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Introduction

Image compression is a rapidly developing field that is currently focused on a variety
of applications including but not limited to videotelephony, medical image archival and
processing, and military or surveillance imaging. Although image compression has been
reported in the literature since the late 1960s, there is still little knowledge concerning
the fundamental mathematical properties of image data that facilitate compression.
Additionally, there are few performance measures for compression transforms that
objectively address problems such as local (e.g., feature-specific) distortion in targets
or objects that are typically present in medical or military images.

This fourth conference on the mathematics of image and data coding, compression, and
encryption continues to address compression transform theory, design, analysis, and
test. Conference participants in previous years felt that more emphasis should be given
to noise and error analysis, as well as security applications such as watermarking. The
first two sessions of this conference address theory and design of compressors and
coders for communication and computing applications. The third session features
several papers on remote sensing applications that concentrate on the detection and
quantification of error in compressed and decompressed imagery, thereby extending the
discussion of error quantification presented in several papers of the first two sessions.
The fourth and fifth sessions are dedicated to the mathematics of image encryption and
authentication, particularly the growing field of spread-spectrum watermarking.

The first four conferences in this series served as a vehicle to bring together participants
from the international scientific community who are engaged in a variety of theoretical
development and analysis tasks pertaining to compression, coding, and encryption.
Despite their success in defining and resolving several important problems in error
modeling and characterization, much research remains in the mathematical nature,
characterization, and performance analysis of compression algorithms. The next
conference in this series, scheduled for the SPIE 2002 Annual Meeting, will continue
to bring together engineers, scientists, and algorithm designers interested in the
application of compression, coding, and encryption technologies. Planned areas of
emphasis include but are not limited to error characterization and performance analysis,
spread-spectrum watermarking and other types of encryption transforms, as well as the
description of compression transforms in terms of the error characteristics of their
respective outputs.

Mark S. Schmalz
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Data Compression via Pulse-to-Pulse Redundancy
for Radar Emitter Location®

Mark L. Fowler' and Zhen Zhou

Department of Electrical Engineering
State University of New York at Binghamton
Binghamton, NY 13902

ABSTRACT

An effective method for geolocation of a radar emitter is to intercept its signal at multiple platforms and share the data to
allow measurement of the time-difference-of-arrival (TDOA) and the frequency-difference-of-arrival (FDOA). This requires
effective data compression. For radar location we show that it is possible to exploit pulse-to-pulse redundancy.

A compression method is developed that exploits the singular value decomposition (SVD) to compress the intercepted
radar pulse train. This method consists of five steps: (i) pulse gating, (ii) pulse alignment, (iii) matrix formation, (iv) SVD-
based rank reduction, and (v) encoding. Matrix formation places aligned pulses into rows to form a matrix that has rank
close to one and SVD truncation gives a low rank approximate matrix. We show that (i) compression is maximized if the
matrix is made to have two-thirds as many rows as columns and (ii) truncation to a rank-one matrix is feasible. We interpret
this as extracting a prototype “pulse trainlet.”

The maximum compression ratio is expressed in terms of the number of pulses and the number of samples per pulse and
point out a particularly interesting and important characteristic — the compression ratio increases as the total number of signal
samples increases. Theoretical and simulation results show that this approach provides a compression ratio up to about 30:1
in practical signal scenarios.

Keywords: data compression, singular value decomposition, emitter location, time-difference-of-arrival, TDOA, frequency-
difference-of-arrival, FDOA

1. INTRODUCTION

A common way to locate electromagnetic emitters is to measure the time-difference-of-arrival (TDOA) and the
frequency-difference-of-arrival (FDOA) between pairs of signals received at geographically separated platforms."** The
measurement of TDOA/FDOA between these signals is done by coherently cross-correlating the signal pairs.” This requires
that the signal samples of the two signals are available at a common platform, which is accomplished by transferring the
signal samples over a data link from one platform to the other.

