LT

Toy LN Ty
o M«&w I_l i
& 1 |
e

5 1 jEre H B
H- 3%
I <3
s 1 1 d n
m(K
3R

8461074

MANAARnY

E8461074

Microsoft™ BASIC

Second Edition

‘2\ Ken Knecht

’\4 = J
\ 20?'%"

o
R Aumaine

dilithium Press
Beaverton, Oregon

©Copyright, dilithium Press, 1983

All rights reserved. No part of this book may be reproduced in
any form or by any means, electronic or mechanical, in-
cluding photo copying, recording or by any information
storage and retrieval system without permission in writing
from the publisher, with the following two exceptions: any
material may be copied or transcribed for the non-profit use
of the purchaser; and material (not to exceed 300 words and
one figure) may be quoted in published reviews of this book.

10 9 8 7 6 5 4 3 2 1
Library of Congress Cataloging in Publication Data

Knecht, Kenneth.
Microsoft BASIC.
Includes index.
1. Basic (Computer program language)
I. Title.
QA76.73.B3K57 1982 001.64'24 82-14730
ISBN 0-88056-056-8

Microsoft™ is a registered trademark of Microsoft Corpora-
tion, Bellevue, Washington.

TRS-80™ is a registered trademark of the Radio Shack Division
of Tandy Corporation, Fort Worth, Texas.

Printed in the United States of America

dilithium Press

P.O. Box 606
Beaverton, Oregon 97075

Microsoft™ BASIC

Second Edition

8461074

Table of Contents

™

!
/%
Introduction 1 {

I ‘”k i,
Chapter 1 Definitions §\ & P &’%

Chapter 2 Getting Started . PN

The NEW Command 13

The CLEAR Statement 14

The LET Statement 16

The PEEK and POKE Statements 17
The PRINT Statement 18

The REM Statement 25

Simple Editing 26

The INPUT Statement 26

The LINE INPUT Statement 31
Multiple Statements in a Line 33
The END Statement 34

The STOP Statement 34

The LIST Command 34

The NULL Command 35

The SWAP Statement 36

The Control Characters 36

- \

N

\
¢\
|’

Chapter 3 Branching and Loops 39

The GOSUB and GOTO Statements 39
The IF Statement 40

The ON...GOTO-GOSUB Statement 44
The FOR...NEXT Statement 45

vi ® Microsoft BASIC

The WHILE. . . WEND Statement 49
The READ Statement 51

Chapter 4 Arithmetic in BASIC 53

Single Precision Numbers 53

Integer and Double Precision Numbers 53
Octal and Hexadecimal Numbers 54
Precedence of Operations 56

Intrinsic Functions 62

User Defined Functions 66

Chapter 5 Strings 69
Intrinsic Functions 71

Chapter 6 Editing 85

The L Command 85
The I Command 86
The Space Key 86
The Q Command 86
The X Command 87
The H Command 87
The D Command 87
The S Command 87
The K Command 88
The C Command 88
Exiting an Edited Line:
The E and A Commands 89

Using Control-A 89
Some Examples 89

Chapter 7 Arrays and Files 93

Arrays 93
Files 101

Chapter 8 The Disk 105

Saving and Loading BASIC Programs 106
Erasing Files 108

Renaming Files 108

Data Files 108

Sequential Files 108

Random Files 114

Chapter 9 Additional Useful Features 125

Chapter 10 The BASIC Compiler 139
BASCOM Operation 142

Chapter 11 Radio Shack BASIC 145
Chapter 12 In Conclusion 149

Appendix A Values of ASCII Characters and
Control Keys 151

Appendix B Reserved Words 155
Appendix C Error Messages 161

Index 163

Contents e vii

viii ® Microsoft BASIC

Introduction

In the early 1970's, the computer hobby really sprang to life
with the introduction of the Altair 8800 by MITS. The birth of
this first 8-bit hobby computer was prompted by the intro-
duction of Intel's 8080 microprocessor integrated circuit. By
the way, when introduced, the 8080 microprocessor was said
to cost. $350.00. Now it can be purchased for about $6.95.

