student of computer history
will be fascinated by Charles’ dogged persistence and by the unselfish support of his
gifted admirer, the Countess of Lovelace, Lord Byron’s daughter. The foreword, pref-
ace, and appendix of Faster than Thought by B. V. Bowden (1953) are recommended
reading.

2 1/0 DESIGN: DATA MANAGEMENT IN OPERATING SYSTEMS

be stored in the “memory organ” along with other more conventional data.
Von Neumann’s papers were sometimes authored jointly with two associates,
Burke and Goldstein. However, von Neumann was clearly the motivating force,
and he is generally acclaimed the father of the stored program computer. Von
Neumann’s original papers can be found in the Collected Works of John von
Neumann, volume 5, published after his untimely death.

HOW 1/0 SYSTEMS BEGAN

During the early 1950s, several stored program computers were intro-
duced commercially. The names of those machines, including the Univac 1101,
the IBM Type 650, the Electrodata 204, the Bendix G-15, and the ALWAC-III,
may be unfamiliar to some readers. Commercial availability created an imme-
diate demand for generally useful programs so that standard procedures need
not be reprogrammed and retested.

The requirement for a generally available I/O program can be illustrated
for the IBM defense calculator, later named the Type 701. For its day, the
Type 701 was very fast, and like many of the early scientific computers, its
I/0O capabilities were quite rudimentary. Reading a punched card required
execution of 24 COPY instructions, each resulting in the transfer of 36 binary
digits of information to main storage. If the card contained decimal information,
the newly stored information required sorting. For example, the 12 bits
representing any holes punched in card column 1 would be found as the first
bit transferred by each of the 1st, 3rd, 5th, . . . , 23rd COPY instructions.
All of this had to be accomplished without the aid of index registers.

Beginning with these very first commercially available stored program
computers, the manufacturers recognized that a few general utility programs
would be required. Some of the first general utility programs furnished were
the bootstrap loaders used to load a program and start its execution. Other
programs gradually made available could duplicate a card deck, create a
magnetic tape copy of a card deck, print a report from magnetic tape, read
an input deck converting the data from decimal to binary, and so on. Such
programs were either furnished in card deck form or printed in a computer
operating manual to be punched by the user. Typically, a small stack of these
utility programs sat near the card reader ready for use by one and all. When a
card was lost or mutilated, or when decks became hopelessly intermixed, fresh
copies were readily available from a filing cabinet close at hand.

One limitation of these early utility programs was that they were intended
for independent use only, not for incorporation with the user’s payroll or
matrix inversion program. By the mid-1950s, general purpose I/O subroutines
were available for most computers. These 1/0 subroutines were typically in
the form of card decks that could be added to a user’s program deck. The
resulting deck, together with a bootstrap loader, was a complete and independent
program ready for use whenever the computer was available.

Concurrent with the development of standard utilities and subroutines
was the development of interpretive systems. An interpreter is a supervisory
program that executes the instructions specified in another program; the latter

INTRODUCTION TO INPUT/OUTPUT SYSTEMS 3

is never executed directly. An early successful interpretive system was the
“Speed Coding System” developed under the direction of John Backus, a famous
name in computer science. The “Bell Interpretive System” developed by Bell
Telephone Laboratories for the IBM Type 650 was very popular. Interpretive
systems were popular for at least two important reasons:

1. They allow the users to specify their programs in a convenient
language not closely related to the instruction set of the computer.

2. They retain a great deal of control over the users’ programs, thereby
simplifying problems such as user program testing.

The principal disadvantages were that interpreters preempted a significant
portion of the very limited main storage space and that they tended to be slow.
A good discussion can be found in Donald E. Knuth’s book The Art of Com-
puter Programming, volume 1.

The advent of a successful FORTRAN compiler in the late 1950s re-
directed operating systems by furnishing an even more convenient language for
the user’s program and by providing good execution speed for the compiled
program without loss of space to the interpreter. One of the earliest non-
interpretive systems was developed at the Rocketdyne Division of North Amer-
ican Aviation in California in about 1958. That system was called a “FORTRAN
Compile and Go” system. It could accept a number of users’ programs in the
FORTRAN language, compile them, and execute them without operator
intervention.