An important aspect of this that is not widely addressed in the literature is that the available data link rate often is
insufficient to accomplish the transfer within the time requirement unless some form of lossy data compression is employed.
To mitigate this, various data compression approaches have been proposed,*™ although they have not been designed to fully
exploit the characteristics of radar signals. For the case of white Gaussian signals and noises, Matthiesen and Miller*
established bounds on the rate-distortion performance for the TDOA/FDOA problem and compared them to the performance
achievable using scalar quantizers, where distortion is measured in terms of lost SNR due to the mean square error (MSE) of
lossy compression. However, these results are not applicable when locating radar emitters because the signals encountered
are not Gaussian. A method using block adaptive scalar quantization was proposed’ and analyzed® to show that it was
marginally effective for various signal types. Wavelet-based methods have been proposed’ and demonstrated® to give
compression ratios on the order of 6 to 7 for some radar signals. A method that optimally trades between decimation and
quantization has been developed for non-radar-like signals and shown to perform better than either method alone.’ However,
none of these previously proposed methods exploits the inherent pulse-to-pulse redundancy characteristic of most radar
signals.

For the radar case, the fact that (at least) one platform must be operating at an SNR high enough to detect pulses can be
exploited as a first step towards reducing the transferal by not sending the samples between detected pulses (i.e., gating).

" This work was supported by the Lockheed Martin Corporation under Contract UA-199865.
" Correspondence: mfowler @binghamton.edu
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However, even with this reduction due to gating, the transferal time is still excessive given the rates for current and projected
data links. In the method proposed here, once the pulses have been gated they are formed into a matrix in such a way that the
resulting matrix has an effective rank of one, due to the redundancy between pulses. Then the singular value decomposition
(SVD) is used to exploit this redundancy to achieve significant levels of compression ratio that exceed what is possible using

the previously proposed general methods.* ~°
The two signals to be correlated are the complex envelopes of the received RF signals. The two noisy received signals to

be processed are notated as

s(ky=s(k)y+n(k)
R (1)
d(k)y=dk)+vk)

where s(k) and d(k) are the complex baseband signals of interest and n(k) and v(k) are complex white Gaussian noises. The
signal d(k) is a delayed and doppler shifted version of s(k). The signal-to-noise ratios (SNR) for these two signals are
denoted SNR and DNR, respectively’. To cross correlate these two signals one of them (assumed to be §(k) here) is
compressed, transferred to the other platform, and then decompressed before cross-correlation, as shown in Figure 1. Signal
5. (k) has SNR of SNR,. after lossy compression/decompression.

Platform #1 - Platform #2
s(k) Compress Link »| Decompress
SNR §p(k>|_*
SNR. Cross |
»| Cormrelate | TDOA
d(k) DNR FDOA

Figure 1: System Configuration for Compression

2. FORMING THE PULSE MATRIX

1. Pulse Gating and The Unaligned Pulse Matrix

The emitter location system consists of three or more platforms, each outfitted with identical receiving and processing
equipment. Once signal data is collected at all of the platforms, the SNR is estimated at each platform and the one with the
highest SNR is chosen as the one to transmit its data to the others for subsequent correlation processing; this platform is
called the transmitting platform (Tx platform) and the other platforms are called the correlating platforms (Cx platforms).
The Tx platform is required to be at a high enough SNR to allow standard radar intercept signal processing to be done.'®!!
Because modern radars can change modes we assume that preliminary subtrain-extraction (de-interleaving) processing has
grouped the signal of interest into one or more subtrains, each having pulses from the same mode of operation — such
processing is a standard part of typical electronic warfare systems (this processing also removes pulses from other
emitters).'*!! Here we consider compressing one such subtrain.

As part of this interception processing, the Tx platform detects the individual pulses of the emitter of interest, gates
around them, and keeps only the signal samples that lie inside the pulse gates; the numbers of samples removed between the
pulses are also kept as side information. This process is called pulse gating and is illustrated in Figure 2, where for clarity the
signal is shown only as a real-valued envelope. The gated pulse train is compressed (as described below) and transmitted

* SNR (non-italic) represents an acronym for signal-to-noise ratio; SNR (italic) represents the SNR for §(k).

2 Proc. SPIE Vol. 4475



(along with the side information) over the data link to the Cx platforms. At each Cx platform receiving this broadcast data,
the data is decompressed to reconstruct the gated pulse train, zeros are inserted between pulses according to the side
information N,, N», etc., and then it is cross correlated with the signal received locally at the Cx platform to allow estimation
of the TDOA/FDOA values. The sets of TDOA/FDOA estimates from the various Cx platforms are then combined to
estimate the emitter location.'

