el
(-

CONCURRENCY CONTROL
AND RELIABILITY
IN DISTRIBUTED SYSTEMS

Edited by

Bharat K. Bhargava
Department of Computer Science
Purdue University
West Lafayette, Indiana

i

E8962744

i

| VAN NOSTRAND REINHOLD COMPANY
New York

Copyright © 1987 by Van Nostrand Reinhold Company Inc.
Library of Congress Catalog Card Number 86-19121
ISBN 0-442-21148-1

All rights reserved. No part of this work covered by the copyright hereon
may be reproduced or used in any form or by any means—graphic, electronic,
or mechanical, including photocopying, recording, taping, or information
storage and retrieval systems—without written permission of the publisher.

Printed in the United States of America

Van Nostrand Reinhold Company Inc.
115 Fifth Avenue
New York, New York 10003

Van Nostrand Reinhold Company Limited
Molly Millars Lane
Wokingham, Berkshire RG11 2PY, England

Van Nostrand Reinhold
480 La Trobe Street
Melbourne, Victoria 3000, Australia

Macmillan of Canada

Division of Canada Publishing Corporation
164 Commander Boulevard

Agincourt, Ontario M1S 3C7, Canada

16 15 14 13 12 11 10 9 87 6 5 4 3 2 1
Library of Congress Cataloging-in-Publication Data

Concurrency control and reliability in distributed
systems.

**May 1986."

Bibliography: p.

Includes index.

1. Electronic data processing— Distributed processing.
I. Bhargava, Bharat, 1948-
QA76.9.D5C67 1987 004'.36 86-19121
ISBN 0-442-21148-1

CONCURRENCY CONTROL
AND RELIABILITY
IN DISTRIBUTED SYSTEMS

To All the Contributors

Contributors

Bharat K. Bhargava, Purdue University

David Butterfield, LOCUS Computing Corporation
Bo-Shoe Chen, Bell Laboratories

Douglas E. Comer, Purdue University

Dean Daniels, Carnegie-Mellon University

Danny Dolev, Hebrew University, Israel

Daniel Duchamp, Carnegie-Mellon University

Robert English, University of California at Los Angeles
Jeffrey L. Eppinger, Carnegie-Mellon University
Hector Garcia-Molina, Princeton University

Cecil T. Hua, Honeywell

Jack Kent, Xerox PARC

Kane H. Kim, University of California at Irvine
Charles Kline, LOCUS Computing Corporation
Walter H. Kohler, University of Massachusetts

Leslie Lamport, DEC Research Center (WRL)

Leszek Lilien, University of lllinois at Chicago
Barbara Liskov, Massachusetts Institute of Technology
Toshimi Minoura, Oregon State University

J. Eliot B. Moss, University of Massachusetts

Susan S. Owicki, Stanford University

Thomas Page, University of California at Los Angeles
F. Panzieri, The University of Pisa, Italy

Randy Pausch, Carnegie-Mellon University

Marshall Pease, SRI International

Larry L. Peterson, University of Arizona

Gerald Popek, University of California at Los Angeles
Krithi Ramamritham, University of Massachusetts
Joylyn N. Reed, Oxford University

P. Rolin, INRIA, France

Zuwang Ruan, Purdue University

Robert Scheifler, Massachusetts Institute of Technology
Fred B. Schneider, Cornell University

Robert Shostak, ANSA Software

Santosh K. Shrivastava, The University of Newcastle upon Tyne, UK

vii

viii CONTRIBUTORS

Dale Skeen, TEKNEKRON, Inc.

Alfred Z. Spector, Carnegie-Mellon University

John A. Stankovic, University of Massachusetts

Michael Stonebraker, University of California at Berkeley
Greg Thiel, LOCUS Computing Corporation

Bruce Walker, LOCUS Computing Corporation

Gio Wiederhold, Stanford University

Raymond T. Yeh, SYSCORP International

Foreword

Computer users have been building distributed systems for years now, though
each one has been built as a special case. Until recently, there have been few
principles available to help in the design of such systems. Largely, they have
been built by trial and error—mostly error.