The Share Operating System (SOS) developed jointly by IBM and the
organization of computer users called SHARE included I/0O routines that were
part of a monitor that remained in the computer. The term input/output
control system (IOCS) was coined about that time and by the early 1960s IOCS
was becoming a part of everyone’s operating system, in theory if not in fact.
At about that same time, the rapid development of a variety of I/O devices,
the advent of independent channels, and the popularity of multiprogramming
combined to compel the development of the current features of I/O systems.

OPERATING SYSTEMS, WHAT THEY DO AND WHY

An I/0 system is a component of an operating system, typically the
largest and most fascinating component. Just as a study of the human heart
might begin with a survey of the entire circulatory system, our study of the
I/0 system begins with the entire operating system.

An operating system is a large and complex collection of computer
instructions. A system might consist of from 50,000 to 500,000 instructions,
and it may be so complex that no one person understands it completely. The
largest operating systems are possibly the most complex products ever pro-
duced by humans, rivaling such developments as the Apollo missile systems.

Why We Need an Operating System

Nearly all general purpose use of medium and large computers is accomplished
under operating system control. The major services furnished by an operating

4 1/0 DESIGN: DATA MANAGEMENT IN OPERATING SYSTEMS

system will be described in just a moment. But first, it is useful to understand
why an operating system is necessary. What needs justify a collection of pro-
grams so large and complex? When a user has a job for the computer, why
doesn’t he or she use the computer directly without an operating system?
Several factors furnish the answers to these questions.

Most computer systems, as manufactured, presuppose operating systems.
As it became clear that programs such as the IOCS mentioned earlier were
inevitable, computer designers began to capitalize on their existence. Wherever
programs could perform more flexibly or at less cost than electrical circuits,
the operating system accepted a new responsibility. Yesterday’s luxury has
become today’s necessity. All of the major manufacturers of computer systems
furnish operating systems with their computers.

Operating systems improve operating efficiency in several ways:

® An operating system can overlap the setup time for one job with the
execution of other jobs. The setup time required to ready the auxiliary
storage units for a particular job often exceeds the execution time for
the job. Without this overlap, the routine feat of running several hundred
jobs a day on a single computer would be impossible.

® An operating system can arrange concurrent processing. For example,
one job might require only one or two magnetic tape units, while another
requires little use of direct access storage devices, and yet another requires
very little main storage space. An operating system can arrange for
several such jobs to be in process concurrently, thereby accomplishing
more work in a given interval of time.

® An operating system can reduce the length of time that equipment is
required by a job. For example, operating systems frequently use high-
performance auxiliary storage devices as substitutes for card readers,
printers, and other relatively slow devices. This substitution, accomplished
without concern to the user, allows the user’s program to perform its
function more rapidly, thereby freeing the equipment devoted to that
program sooner. At an unrelated time, the operating system will remove
the information from its temporary storage and accomplish the printing
or punching required by the user.

® An operating system can reduce the elapsed time from receipt of data
to printing of results. Before the advent of operating systems, job
processing usually included several peripheral operations before and after
computer processing. The peripheral processes included activities such as
collecting similar jobs onto a single magnetic tape and printing of final
results from a computer output tape. Each peripheral operation involved
clerical handling of data related to the service request. Not only were
requests occasionally processed incorrectly, but also the peripheral
machines were often backlogged for days at a time. By integrating the
peripheral operations into the computing process, an operating system
reduces the elapsed time for the combined operations.

Operating systems afford a wuseful combination of flexibility and
standardization:

INTRODUCTION TO INPUT/OUTPUT SYSTEMS 5

® The standardization of data formats imposed by operating systems
provides greater interchangeability of data between computer systems
and wider usefulness of programs.

® The standardization of procedures imposed by operating systems
reduces operator errors.

® An operating system separates the user’s program from the computer
system in such a way that the latter can be expanded or contracted by
addition or deletion of devices without modification to the user’s program.
® An operating system separates the user’s programs from the computer
system in such a way that new, improved devices frequently can be
substituted for older, less effective devices without modification to the
user’s programs.