After pulse gating at the Tx platform, as a first step of the compression the pulses are put into a matrix (called the
nonaligned pulse matrix) with one pulse per row, as is shown in Figure 2. This matrix would have rank one if: (i) there were
no noise or propagation effects, (ii) the pulses were perfectly time aligned — i.e. perfect gating, and (iii) the radar’s pulse
repetition interval (PRI) were constant and an integer multiple of the sampling interval 7. Because a JXK rank one matrix can
be completely expressed using only J + K numbers rather than JK numbers, this is the idea behind the method proposed here.
Unfortunately all of these effects are present and they each act to increase the rank of the pulse matrix. However, all but the
first of these causes of increased rank can be mitigated by performing time alignment on the pulses in the nonaligned pulse
matrix.

2. Pulse Alignment
The goal of time alignment is to transform the original pulse matrix into a matrix that is as close to rank one as possible.

Because the radar's PRI and the platform’s sampling interval T are incommensurate (i.e., there is no integer k such that PRI =
kT ) the needed time alignment is not an integer number of samples. Therefore we need a method of shifting pulses by a
fraction of a sampling interval. There are several ways to accomplish a fractional shift and we assess their performance here
for this application. The amount of shift that each pulse needs is determined by cross correlating the pulses in the pulse
matrix.

Let P, be the matrix of nonaligned pulses that are extracted by the gating procedure, as shown in Figure 2 where we use
a 3-D perspective view of this matrix, where the 3" dimension illustrates the matrix elements’ values. Assume that there are
p gated pulses each having n samples per pulse; then the total number of samples is pn and P,, is a pxn matrix. For
alignment processing we view each pulse as existing over the same time interval. In particular, the /™ row is considered to be
a discrete-time pulse given by p;(k) fork=0, 1, ... ,n=landj=0, L, ..., p—I so that matrix P,, has its j,k element given

by P,,(j,k)=p;(k). We choose the pulse with the largest energy as the reference pulse, to which all the other pulses will

be aligned; let this pulse be denoted as p,, (k). Then to find the time alignment needed for the J™ pulse (j # m) we cross
correlate it with the reference pulse to give

n—1 .
Citky=Y pp(hp;d=k) 2)
=0

and then interpolate Cy(k) to find the location of its peak, which is then taken as the time shift A; to be applied to p; (k) to
align it with p,, (k). The time shift A; can be written as A; =D; +8; where D; is an integer and 0<&; <1. The integer
part of the alignment can be handled separately according to p;(k)=p;(k+D;). Now p;(k) must be shifted by an amount

that is less than a single sample.

There are several ways to impart a fractional delay to a signal. Which one is used depends partly on whether the signal
to be delayed is available in its entirety as one block or is available sequentially, either sample-by-sample or on a subblock-
by-subblock basis; that is, it depends on the level of latency that is acceptable. Other considerations are accuracy and
complexity. Here we consider four different methods and assess them on these merits. The methods are (i) a full-block DFT
method based on the delay property of the DFT," (ii) a subblock-based version of the DFT method," (iii) fixed FIR filters
designed for fractional delay," and an adaptive FIR filter for fractional delay."> Zhou'’ compares the accuracy on the basis of
magnitude vs. frequency, delay vs. frequency, and SNR vs. delay value; the results are summarized in Table 1.

Because in this application the signals to be delayed (the individual pulses) can be quite short it is clear that the adaptive
FIR method is not suitable. The fixed FIR methods are also not the best choice because (i) the signals can be short, (ii) the
signals are wideband so the frequency-specific characteristic is a major disadvantage, and (iii) the worst-case accuracy vs.
delay may not be acceptable. That leaves the subblock DFT and the full-block DFT methods. For the current application,
where the signals to be fractionally delayed are each individual pulse, there is no penalty in having to wait for an entire pulse
to become available because the front-end processing must first identify all the pulses before any subsequent processing is
done; furthermore, the required fractional delay can’t be determined until the entire pulse is available. Therefore, for this

Proc. SPIE Vol. 4475 3



application we use the full-block DFT approach; for details on the subblock DFT method and the adaptive FIR methods see

Zhou."