This early microcomputer ran the BASIC language. Who
wrote this early version of BASIC? Why, Microsoft of course.
The actual authors were Bill Gates and Paul Allen. With over
one million installations, Microsoft Corporation continues to
be a major supplier of BASIC interpreters for microcom-
puters.

This second edition of Microsoft™ BASIC describes the latest
version of Microsoft BASIC: BASIC-80, release 5.0. While this
release of BASIC-80 is the latest version of Microsoft BASIC,
some popular microcomputers are supplied with a slightly dif-
ferent version. Fortunately, the differences are not great. If
you understand BASIC as described in this book, you will
have little trouble adapting most BASIC programs to your
computer.

One other popular version of Microsoft BASIC is discussed
in this book, that supplied with the Radio Shack TRS-80
Model III. This version is compared with BASIC-80, allows
you to see some typical variations from BASIC-80.

To give credit where credit is due, Microsoft did not invent
BASIC. This was accomplished by Prof. John G. Kemeny and
Prof. Thomas E. Kurtz, who originally designed, implemented

2 ® Microsoft BASIC

and introduced BASIC at Dartmouth College in 1964. BASIC
was then implemented on many large computers before
hobby computers and Microsoft came along.

There are many other languages available for microcom-
puters, among them FORTRAN, LISP, C, COBOL, FORTH
and Pascal. However, BASIC is the most popular, and most of
the programs listed in the many hobby computer magazines
are in BASIC.

There are many ways to program computers: in machine
language, in assembly language and in high-level languages.
Machine language and assembly language (low-level
languages) require an intimate knowledge of how your
specific computer works. Generally such programs are not
transportable. That is, an assembly language program for an
Apple will not run on a TRS-80. However, BASIC is a high-
level language and it is transportable. A BASIC program writ-
ten for an Apple will probably run on a TRS-80, with a few
slight changes.

A high-level language must be either compiled or inter-
preted. An interpreter is easier to work with, but a compiled
language will usually run the program faster. Most languages
are either compiled or interpreted, but not both. An advan-
tage of BASIC is that it can be run either way. That is, fre-
quently a BASIC compiler is offered for a given computer, in
addition to the BASIC interpreter. Microsoft offers a compiler
for BASIC-80 and TRS-80 BASIC. This compiler is described
in Chapter 10 in this book. That chapter also explains in more
detail the differences between a compiler and an interpreter.
However, the main thrust of this book is on interpreted
BASIC, which is what you will most likely be using.

I think you will find programming in BASIC an easy-to-
learn, fascinating hobby. The challenges are many, and you
will continue to learn more and more about the subtle tech-
niques of advanced BASIC programming as your experience
grows. I've been programming in Microsoft BASIC for over
eight years and I'm still discovering new tricks of the trade.

Have fun!

Ken Knecht
Yuma, AZ

Chapter One

Definitions

B efore we get into programming, it would probably be best
to present a glossary of the terms used in this book. This
will include some sample commands to illustrate certain
points and provide an insight into the way BASIC works. Any
commands mentioned in this chapter will be explained in
detail in later chapters, so do not despair if the operation or
use of a command mentioned is not clearly explained. Also,
the bracketed designations of which versions of BASIC sup-
port the command will not be used in this chapter.

Terms will be defined in an order which permits later
definitions to use terms defined earlier. Therefore, they are
not in alphabetical order.

INITIALIZATION: This is the process of loading the
BASIC interpreter into memory and defining the parameters
in which it will operate.

Details of this process vary considerably depending on the
operating system used, so it will be left to you to use the
method described in your documentation.