Based on many experimental and production distributed systems, several ap-
proaches have been discarded, while a few have survived. For some issues,
elegant and powerful abstractions have emerged—notably, the concepts of trans-
action, recovery, locking, atomicity, fail-stop, Byzantine agreement, distributed
naming, distributed execution, and remote procedure calls.

This book collects the best current work on these topics, presented by active
workers in the field. Taken as a whole, it presents an exciting and dynamic
experimental discipline. Using the ideas presented here, one can understand and
solve many of the problems encountered in the construction of distributed com-
puter systems.

Jim Gray
Cupertino, California

Preface

Distributed systems are essential for many real-world applications, ranging from
space stations to automatic teller machines. Several design principles necessary
to build high performance and reliable distributed systems have evolved from
conceptual research and experimentation during the eighties. This book is a
compendium of these principles. It contains definitions and introductory material
for the beginner, theoretical foundations and results, experiences with imple-
mentations of both real and prototype systems, and surveys of many important
protocols. This book focuses on the important aspects of transaction processing,
including: concurrency, commitment, and recovery as they apply to database
systems, operating systems, or programming systems. The manuscript for this
book has been used in a graduate course on distributed database systems at
Purdue University. The book can be used in a graduate course on distributed
systems and can serve as a good reference material for research. The material
has been presented to demonstrate the practicality of certain successful designs
and implementation choices, so as to benefit the systems programmers and those
who have the responsibility for making distributed systems work.

Bharat Bhargava

xi

Introduction

A distributed system consists of a set of computers located in different sites
connected by means of a communications network. There are different programs
running on each of these computers and the programs are accessing local or
remote resources such as databases. The programs can be viewed as transactions
which consist of atomic actions. The resources may be partially replicated or
partitioned.

The major objective of a distributed system is to provide low cost availability
of the resources of the system by localizing access and providing insulation
against failures of individual components. Since many users can be concurrently
accessing the system, it is essential that a distributed system also provide a high
degree of concurrency.

In the last decade much research has been conducted to develop algorithms
that provide:

® A high degree of concurrency and consistency

* Transparency to failures of individual sites and communication systems
® Treatment of Byzantine failures

® Management of replicated copy

¢ Commitment and termination of transactions ensuring atomicity

Many of these algorithms have been implemented in experimental prototype
systems such as Argus,' Distributed INGRES,? EDEN,? LOCUS,* RAID* SDD-
1,° SYSTEM R*,’ TABS,® etc. In addition, several important concepts such as
transaction,’ nested transaction,'® and naming,'' have been studied in depth to
support the development of distributed systems.

This book is a compilation of a subset of the research contribution in the area
of concurrency control and reliability in distributed systems. An attempt has
been made to cover all interesting areas, including the theoretical and experi-
mental efforts. Thirty-nine computer scientists contributed their research papers
for the nineteen chapters that constitute this book.

SUMMARY OF CHAPTERS

The first chapter contains a review of various reliability issues in distributed
database systems. It contains definitions of most terms used in this area of

xiii

xiv INTRODUCTION

research, and identifies the various problems that arise in the operations of a
distributed database system.

First of all, the integrity of the database must be maintained. A transaction
may be incorrect and may violate this integrity. Concurrent transactions may
not be serializable or may produce different updates on different sites. The
messages from one site may not reach the other sites in the order they were sent
or may arrive too late. In addition, due to a hardware/software malfunction or
failure, a site may crash or a set of sites may not be able to communicate with
other sites. A failure may cause the loss of certain actions of a transaction, or
destroy the contents of the memory and other storage media. Each of these
problems can be handled by a subsystem. Six subsystems have been identified:
external data integrity control, program (transaction) correctness control, atom-
icity control, concurrency control, site crash/partition treatment, and internal
data integrity control. A survey of algorithms for each subsystem is given and
approximately one hundred and seventy-five references are given for further
studies.

The second chapter contains the specifications and analysis of concurrency
control algorithms for distributed database systems. An event order based model
has been used to represent casual relations among actions of a concurrency
controller. The model is used as a tool to study the correctness, degree of
concurrency, freedom from deadlocks, and robustness properties of a concur-
rency control algorithm.

The third chapter presents the fundamental concepts used in the design of the
experimental system, Argus, that is being developed at MIT. The system pro-
vides support for constructing and maintaining distributed programs. A module
called Guardian is introduced for dealing with concurrency and site failures.

