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Preface

Glass: Science and Technology of which this volume is the fourth to
appear after Volumes 5 (Mechanical Properties), 1 (Glass Forming Systems),
and 2 (Processing), provides a central, convenient, and reasonably detailed
reference source to the notable developments in the field of noncrystalline
solids (glasses).

Flow processes as well as relaxation processes have become the subject
of an ever increasing number of widely scattered investigations by glass
scientists and engineers. Time-dependent phenomena not only reveal details
about the nature of glass and the glass transition but also dramatically
affect the engineering properties of glass products. This volume of Glass:
Science and Technology attempts to provide an overview of the scientific
and engineering aspects of viscosity, viscoelasticity, relaxation, and anneal-
ing. At the same time, in order to accommodate significant phenomenologi-
cal and technological differences between classses of materials, separate
chapters deal with inorganic nonmetallic, organic polymer, and metal
glasses.

ix
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GLASS: SCIENCE AND TECHNOLOGY, VOL. 3

CHAPTER 1

Viscoelasticity of Glass

Simon M. Rekhson

GENERAL ELECTRIC COMPANY
NELA PARK
CLEVELAND, OHIO 44112

List of Symbols

Some symbols used in this chapter have several different meanings, but the
context will clearly identify them. Some other symbols used for specific applications
are not included in the list.

i S o il -]

e or e,

A constant

As subscript, biaxial

A constant

A constant

Shear strain

Matrix of shear strain tensor

Fictive strain

Partial fictive strain

As subscript, fictive

As subscript, glassy state

As subscript, liquid state

Laplace transform parameter or glass property
Strain rate (= ¢é) or stress rate (= §)

Shear stress or relaxation frequency

As subscript, shear

Shear stress

Fictive stress

Partial fictive stress

Time

Time of the maximum in a crossover experiment
As subscript, uniaxial

Weighting factor for structural retardation function
As subscript, denotes a volume property
Weighting factor for shear retardation function

1
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Weighting factor for shear relaxation function or dynamic moduli
Nonlinearity factor in Four-Parameter Model
Weighting factors for uniaxial and biaxial stress relaxation functions

Constant in four-parameter model

Heat capacity

Heat capacity at constant pressure

Deborah number

Young’s Modulus

Distribution of relaxation times

Gibbs free energy, shear modulus

Shear relaxation modulus

Shear storage modulus or elastic modulus of Kelvin—Voigt model
Shear loss modulus

Bulk relaxation modulus

Enthalpy, Hookean element, or shear relaxation spectrum
Bulk relaxation spectrum

Compliance

Creep shear compliance

Shear compliance

Shear delayed-elastic compliance

Bulk compliance

Bulk modulus

Bulk moduli of Pointing—Thomson model

Spectrum of bulk retardation times

“Apparent” elastic modulus

Structural retardation function

Newtonian element, distribution function, “apparent” Poisson ratio
Pressure

Fictive pressure

Error term or ideal gas constant

Entropy, crossover experiment function
Temperature

Glass transition temperature

Melting temperature

Reference temperature

Displacement

Volume

Weighting coefficient for bulk retardation function
Work

Weighting coefficient for bulk relaxation function
Loss function

Thermal expansion coefficient
Temperature derivative of property p
Same as above for liquid

Same as above for glass
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a Structural part of a,,

Y Shear strain

) Partial derivative, Kronecker delta function or phase angle

€ Component of strain tensor (if with subscripts), hydrostatic or dilatational
strain

[e] Matrix of strain tensor

Order parameter

n Shear viscosity

7’ Viscosity of Kelvin—Voigt model

7y Volume viscosity or viscosity of Poynting—Thomson model

i Volume viscosity of Poynting—Thomson model

m Viscosity of Burgers model

Compressibility

Shear or structural retardation time

Bulk retardation time

Average bulk retardation time

Average shear retardation time

Component of discrete spectrum of shear retardation times

Same as above for bulk retardation

Alternate shear stress relaxation modulus

Poisson’s ratio, frequency in radians/s

Reduced time

Component of stress tensor (if with subscripts), or hydrostatic or dilata-
tional stress