“Gate™

H—I
N, Samples

Gated Signal to be Compressed:

N, Samples

Tx Platform’s Received Subtrain:

N, Samples

(Nonaligned
Pulse

/NS S S\

Side Info to be Sent: N, N,, N, ...

Matrix

-

r"Gate' =

Figure 2: Pulse Gating Before Compression Processing

Table 1: Comparison of Various Fractional Delay Methods

Characteristic Full-Block DFT Subblock DFT Fixed FIR Adaptive FIR
Accuracy Very High High Low to Medium High
Latency Very High High Low Low
Complexity High High Low Medium
Pros Best for Short e Good for Short | ¢ Maximally flat at zero Not frequency
Signals Signals frequency specific
Insensitive to delay | e  Not Freq. Insensitive to
value Specific delay value
Not Freq. Specific Handles
nonstationarity
Cons Entire signal block | ¢ Blocky Effect Freq. Specific Sensitive to
needed Bad Worst Case vs. selection of step
Delay size
e  Not best for short Not suited for
signals short signals

To give a delay of de (0,1) requires passing the signal through a system with frequency response given by

H(Q)=e /B,

Qe [-n,m)

3)

where Q =2n/fT is the discrete-time frequency for a sampling interval of 7. This can be implemented using DFT properties

as follows:
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e Compute the DFT (via the FFT) of the signal using zero-padding to ensure that the time shift is not a circular one;

e  Multiply the DFT by ¢~/ evaluated at the DFT frequencies;
e Compute the inverse DFT of the result (via the FFT).

The effectiveness of the fractional delay method for this application can be seen by assessing its ability to reduce the
effective rank of the pulse matrix. The effective rank of a matrix is best assessed via the SVD.!? Let P be the matrix that is
obtained from P, after aligning its pulses as described above. If the alignment method is effective at creating a matrix with
effective rank one, then all but the first singular value of P should be insignificant. Because the sum of the squares of the
singular values gives the energy of the signal it makes more sense to plot the squares of the singular values; for each case,
normalizing by the largest singular value improves the comparison between various cases (e.g., nonaligned, aligned, etc.).
Figure 3 shows the squares of the normalized singular values as a function of singular value index for the unaligned matrix,
the aligned matrix using only integer alignment, and also using fractional alignment; the case shown here is for a simulated
linear FM radar signal sampled at an interval that is incommensurate with the PRI. From this we see the effectiveness of the
fractional alignment method — the effective rank of the fractionally aligned matrix can be seen to be close to one. This is the
basis of the compression method developed here: compression is achieved because the fractionally-aligned matrix can be
closely approximated in terms of a rank one matrix.

T T T

* A Fractional Alignment
[y TF & -
=]
= .
L (f * Integer Alignment
s 0.8} 1
% O No Alignment
()]
=
%)

0.6 1
® 0]
N
©
€04} :
o
pa
?
s 0.2 .
>
o
w >x*

0 h—A—ARA—A—LBD—R—D—BD DD D BB D DD

0 5 10 15 20
Singular Value Index

Figure 3: Squared Normalized Singular Values for Aligned and Unaligned Matrices

3. COMPRESSING THE ALIGNED PULSE MATRIX

1. Prototype Pulse Extraction
If we denote the pxn aligned pulse matrix by P, its SVD is

,
H
P= ZGI-u,-Vi N (4)
i=l
where r is the rank of P, u; is the /" left singular vector, VIH is Hermitian transpose of the /™ right singular vector, and o; is

the /" singular value, ordered such that o; > G;,1 - Each term in the sum in (4) is a rank-one matrix. If we truncate this sum
toonly k < r terms we get the rank-k matrix

Proc. SPIE Vol. 4475 5



k
Pk = ZGI'UI'V,'H (5)
i=1
that best approximates P in the sense that the sum of the squares of the elements of P - P, is smaller than for any other rank-k
matrix. Note that in our case the matrix contains the pulses and therefore this approximation gives the smallest mean square
error (MSE) between the original pulse train and the approximate pulse train formed by concatenating the de-aligned rows of
P,. This minimum MSE property is the basis for using the SVD here.