The fourth chapter presents the architecture of the experimental distributed
operating system LOCUS implemented at UCLA. LOCUS is UNIX compatible
and connects 17 VAX/750’s via Ethernet. It provides a distributed file system,
distributed (remote) process execution, support for nested transactions and dis-
tributed database systems, and high reliability features to deal with recovery of
files and network partitioning. The system supports a certain level of hetero-
geneity.'?

The fifth chapter describes an experimental distributed database system called
SIRIUS-Delta that has been implemented in INRIA, France. The use of prin-
ciples such as two phase locking, two phase commit, and maintenance of jour-
nals to deal with failures are included.

The sixth chapter presents an experimental facility being developed at Car-
negie-Mellon University, TABS, that provides operating system-level support
for distributed transactions that operate on shared abstract types. The objects in
this system are instances of abstract data types and are encapsulated in processes
called data servers. Data servers also support the synchronization requirements

INTRODUCTION xv

of transactions by using type-specific locking. The system provides extensive
support for atomic objects via write-ahead logging.

There are two basic types of communication primitives: message passing and
remote procedure call (RPC). While LOCUS and TABS use primitives such as
send and receive, Argus uses the remote procedure call (RPC) as the basic
means of interprocess communications. Chapter 7 discusses the remote proce-
dure call (RPC) and the functionality of the underlying interprocess communi-
cation facility. It discusses the call semantics and exceptions handling, orphans
handling, and robust atomic action. Performance results of initial tests for data
transfer rates as seen by the user for local and remote operations are compared.

Chapter 8 discusses practical mechanizations based on the monitor approach
to interprocess communications. The coordination of the detection and recovery
activities of cooperating processes is discussed. This work contributes towards
the design of fault-tolerant concurrent programming.

A formal model for commit protocols for a distributed database systems is
given in Chapter 9. The commit protocol is specified as a collection of nonde-
terministic finite state automata—one for each site. A local state transition con-
sists of reading one or more messages, performing some local processing, and
sending zero or more messages. Independent site recovery and network partitions
are modelled and conditions are specified for correct recovery and termination
of transactions. It is concluded that there exists no protocol using independent
recovery that is resilient to arbitrary failures by two sites and there exists no
protocol resilient to multiple partitions.

It is essential that concurrency control and reliability mechanisms support
each other. Chapter 10 discusses an optimistic approach to concurrency control
and demonstrates how it lends itself naturally towards the design of a reliable
distributed database system. Optimistic concurrency control is based on the
validation of conflicting transactions just before commit rather than the locking
of database objects. The optimistic approach has been found to provide good
performance when there is a mix of large and small transactions.'* The optimistic
approach is also good for network partition treatment protocols.

In a distributed system, sites may be up, down, or recovering. The basic idea
for correct recovery is that a user transaction must have a consistent view of the
status (up or down) of the sites at the time of reading and writing any physical
copy. This problem becomes very interesting when the databases are replicated
over several sites. Chapter 11 deals with the problem of replicated copy control
and transaction processing when failed sites are recovering. A global view of
the status is represented by a nominal session vector which contains the session
number (incarnation number) of each operational site. The identification of out-
of-date data items for the recovering site is done by using fail-locks on the
operational sites.

The Byzantine Generals problem has drawn much attention from many re-

xvi INTRODUCTION

searchers since it deals with not only clean failures of components of a distrib-
uted system but also malfunctions that give conflicting information to different
parts of the system. The fundamental problem is the agreement on a piece of
data based on the cooperation among several processes. Chapter 12 presents
algorithms to ensure that all correctly functioning processors reach an agreement.
It is shown that, with unforgeable written messages, the algorithms are possible
for any number of processors and possible malfunctioning components. Appli-
cations of the solutions to the Byzantine Generals problem to reliable computer
systems are discussed.

Many applications do not require a perfect system that must tolerate an ar-
bitrary number of failures within a certain time interval. In the fail-stop processor
approach presented in Chapter 13, it is possible to build systems that can tolerate
well-defined failures. The operating characteristics of a fail-stop processor, pro-
gramming fail-stop processors, illustrative examples, and the implementation
issues have been presented in this chapter. Convincing arguments for studying
the fail-stop processor are given.