Matrix of stress tensor

Shear stress relaxation time

Shear retardation function

Bulk retardation function

Relaxation function

¢ v ww

ameE > > >X>>>=a
G )
2
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I. Introduction

Viscoelasticity describes a time-dependent response of liquids and solids
to either mechanical stress or strain. Temperature is the third major
independent variable because it produces voluminal or dilatational strain
and strongly affects the viscoelastic properties of the material. Many solids
(and even liquids under superfast influences) appear as nearly perfect elastic
bodies and are studied by means of elasticity theory. In steady-state
conditions of flow, the liquids behave as incompressible fluids and are
studied by means of fluid mechanics. It is the transient, time-dependent
phenomena on the border between the solid- and fluidlike behavior that are
the subject of viscoelasticity studies. Christensen (1982) offered a compre-
hensive review of the theory of viscoelasticity. A more limited task of this
chapter is to review the viscoelastic behavior of glasses.

The viscoelastic approach is pertinent to the very essence of the glassy
state, because the glass is obtained via the liquid/solid or liquid/glass
transition.



F1G. 1. Temperature dependence of properties of liquid, glass, and crystal.
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schematically the change in volume V, enthalpy H, and
entropy S of a liquid during cooling. For substances that can exist in both
glassy and crystalline states, there are two paths available below the melting
temperature 7. By using the definition from classical thermodynamics
dG/dT = — S8, where G is the Gibbs free energy, we can derive from Fig. 1
the plot shown in Fig. 2. Similarly, a plot of G versus pressure P can be
derived from the definition dG/dP = V. It follows from Fig. 2 that, in
the liquid must make two thermodynamically unfavora-
ble choices: one at the melting temperature 7,, and another at the glass
transition temperature 7,. In both cases, the liquid must follow the path
with higher free energy. In both cases, the reason for this behavior lies in

GLASS
SUPERCOOLED
LIQUID !
CRYSTALY
I
I LIQUID
| |
I
Tg) Tm:
TEMPERATURE

dependence of the Gibbs free energy for liquid, glass, and crystal.
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At temperature T, the crystallization is impeded by the finite viscosity
of the liquid and therefore takes some characteristic time ¢*. If rapid
cooling makes the dwell time at 7,, shorter than the time ¢*, crystallization
will be kinetically arrested. Inorganic glass-forming melts have a high
viscosity at T, and can be cooled slowly. In contrast, molten metals require
cooling rates on the order of 10°°C/sec to form glass.

A supercooled liquid is in thermodynamic equilibrium with respect to
any immediately neighboring structure. It is in a metastable equilibrium
with respect to a crystalline solid. The free energy profile can be pictured as
one with a minimum for the crystalline state and a “trough” above the
minimum for the supercooled liquid state. The very considerable height of
the “trough” explains why many metastable states can persist almost
indefinitely under suitable conditions. The properties of a supercooled
liquid are uniquely defined by two external thermodynamic parameters:
temperature and pressure. Below 7, the material, a glass, is not in equi-
librium. Its structure depends on thermal history and therefore one more
parameter—the internal or order parameter—is needed to characterize the
glassy state.

The nonequilibrium state of glass is securely frozen by a viscosity
10'5-10%° times greater than that of ordinary liquids. This is why glass is
often called a frozen liquid. It is a liquid because the phase transformation
(crystallization) has never occurred; it is a frozen liquid because it has all
the qualities of a solid. Curiously, the liquid is never completely frozen.
Even at temperatures below 7, the volume of the glass will decrease slowly
in the direction of its equilibrium value. This process, called stabilization,
evolves at room temperature on a geological time scale and can be observed
only with the help of a sensitive instrument. For example, the glass bulb of
a thermometer contracts slowly, causing the zero point to rise. A mechani-
cal time-dependent response can be conveniently observed at room temper-
ature, using a glass spiral. Figure 3 shows the delayed-elastic strain resulting
from loading and unloading a large spiral of the soda-lime-silicate glass
with the glass transition temperature of 530°C. The structural and mechani-
cal stability is quite critical for a number of communication, electronic, and
measuring devices.