COMMAND: These are instructions to BASIC that are
generally, but not necessarily, used in direct mode. By direct
mode we mean a command used to operate BASIC directly,
without writing a program. When BASIC is ready to accept a
command (not running a program) it displays OK (sometimes
a > or other prompt is used). This is called command mode.
Here's a quick example. After BASIC displays OK, re-
spond with

PRINT 4 +4

4 * Microsoft BASIC

This causes BASIC to display 8 and then display the prompt.
This is a command. If you entered

10 PRINT 4+ 4

nothing would happen immediately. If you then entered RUN
on the next line BASIC would then display 8, then the prompt
OK again. In this case

10 PRINT 4+4

is a BASIC program. The line number 10 preceding the word
PRINT makes it a program line, and the RUN command must
be used to execute the program; BASIC will not print the
answer to 4+4 until you enter RUN.

Any instruction to BASIC not preceded by a line number is a
command, and will be executed at once. Any instruction
preceded by a line number is not a command and will not be
acted upon until the program is run. Most instructions can be
used either way.

STATEMENT: This is any instruction to BASIC preceded
by a line number (see LINE N UMBER). Almost all statements
can be used as either commands or statements, depending on
whether or not a line number is present.

Normally a statement is an instruction that appears in a pro-
gram while a command is an instruction used in direct mode
(see COMMAND). A statement in a program is said to be in
the indirect mode. As mentioned earlier, most instructions
can be used either way.

LINE NUMBER: This is a number from 0 to 65529 which
appears before each statement in a BASIC program. Some
utility programs have problems when you use line number 0,
S0 you might want to avoid using this line number.

Program statements will be executed in ascending numeri-
cal order, though they do not need to be entered this way. For
example, we write the program

10 A=4

20 B=5

30 C=A+B

40 PRINT “FINISHED”

Definitions ¢ 5

This will add 4 and 5, just as you requested, then print
FINISHED on the terminal. Unfortunately, only the computer
knows how much 4+5 is; we forgot to tell it to display the
answer. So we enter

35 PRINT C

This adds line 35 to the program, between line 30 and line 40,
and the answer (9) will now be printed. Since 35 is greater
than 30, the computer will calculate the answers in lines 10,
20, and 30. Then it will go to the next line number, 35, even
though it was entered after line 40. The program will now
display a 9 before it goes to line 40 and displays FINISHED.

So we see the computer will operate on the lines in numeri-
cal order, even if we didn't enter them in that order. You can
see now why we leave some unused numbers between line
numbers, for cases like this. There will be times, not often I
hope, when you will wish you had left more than 9 unused
line numbers. Later we will see how the renumber command
can solve this difficulty.

As we stated earlier, the line numbers can be most any we
wish. For example

0A=4

100 B=5

1017 C=A+B

3462 PRINT C

65529 PRINT “FINISHED”

This will perform exactly like the preceding program. BASIC
just takes the line numbers in ascending order. It doesn't care
how many numbers we leave out between them. However,
normal programming practice starts the program at line 10
and uses increments of 10 for the following line numbers.
CONSTANT: This is a number used in a program or com-
mand. In the previous programs, 4 and 5 were constants. It is
a number that the computer accepts as a value in a program; it
cannot be changed by the program. The range of acceptable
numbers is from 107* to 10**®. That is, from a number pre-
ceded by a decimal point followed by 37 0's to a number
followed by 38 0's. For those not familiar with scientific nota-

6 ® Microsoft BASIC

tion, 1x 10° is the same as 100000 and 2x 1078 is the same as
.00000002. In BASIC we would enter these numbers as 1E5
or 2E-8.

VARIABLE: This is the symbolic representation of a con-
stant or a number defined by the program. To return to our
earlier example

10 A=4

20 B=5

30 C=A+B

35 PRINT C

40 PRINT “FINISHED”

A, B, and C are variables. In this case, A represents the con-
stant 4, B the constant 5, and C represents the program com-
puted values of A+ B, or 9. Variables not representing a con-
stant are given a value of 0 until the program sets their values
(see CLEAR). The same variable can represent many numbers
in the course of a program run. It always holds the last value
set, or 0 if no value has yet been set.