In the perfect-signal scenario (i.e., where there is no noise and no pulse misalignment) P is rank one and o; =0 fori>2.
However, when signal perturbations are present, P has higher rank, but still has a few dominant singular values. Therefore,
to get maximum compression we strive to approximate P by a matrix having a low rank while having a small MSE — in fact
we will approximate it with a rank-one matrix. The effect of the time alignment is to concentrate the energy of the pulse
matrix into the first singular value, producing a matrix that is closer to a rank one matrix. The effect of the noise on the
singular values is uniformly spread across all the singular values — this is in fact a known result that is exploited in many
applications of the SVD to signal processing problems. Thus, when we truncate the SVD to k terms as in (5) we are throwing
away all the noise that exists in the thrown-away singular values, and — if we’ve done our job right — we have thrown away
very little of the signal because it is mostly concentrated in the singular values that we keep. The effect of this is to increase
the SNR of the reconstructed signal; thus, not only do we compress the signal but we get an improvement in SNR rather than
a degradation due to compression! This simultaneous compression and noise reduction will be demonstrated in the
simulations.

To extract a prototype pulse we consider the case where we truncate the SVD to a single term (k = 1) to get P;; we’ll
demonstrate later that the accuracy achieved with k£ = 1 is excellent (see also Figure 3). To specify P, we need the px1 vector
u; (i.e., the 1" left singular vector), the nx1 vector v, (i.e., the 1* right singular vector), and the scalar &, (i.e., the 1"

singular value). Note that vf] is the same length as a pulse (n samples). Thus, we can interpret vector vIH as a single

prototype pulse that has been extracted from the original pulse train, which is a nice viewpoint given that the radar’s receiver
would process its received pulse train using a pulse template as a matched filter; this leads to what we call a semi-coherent
approach that uses the extracted prototype pulse as a matched filter at each platform.”> Alternatively, we can view the
reconstructed P, as forming an approximation to the gated and aligned pulse train, which together with the alignment and
gating side info can be used to create an approximation of the original pulse train. This latter viewpoint — what we call the
coherent method — will be explored here.

In the coherent method we seek a reconstructed pulse rain that would minimize the MSE between it and the original
pulse train before it was compressed. For a given compression ratio (e.g., for a given number of terms retained in (5)) this
clearly is the pulse train formed from the de-aligned rows of the approximating pulse matrix P, due to the SVD minimizing
the MSE. In addition to the prototype pulse we need the values of the left-singular vector u, , the fractional time alignments,

and the number of samples between adjacent pulses that were removed by gating. The left-singular vector u;is used to
reassemble the truncated SVD form of the pulse matrix (up to the scaling factor of o, — see below), after which the time

alignment information is used to undo the time alignment and, finally, zeros are inserted in place of the gating-removed
signal samples. Thus, for the cost of a modest amount of side information it is possible to reconstruct a MSE-minimizing
pulse train suitable for coherent cross-correlation.

In particular, the approximating matrix P, is formed from

P =cuvi, (6)

from which it is clear that each row in P, is a complex-valued scalar multiple of vlT , where the complex scalar for the /" row
is the /" element in u, times o ; it is also clear that &, does nothing more than amplitude scale the entire reconstructed pulse
train and can therefore be omitted. Thus, we can change (6) to

P =uv{, (7)

from which we see that u; holds the reconstruction magnitudes and phases. Finally, the rows of 13l have to be time shifted
to undo the alignment processing time shifts, after which the results are assembled into a pulse train (with zeros inserted
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between pulses to undo the effect of pulse gating) that is cross-correlated with the pulse train received locally at the Cx
platform. Thus, the information that is needed to reconstruct the signal is:
1. The nx1 right singular vector (RSV) v (i.e., the prototype pulse)

2. The pXx1 left singular vector (LSV) u; (i.e., the reconstruction magnitudes and phases)

3. The p-1 time shifts (A}, As, A3, ..., Ayp)
4. The p-1 numbers of inserted zeros (N, N, ... N,.)

Using this data at the Cx platform the reconstructed pulse train can be formed and then cross-correlated with the signal data
received locally at the Cx platform to estimate the TDOA/FDOA.