Conveniently, the time-dependent structural and viscoelastic behavior is
observed in the glass transition region (see Fig. 1). However, it can also be
demonstrated at temperatures up to 1200°C. Absorption of ultrasonic
waves clearly reveals the viscoelastic nature of glass-forming liquids. Some
of the glass-forming operations are so intense that they force a molten glass
to respond in a viscoelastic, or even elastic, manner.

Above we have outlined the subject and the scope of a viscoelastic
study. What are the objectives? We deal with this question in the next
section.
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F1G. 3. Creep and recovery of a soda-lime-silicate glass at room temperature.

II. Formulation

The objectives and limitations of a viscoelastic study can be shown using
a general formula delineating the change in strain ¢, in response to the
stress and temperature:

= L 8,.d
da,.j = de,-j + 39, de

1 e n de
A0 (%) s £ ()., 00

Si

de;; d de.: .
Y L2 J
Tl ) e e (—_351 ) . dg, + 2 dtl

.....

1|/ de { de
et T4 + - dxe s 1
L Y R R

p, k=1

In Eq. (1) e;;, € and s, j» 0 are deviatoric (shear, shape-changing) and
dilatational (hydrostatic, volume-changing) strains and stresses, respectively,
d; ,; 1s the Kronecker delta, {, ©, and x are order parameters, n is the
viscosity, and T the temperature. The three bracketed terms describe
responses to the shear stress, hydrostatic stress, and temperature. The first
bracketed term consists of instantaneous or glassy response, structural or
relaxation response, and viscous flow. The second and third bracketed terms
consist of instantaneous and structural responses only.
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The structural or relaxation response is controlled by order parameters.
In the glassy state, the structure is frozen, the order parameters are
constant, and the viscosity is infinitely large. The response is that of a solid.
In the liquid state, the structure changes in response to the change in stress
and temperature. The time variation of order parameters determines the
kinetics of a liquidlike response.

The objective of the theory is to ascertain the meaning of the order
parameters and suggest equations describing their rate dependencies. The
objective of the experimental work is to determine compliances (partial
derivatives in the first two bracketed terms), thermal expansion coefficients
(partial derivatives in the third bracketed term), and rate constants of the
order parameters (retardation times). Constraints commonly used in visco-
elastic studies are small strains and stresses. The temperature changes can
be large. Therefore, the temperature induced glass transition is within the
scope of such studies whereas the pressure induced glass transition is not.
Similarly, linear viscous flow is within the scope, but not non-newtonian
flow.

The thrust of the present chapter is to show that a meaningful interpre-
tation of the experiment is possible only on the basis of a theoretical model.
Special emphasis throughout the entire chapter will be given to definitions
of viscoelastic properties. In this context, an apparent neglect of terminol-
ogy in the title of this work may seem incongruous. Strictly speaking, there
is no viscoelasticity of glass because the glassy state is a frozen state. We
should admit that we use the term “glass” loosely, although traditionally, to
denote the class of inorganic materials both in glassy and supercooled
liquid states.

III. Elasticity

In a cartesian coordinate system x;, i = 1,2, 3, a state of stress is given
by

[6] =021 O 0], (2)

where ¢;; is the component parallel to the j direction and acting on the
cubical element face perpendicular to the i direction, as shown in Fig. 4. If
only dilatational stresses o,,, 0,,, and 0,5 are imposed, the resulting strains
are parallel to the axes and, in terms of displacements U,, are

81 = aUl/axl, 82 = aUz/axZ, and 83 — 3U3/ax3. (3)
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The sum of these strains is the relative volume change AV /V, i.e.