Nested transactions can model user’s programs in a much more natural way.
A typical transaction for travel plans may involve three subtransactions: get a
seat on a plane, reserve a rental car, and book a room in a hotel. Similarly, an
update on an object with several copies may be issued as a nested transaction
with three subactions corresponding to each update. Chapter 14 presents the
model of a nested transaction and gives a nested transaction management al-
gorithm for distributed systems. Convincing arguments are given to justify the
concept of nested transactions for reliable distributed software. Algorithms for
deadlock detection, avoidance, and resolution are given.

Chapter 15 presents the true-copy token scheme for concurrency and relia-
bility control in a distributed database system. True-copy tokens are used to
designate the most up-to-date physical copies. This chapter presents the regen-
eration of lost tokens (or true copies). This research contributed towards the
management of replicated copies in the presence of site failures and network
partitions.

Chapter 16 deals with the issue of performance evaluation of the reliability
of a distributed system. A collection of models and measures have been proposed
and then used to obtain sample results on commit protocols, numbers of blocked
sites, numbers of backed out transactions, etc.

A distributed system provides users with access to a variety of objects such
as files, processing agents, devices, etc. The users identify objects in the same
manner, whether they are available locally or remotely. This transparency to
location allows software to migrate both before and during its execution. The
name resolution mechanism performs the mapping of names (as defined by users)
to objects as they exist in the system. Chapter 17 presents a survey of naming
mechanisms supported by several experimental distributed systems. It presents

INTRODUCTION xvii

a model that describes the underlying principles and concepts of naming and
investigates the role of name servers in name resolution. The model views names
to be purely syntactic entities and name resolution to be a syntax-directed op-
eration.

Chapter 18 describes a specification and verification technique for concurrent
distributed systems. Specification refers to a concise mathematical character-
ization of the functionality of programs actually implemented with code. The
technique is used to study liveness properties of concurrent programs. The tech-
nique is illustrated with communicating sequential processes. Illustrative ex-
amples that use this technique have been included.

The last chapter contains a survey of current efforts in distributed systems
software and in distributed database systems.

In the area of operating systems software, three classes have been identified:
network operating systems, distributed operating systems, and distributed pro-
cessing operating systems. Most experimental systems have been classified in
these classes. The choices for structuring distributed systems have been dis-
cussed next. Other issues such as addressing distributed processes, communi-
cation primitives, decentralized control, and distributed file systems have been
discussed.

In the area of distributed database systems, the transaction model, data rep-
lication, deadlock resolution, and recovery have been summarized and several
test-beds have been identified. Once again, over two hundred references (some
of which overlap with those in the first chapter) have been listed.

FUTURE RESEARCH ISSUES

The research in concurrency control for distributed systems appears to be ma-
turing while there is great activity in the area of reliability. The failure treatment
in replicated copy management needs further studies. Site failure and network
partition treatment protocols that include detection and recovery from failures
need to be developed. There has been good research in the area of clock syn-
chronization, but the incorporation of these algorithms into experimental systems
is still awaited. One of the primary applications of distributed systems is high
performance transaction processing systems. The system level support to process
up to one thousand transactions per second will be needed. Hopefully, the
research in parallel processing will help. Still, the distributed systems which
appear more like distributed file systems need to incorporate more of such no-
tions as a global process and shared memory. Transparency to location needs
to be built into the system itself. We are still waiting for commercially available
distributed systems.

Fortunately, the research is proceeding at a fast pace. This is evident from
specialized symposiums (e.g., the IEEE Computer Society’s Symposiums on

xviii INTRODUCTION

Reliability in Distributed Software and Database Systems), workshops, and spe-
cial issues of journals devoted to concurrency and reliability problems. We look
forward to the work of our colleagues in academia, industry, and government.

ACKNOWLEDGMENTS

This book is possible only due to the brilliant research of the contributors of all
the chapters. I am indebted to them for providing me with the opportunity to
produce this book. Their research ideas will benefit the research of the readers.
Graduate students in particular will find this work of great interest.

REFERENCES

. Liskov, B. and R. Scheifler, On linguistic support for distributed programs, IEEE Trans.