2. Prototype Pulse Coding

We start here by focusing on coding the side information of Ny, N>, ... N,.;. The following characterization was done to
show that it requires only a small number of bits to code the number of inserted zeros. First it should be recognized that it is
likely that not every transmitted pulse in the pulse train will be intercepted and detected; thus, the spacing between pulses to
be processed is unlikely to be constant or even nearly so. However, it is possible to specify a set number of samples that
would be a greatest common divisor of the spacing — call it G; therefore, each sample spacing between sequential pulses in
the detected pulse train will be integer multiples of G. It is likely that G could require something on the order of 16 bits to
code. Denote by k; the integer multiple of G that would then specify the /™ pulse spacing after gating. Based on an analysis
of the k; obtained for the field-collected radar data, we determined that “brute force” binary coding of the k; could be done
using 10 bits per k;; however, using the measured radar data, a calculation of the information theoretic entropy of the k; shows
that it should be possible to code the &; using Huffman or arithmetic coding having on average 4 bits per k;. Alternatively, if
we denote by Ak; the difference between successive &; it is seen by another calculation of information theoretic entropy from
the data that it should be possible to code the Ak; using about 2 bits per Ak; on average by using Huffman or arithmetic
coding. Thus, the number of bits needed to send the number of zeros inserted is on the order of 2p+16 (where the 16 bits are
for coding G), which is fairly small compared to the amount needed for the other data.

The rest of the data that must be coded consists of three parts: (i) the complex-valued prototype pulse (contained in the
RSV), (ii) the magnitudes and phases of the reconstructed pulses (contained in the LSV), and (iii) the time-shifts of the
pulses. To code the prototype pulse contained in the RSV we recognize that each of its samples is a complex number having
magnitude and phase, both of which are changing from sample to sample. The cross-correlation processing will be much less
sensitive to errors in the magnitude than in the phase, so we should ensure that the phase is coded with high accuracy whereas
the magnitude can be coded with lower fidelity. We chose to code the phase of the prototype pulse using 8 bits/sample and to
use a 1-bit differential PCM approach for the magnitudes of the prototype pulse. Thus, we use Bgsy = 8+1 = 9 bits to code
each element of the RSV. It should be noted that this approach provides a fairly general approach that should work for
virtually all cases; however, when the acquisition system identifies the radar as being a linear FM signal, the phase of the
prototype should have fairly constant sample-to-sample phase differences, and then it may make more sense to use some
form of differential coding there, too. To code the pulse magnitudes and phases contained in the LSV we again should
allocate more bits to the phases than to the magnitudes. We use 4 bits per magnitude in the LSV and 8 bits per phase in the
LSV. Thus, we use B; sy = 8+4 = 12 bits to code each element of the LSV. Finally, each time shift is coded using Brs = 8 bits.

How much compression can we get from this scheme? If no compression is used (other than gating) there are np
complex samples to be sent and we use 8 bits/sample for the real part and 8 bits/sample for the imaginary part; thus,
including the bits used to code the numbers of zeros to be inserted due to gating, the original signal is coded using

Original Data=16pn+2p+16 (8)

We first consider the case where a single pulse is put into each row of pxn P, but we will see later that it is usually better to
put multiple pulses per row. We also only consider the case of keeping only 1 singular vector. Given the number of bits used
to code the SVD compressed data, the total number of bits used for the compressed data is summarized in Table 2.
Therefore, when using one pulse per row we get a compression ratio of

_16pn+2p+16

CR = 9
subopt 22p+9n+6 ©)

which is labeled as suboptimum because we will see below that putting multiple pulses per row can improve the compression
ratio.
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As mentioned above, it is possible to improve this compression ratio by putting more than one pulse per row (after
alignment) such that we now have an rxc matrix. This will require a few modifications, namely, we will need to normalize all
the pulses so that even if we have significant pulse-to-pulse fading we will still be able to get a near rank one matrix. Thus,
we won'’t have to code the magnitudes of the RSV, but we will now need p magnitude normalizers that can be coded using
By = 2 bits each. The ¢x1 RSV now only needs to have its phase coded, using B, = 8 bits per element. This changes the
results in Table 2 to those shown in Table 3.