An operating system can adapt a general purpose computer to any of
several operating requirements. For example, an operating system can provide
the responsiveness necessary for a communications based system, the reliability
required for a missile guidance system, the efficiency of a conventional com-
mercial data processor, or a combination of these attributes.

In summary, an operating system is used because it is profitable to use
it, profitable because of the efficiency it produces, the combination of flexibility
and standardization it imposes, and its ability to adapt a computer to special
operating requirements such as responsiveness.

When one first encounters an operating system, one may feel uneasy
because the system is not of real substance; it consists of computer instructions
subject to change without notice. The physical devices that compose a computer
system appear more solid and durable. Operating systems are, in fact, very real
and, though they are frequently extended to make them more useful, their
advertised functions are seldom altered or deleted. The reasons for the
stability are primarily economic. A major operating system represents a direct
investment of millions of dollars, even tens of millions. If one adds the invest-
ment in education of users and in development of users’ programs that depend
on the environment created by an operating system, the total investment for
a single operating system may exceed a billion dollars. An investment of such
proportions has such a stabilizing influence on an operating system that several
major operating systems in use today have outlived the physical devices for
which they were originally designed.

Major Activities of an Operating System

The general purpose operating systems of today bear great resemblance to one
another. Most of them perform the following major functions:

Scheduling Jobs An operating system accepts jobs and schedules the
system resources to satisfy these jobs. Some systems simply schedule jobs
in the order of their receipt, that is, first in, first out (FIFO). Others
recognize a priority code furnished by the user as an expression of the
urgency of the job. Job scheduling involves not only recognition of
priorities, but also availability of necessary resources. The resources
required for a particular job may not be immediately available because

6 1/0 DESIGN: DATA MANAGEMENT IN OPERATING SYSTEMS

they are being used for another job, or because they are undergoing
maintenance. A comprehensive operating system will defer running of
jobs when possible within priority constraints to effect efficient use of
resources.

Allocating Resources The resources of a computing system include
main storage space, I/O devices, and files of data. An operating system
controls the use of all of these resources. For example, an operating
system allocates a particular direct access storage device (DASD) to be
used in processing a particular storage volume. Both the DASD and the
files recorded on the storage volume are considered system resources.
Dispatching Programs One very special resource that an operating
system controls is central processing unit (CPU)? time. At the beginning
of an interval of time to be used by a particular program, the operating
system takes the necessary steps to start or restart CPU activity for that
program. The process of preparing the system for executing a particular
program and transferring control of the CPU to that program is called
dispatching. The system dispatches programs in the same sense that a
clerk might dispatch errand boys.

The list of operating system functions is not yet complete, but we should
stop for a moment to reflect on the activities discussed so far: scheduling,
allocating, and dispatching. The reader may feel that the distinction among
these three requires hairsplitting because all three combined constitute the
apparently artless reaction to a request for service. In a simple operating
system, the three combined activities do constitute a modest process. For
example, completion of one job might trigger the operating system to prepare
for the next job by reading one or more cards from a particular card reader.
The user’s program might identify its I/O devices explicitly, thereby eliminating
device allocation activity. And, if the user’s program is simply to be started
and allowed to run to completion, dispatching is trivial. But unlike a simple
system, a comprehensive system may be inspecting a hundred or more service
requests at any one time, analyzing priorities, allocating devices so that
several programs can be executed simultaneously, and dispatching the pro-
grams for intervals of a few milliseconds at a time to achieve the best possible
service. In such a system, each of the individual functions of scheduling,
allocating, and dispatching is a major activity.

Resuming the list of operating system functions:

Communicating with the Operator Philosophically, the computer-
system operator should serve only one purpose: to be the hands for the
computer, doing those things that require the mobility and dexterity of a
human. This goal was suggested by Doctor Frederick Brooks in about
1968. Practically, operating systems have been unable to achieve the
desired level of autonomy, so operators still serve as overall supervisors.
In this role, they cancel improper service requests, reassign priorities,
or even stop the system entirely when it appears that the operating

2The terms CPU and arithmetic unit are nearly synonymous. The term CPU is
used extensively in this book, but arithmetic unit is used where appropriate.