Software Eng., vol. SE-8, pp. 203-210, May 1982.

. Stonebraker, M. The design and implementation of distributed INGRES, in The INGRES Pa-

pers, (M. Stonebraker, ed.), Reading, MA: Addison Wesley, 1985.

. Jessop, W. H., J. D. Noe, D. M. Jacobson, J. L. Baer, and C. Pu, The Eden transaction-

based file system, in Proc. 2nd IEEE Symp. on Reliability in Distributed Software and Database
Systems, Pittsburgh, PA, July 19-21, 1982.

- Walker, B., G. Popek, R. English, C. Kline and G. Thiel, The LOCUS distributed operating

system, in Proc. 9th ACM Symp. on Operating Systems Principles, Bretton Woods, NH, Oct.
10-13, 1983.

. Bhargava, B. and J. Riedl, The design of an adaptable distributed system, Proc. IEEE COMP-

SAC, Chicago, IL, Oct. 1986.

- Rothnie, J., P. A. Bemstein, S. Fox, N. Goodman, M. Hammer, T. A. Landers, C. Reeve,

D. W. Shipman, and E. Wong, Introduction to a system for distributed databases (SDD-1),
ACM Trans. Database Systems, pp. 1-17, March 1980.

. Lindsey, B. G., L. M. Haas, C. Mohan, P. F. Wilms, and R. A. Yost, Computation and

communication in R*; A distributed database manager, ACM Trans. Computer Systems, pp.
24-38, Feb. 1984.

- Spector, A., J. Butcher, D. S. Daniels, D. J. Duchamp, J. L. Eppinger, C. E. Fineman, A.

Heddaya, and P. M. Schwartz, Support for distributed transactions in the TABS prototype,
IEEE Trans. Software Eng., vol. SE-11, June 1985.

- Gray, I. N., The transaction concept: Virtues and limitations, Very Large Database Conference,

pp. 144-154, Sept. 1981.

. Moss, J. E. B., Nested transactions and reliable distributed computing, Proc. 2nd IEEE Symp.

on Reliability in Distributed Sofiware and Database Systems, pp. 33-39, July 1982.

. Comer, D. and L. Peterson, A name resolution model Jor distributed Systems, Proc. 6th IEEE

Int. Conference on Distributed Computing Systems, Cambridge, MA, May 19-23, 1986.

. Popek, G. and B. Walker, The LOCUS Distributed System Architecture, Cambridge, MA: MIT

Press, 1986.

. Bhargava, B., Performance evaluation of the optimistic concurrency control approach to dis-

tributed database systems and its comparison with locking, Proc. 2nd IEEE Int. Conference on
Distributed Computing Systems, Miami, FL, October 18-22, 1982.

CONCURRENCY CONTROL
AND RELIABILITY
IN DISTRIBUTED SYSTEMS

Contents

Foreword, Jim Gray
Preface, Bharat Bhargava
Introduction, Bharat Bhargava

. A Review of Concurrency and Reliability Issues in Distributed
Database Systems
Bharat Bhargava and Leszek Lilien

- A Causal Model for Analyzing Distributed Concurrency Control
Algorithms
Bharat Bhargava and Cecil T, Hua

- Guardians and Actions: Linguistic Support for Robust, Distributed
Programs
Barbara Liskov and Robert Scheifler

- Functionality and Architecture of the LOCUS Distributed
Operating System
Gerald Popek, Bruce Walker, David Butterfield, Robert English,
Charles Kline, Greg Thiel, and Thomas Page

. Modeling of the Data Allocation Algorithm in SIRIUS-DELTA
P. Rolin

- Distributed Transactions for Reliable Systems
Alfred Z. Spector, Dean Daniels, Daniel Duchamp, Jeffrey L.
Eppinger, and Randy Pausch

. Reliability Aspects of Remote Procedure Calls
S. K. Shrivastava and F. Panzieri

- Approaches to Mechanization of the Conversation Scheme Based
on Monitors
K. H. Kim

- A Formal Model of Crash Recovery in a Distributed System
Dale Skeen and Michael Stonebraker

xi

Xiii

85

124

154

187

214

250

274

295

xix