Table 2: Total Compressed Data with One Pulse per Row

Quantity to Code General Form of Coding Specific Form of Coding |
nxl RSV (n X Bgsy) 8+1)n=9n
px1 LSV (p X Brsv) 8+4)p=12p
(p-1)x1 time shifts _(p-1) X Brs 8p-1)=8p — 8
(p-1)x1 # of inserted zeros (p-1) X Byz + 16 20-1D+16=2p+ 14
Compressed Data 9n+22p+6
Table 3: Total Compressed Data with Multiple Pulses per Row

Quantity to Code General Form of Coding Specific Form of Coding |
(cx1) RSV Phases (c X By) 8c
(rx1) LSV (r X Brsy) (8+4)r=12r
(px1) Magnitude Normalizers (p X Bun) 2p
(p-1)x1 time shifts (p-1) X Brg 8p-1)=8p — 8
(p-1)x1 # of inserted zeros (p-1) X Byz + 16 20-1)+16=2p+ 14
Compressed Data 8+ 12r+12p + 6

The goal here is to find the optimal values of ¢ and r. As a means of exploring this, for now assume that we can make
any size pulse matrix for a given collection of pulses as long as the total number of elements equals the total number of
samples np in the pulse train. Consider an rXc matrix with r and ¢ chosen such that CR is maximized under the constraint
that rc = np (or equivalently that » = np/c). For this case the compression ratio becomes

CR = l6pn+2p+16
8c+12r+12p+6

16pn+2p+16 (10)

8c+ 12 L 12p+6
C

which should be maximized as a function of ¢ for a given np. Thus, we must minimize the function

12np

f(c)=8c+ +12p+6, (11)

c

which is minimized when ¢ = ,/3np /2 or equivalently when r = ‘/2np/ 3 ; this is equivalent to making the pulse matrix such

that » = 2¢/3. From plots of CR vs. c, this peak is fairly broad so that hitting the exact value is not real crucial, so restricting r
and c to be integers will not drastically reduce the CR from the theoretical maximum. Thus, we should put multiple pulses in
a row in order to make the pulse matrix as close as possible to having two-thirds as many rows as columns. Using these
results in (10), the optimal compression ratio is

16pn+2p+16

CR,, = —/————
8y6np +12p+6

opt
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which is plotted in Figure 4 as a function of n and p. From this plot we see that for low to medium number of samples per
pulse that the optimal compression ratio becomes effectively independent of the number of pulses as the number of pulses
gets large. As both n and p increase, the compression ratio increases without bound; thus, we see that the compression ratio
increases as the number of samples increases — that is, larger compression ratios are achieved when more compression is
needed. Specific compression ratio results for typical practical scenarios are given in Table 4; the pulse width (PW), pulse
repetition interval (PRI), and bandwidth (BW) values are for typical radars; the samples-per-pulse values are dictated by
practical sampling theory; the ranges of number-of-pulses is dictated by the need to achieve sufficient TDOA/FDOA
accuracy under expected conditions. It should be noted that these compression ratio results are much lower than some
preliminary results'> because those earlier results did not consider the impact of coding the side information; nonetheless,
even including the effect of the side information, as we have here, the compression ratios achieved are still very good.
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Figure 4: Contour plot showing optimal compression ratio as a function of the number of pulses and the number of
samples per pulse.

Table 4: Compression Ratios for Typical Practical Scenarios

PW | PRI BW # of Pulses Samples/Pulse CR ubopt CR o
(us) | (us) | (MHz) p n
0.5 600 4.0 80 — 300 6 43-44 5.6-6.6
1.5 10 2.0 1,500 — 14,000 8 59-59 9.7-10.4
6.5 70 2.5 250 — 1,500 24| 169-17.4 | 21.3-26.7
9.0 240 2.8 60 — 400 38 | 22.0-26.7 | 22.0-33.8

4. SIMULATION RESULTS
Monte Carlo simulations were performed to demonstrate the capability of the proposed method. The TDOA accuracy
results are shown in Figure 5 and the FDOA accuracy results are shown in Figure 6, where it is seen that using the SVD
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