AV/V=e=¢ + e, +e¢,. (4)
If 0), = 0y, = 033 = — P, the hydrostatic pressure, we have
P=—-KAV/V, (5)

where K is the bulk modulus. The shear stress o,,, i # j, produces a shear
strain vy,; developed by an edge originally parallel to the direction i turning
toward the edge parallel to the direction j (see Fig. 5). The relationship
between these quantities is given by

013 = G712, 0y = Gy, and 031 = Gy, (6)
where G is the shear modulus and v, is related to the displacements as
au, . au, v, Iy, v, Iy,
e BTy I T
(7

Shear strain can be represented in three different ways shown in Eig. 5.
They are equivalent because they can be obtained one from another simply

X2 X2 X2

(a) (b) (c)

F1G. 5. Components of the shear strain tensor.
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by rotation, without any additional deformation and, hence, effort. Note
that the final angle of the parallelepiped is the same: 90° — y,; or 90° — v,
since v, = vy,. It is the third method that is conventionally used, thus
introducing a new shear strain equal to one-half of the total shear strain
appearing between the axes x; and x,

1 i ( au,

S P RN,

aU.
Uf) (8)

Equation (8) defines a component of a strain tensor that can also be
represented as

oy, 1[ay, . W] 1[aY; U,
% Hm )l 7t
1[0, aU, U, 1|dU, aJU;
=gl o oo b oo Tl AR <
2 %) 0x, 2 dx3 0x;
N ESREN ISV EANE A R
oKy T 0x5 2| 0x,  0x, | 9%,

Note that ¢, = ¢, and that the definition of extensional components is still
the same as in Eq. (3), i.e, &,; = ¢, etc. The strain tensor [&] can be

represented as a sum of the two tensors

W, e 1[u, U] 1[ay, 3y,
B 5 B onl e Al
oS 8U2 aUl aUZ £ 1 aUz 8U3
SR S rolos SRR (b g e L8
190, L a4 | 1136 90U, U, e
- b oul G0E 7 | =it o ¥ Ew |
and
&
3 00
‘o)
e=|0 3 0 (11)
&
0 0 3

Although the sum of Egs. (10) and (11) is evidently Eq. (9), this procedure
conveys an important message: the strain tensor can be thought of as
consisting of a pure shear, or shape-changing, strain [e] and a pure
hydrostatic strain e. The strain [e] is called deviatoric, and indeed produces
no change in the volume because the sum of the diagonal components in
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Eq. (10) is zero (cf. Egs. (3) and (4)). The strain ¢ is called dilatational. It is
important to make this distinction between deviatoric and dilatational
components because glasses behave very differently when being deformed
in these ways. This concerns both elastic and viscoelastic behavior, and
fracture.

The same is true for the stress tensor o,;, which can be similarly
decomposed into a deviatoric component s,; and a dilatational compo-
nent o.

A concise way of writing this is

0;=3,+ %6,-/-0 (12)
and
B, = e, %8ije, (13)
where
0 =0y + 0y + 0y (14)
and
e=1¢g,; + &y + &, (15)
and §;; is the Kronecker symbol
0, i#]
8’7“{1, i (16)
Now, the constitutive equations (5) and (6) can be written as
5= 2Ce,, (17)
and
o = 3Ke. (18)

The factors 2 and 3 appear as a result of the definitions of ¢;; and o.
Simple tension or compression are the first practically important cases
when both shear and dilatation are involved. Consider a uniaxial stress, i.e.,
6 = 0,;, 0y = 033 = 0. From Egs. (12) and (13)
S11 = 6y — Yoy, = %oy, (19)
and

i T
€1ls &n 5811 T 38 (20)

Thus, a uniaxial stress is 3 shear and } dilatation.
The relationship between extensional stress and strain is given by

0, = Egyq, (21)

where E is the Young’s modulus. The lateral extensional strains are of