INTRODUCTION TO INPUT/OUTPUT SYSTEMS 7

system has lost control. Examples of communications from the system to
the operator include requesting the operator to mount or demount storage
volumes, notifying the operator of start and completion of each job, and
apprising the operator of any unusual conditions, such as a high frequency
of I/0 device errors.

Recovering from Incidents Computer systems, and particularly the I/0
devices included within systems, are subject to a variety of unexpected
(but not unanticipated) conditions. A comprehensive operating system
must be prepared to deal with unexpected conditions at all times.
Typical unexpected conditions include intermittent I/O device failure,
permanent I/O device failure, operator error, improper action by a user’s
program, and intermittent main storage or CPU failure. The finesse
with which an operating system deals with unexpected conditions is
one very important measure of its value. A good system can diagnose
many situations arid recover with modest loss of work in process.
Recording of Statistics The recording of operating statistics is un-
productive and time-consuming, but it is essential for distributing costs
to users and for analyzing system performance. In comprehensive systems,
noteworthy events occur at such a rate that even simple counting of
events in main storage tables with occasional copying of the tables to
auxiliary storage may require as much as 1 or 2 percent of all available
CPU time.

Storing and Retrieving Data The 1/0O system, a major component of
an operating system, is responsible for data storage and retrieval.
Because the main body of this book dwells on I/O activity, no more will
be said about it in this preliminary section.

Operating Modes

Four very important terms describe the general modes of operation of
systems: (1) batch processing, (2) multiprogramming, (3) time sharing, and
(4) multiprocessing. These terms will come up frequently during our discussion
of I/0 systems, so it is important to know what they mean.

Batch Processing. The term batch processing refers to that very general
working method in which a collection (batch) of related transactions is
processed through the computer system as a group. For example, in a parts
inventory application, the receipts and withdrawals from inventory might be
accumulated manually and, at the end of each day, all transactions that had
been accumulated might be submitted as a batch for processing. As illustrated
in Fig. 1-1, a batch processing program typically accepts a batch of trans-
actions and a master file as input creating printed reports and a new master file
as results. This kind of processing is widely used in processing business data.
Batch processing has several important advantages:

1. Batch processing allows flexibility in scheduling of work, because the
submitter usually is not expecting results while he or she waits.
Typically, batches may require service within an hour, within one-half
day, or overnight.

8 1/0 DESIGN: DATA MANAGEMENT IN OPERATING SYSTEMS

2. Batch processing allows significant efficiencies in the use of system
resources. For example, a batch of transactions can be presorted into
an efficient processing order, and the master files stored on removable
storage volumes can be used heavily for processing those transactions
and then removed from the system.

3. A batch is a convenient unit for accounting for costs and for rerunning
of work when necessary.

The roots of batch processing are deep in data processing history.
Punched card data processing was first used on a large scale during the 1890
United States Census. The data processing machines developed and manu-
factured from that time until World War II were batch processing machines.
They required manual setup; they accumulated batch totals; they sorted batches
of cards; and they performed simple extension and cross-footing. (These last
two terms may be unfamiliar to some readers, but they were not strange to the
industry in 1940. For the sake of history, extending is the process of multiply-
ing unit price by quantity, and cross-footing is the process of summing the
totals that exist at the feet of a set of columns.)

—

Transactions

Batch-processing
program

Printed

reports New

master
file

Fig. 1-1 Batch processing.

Much of the experimental work and much of the current literature about
data processing concern individual transaction processing. But don’t be confused
by the difference between industry conversation and computer room practice.
Most data processing accomplished by computers today is done in a batch
processing mode. Using a simple operating system, operators can run batches
one at a time. More comprehensive systems provide for batches to be multi-
programmed and/or multiprocessed as described below.

Multiprogramming. Multiprogramming is the executing of two or more pro-
grams concurrently, using a computer system with a single CPU. The critical
word in the definition is the word “concurrently”: “executing two or more
programs concurrently, using a computing system with a single CPU.” The
CPU of a system performs arithmetic and logical instructions, and it is capable
of executing only one instruction at a time. In multiprogramming, the CPU is
controlled to interleave the processing of several programs.

INTRODUCTION TO INPUT/OUTPUT SYSTEMS 9

It is sometimes remarked that multiprogramming does not really accom-
plish concurrent processing, but, rather, gives the impression of concurrent
processing. The remark is superficial; the system may, in fact, be performing
I/0 activities for many programs simultaneously and may even be performing
more than one such operation for each of them.

Available
devices

Main storage

Operating system nucleus

Program #1
devices .
User’s program
User’s program 2
#1
Program #2
devices
Available
Shared User's program #3 space
devices

Program #3
devices

Fig. 1-2 Multiprogramming.

Figure 1-2 illustrates how computer facilities might be allocated to three
programs for multiprogramming. In the figure, the main storage of the
system is occupied by:

® The operating system nucleus which is that portion of the operating
system that must be in main storage at all times to control moment-by-
moment operations.

® The three programs that are to be executed concurrently.

® Available space (space not currently in use).

The devices in Fig. 1-2 have been allocated individually to the three users’
programs except that some devices are shared by two or more programs and
some devices are not in use.

The major justification for multiprogramming is efficiency. The oppor-
tunity for efficiency can be illustrated by two programs, A and B. Program A
performs a great deal of computation using very little data, while program B
performs minor computation affecting many records of a file. Program A
might be selecting an optimum firing angle for a ballistic missile by repeatedly
solving a set of simultaneous differential equations. Program B might be copy-

10 1/0 DESIGN: DATA MANAGEMENT IN OPERATING SYSTEMS

ing a file of parts inventory records. In many such cases, simultaneous execu-
tion of programs is quite efficient. Programs A and B might be executed
simultaneously in a little more time than either program by itself. Contemporary
multiprogrammed systems accomplish a less than optimum matching of
simultaneous programs, yet they may achieve 35 percent or more improvement
in total running time as compared to non-multiprogrammed systems.?> (This
improvement may be offset to some degree by the tendency for multi-
programmed systems to include more equipment than non-multiprogrammed
systems. One has to pay something to reduce costs!)

Multiprogramming is a complex phenomenon. In 1955, Nathaniel
Rochester described a trick called multiprogramming that was being used to
increase computer productivity.* However, neither the required computer
features nor the control-program design for generalized multiprogramming was
understood until about 1960. The STRETCH computer, designed for the Los
Alamos Laboratory of the Atomic Energy Commission and delivered in 1960,
was probably the first computer designed for multiprogramming. The operat-
ing system for that computer included a limited form of multiprogramming.
In 1962, Dr. Edgar F. Codd published the findings of his team concerning the
practicality of multiprogramming.® He concluded correctly that multiprogram-
ming was practical, and he predicted its widespread use. Today, a multi-
programmed operating system is available for every medium or large general
purpose computer system. Some of the problems identified by these early
researchers include efficient allocation of main storage, recoverability of
damaged work, recreation of failure situations for testing purposes, and account-
ability adequate for customer billing. These four problems persist as today’s
major multiprogramming challenges.

Multiprocessing. Multiprocessing is the use of a computer system containing
more than one CPU to satisfy a collection of service requests. Figures 1-3 and
1-4 illustrate the two principal variations, symmetric and asymmetric multi-
processing. In symmetric multiprocessing, the CPUs are used symmetrically
and interchangeably to perform any type of processing required. In the
asymmetric case, the processing burden is divided by type of activity, and
each CPU is assigned one type of activity. Figure 1-4 illustrates one CPU
performing all I/O activity while another executes all user’s programs.
Multiprocessing might be used for any of several reasons:

® To improve system reliability by addition of a redundant CPU
(symmetric case). In a properly designed symmetric system, complete

3 A paper by Tom Steel entitled “Multiprogramming—Promise, Performance, and
Prospect,” Proceedings of AFIPS, 1968 Fall Joint Computer Conference, cites average
improvements of 30 to 70 percent.

4 Nathaniel Rochester described multiprogramming using a magnetic tape unit
controller available for the IBM Type 705. His paper is entitled “The Computer and
Its Peripheral Equipment,” published in the Proceedings of the Eastern Joint Com-
puter Conference, 1955.

5 Dr. Codd’s comprehensive article, published in Advances in Computers, volume 3,
1962, is the last of several related reports beginning in 1959.