In 8K BASIC a variable name may be any length. However,
only the first two characters are significant. The first
character must be a letter; the second can be a letter or
number. In EXTENDED and DISK BASIC 40 characters are
significant. The first character must be a letter; the others can
be letters, numbers, or decimal points (periods).

Thus, if the following program were run

10 HARRY =1
20 HAROLD =2
30 PRINT HARRY +HAROLD

in 8K BASIC the computer would display a 4, in EXTENDED
or DISK BASIC the computer would display a 3. In 8K only
the HA would be significant, so line 20 resets HA from 1 to 2,
and HA+HA=4. In DISK or EXTENDED the two variable
names are different, so the result is 3.

Do not use FN as the first two characters in a variable unless
you mean it to be a user defined function (see the chapter
"ARITHMETIC IN BASIC"). See also RESERVED WORDS in
this chapter.

Definitions ® 7

ALPHANUMERIC (character): This is any printable
character suchas A, L, b, &, +, 9, etc. A letter of courseis A to
Z, a digit (number) from 0 to 9.

CONTROL CHARACTER: This is a special alphanumeric.
It is entered by holding the control key down while a charac-
ter key is pressed. These are used for some special commands
to BASIC and should not be used in variables or program
names.

NUMERICS: These are numbers. There are several types
of numbers used in BASIC.

The INTEGER is a number from -32768 to 32767 with no
decimal point. In 8K BASIC this has no special meaning ex-
cept for the INT() function. In the other BASICs integers can
be used to decrease the program's running time and save
space. This will be discussed further in other chapters.

In EXTENDED and DISK BASIC an integer variable is
designated by adding a % to the end of the variable name.
Thus A1% is an integer variable.

SINGLE PRECISION is the type of number normally used
in BASIC and is assumed unless a number is specifically
declared to be an integer or double precision. Single precision
numbers have a precision of 7 digits. Therefore,

10 A=1.23456789
20 PRINT A

would display 1.23457.

10 A=123456789
20 PRINT A

would display 1.23457E + 08.

10 A=999999
20 PRINT A

would display 999999, but any greater number would be
transformed to the E format. Thus,

10 A=1000000
20 PRINT A

8 e Microsoft BASIC

would display 1E+06. Going to the smaller numbers,

10 A=.01
20 PRINT A

results in .01 but

10 A=.001
20 PRINT A

gives 1E-03. See how it works? The computer gives you back
your input if the number is between .01 and 999999, other-
wise it uses the E format.

In EXTENDED and DISK BASIC an ! can be appended to
the end of the variable name to indicate that it is a single
precision variable, A1! for example. Normally, however, Al
would be used instead.

DOUBLE PRECISION is found in EXTENDED and DISK
BASIC. This format permits 17 digits of precision. The value
-01 is still the smallest that can be displayed without going to
the E format.

A double precision variable is signified by following the
variable name with a # Thus Al# is a double precision
variable.

FLOATING POINT means using the E format mentioned
earlier.

STRING: This is a group of alphanumeric characters sur-
rounded by double quotes (" “). Thus, the “FINISHED" of our
first example is a string. Strings may be up to 255 characters in
length, not including the double quote ("").

STRING VARIABLE: This is any legal variable name
followed by a $. String variables can be used in any version of
BASIC. For example,

10 A$ = “FINISHED”
20 PRINT A$

would result in FINISHED being displayed. Note that the
string must be enclosed in double quotes. Thus, strings cannot
include a double quote. Later we will see how we can get
around this shortcoming. The surrounding double quotes are
not displayed with the string.

Definitions ® 9

See CLEAR for more information about strings.

STRING LITERAL: This is the string enclosed by double
quotes. A string can include punctuation, numerals, letters, or
anything but a quotation mark. Control characters can be in-
cluded in a string, but as these are invisible it is best not to use
them unless you have to.

EXPRESSION: An expression is two or more variables con-
nected with (an) operator(s). Thus, A+B is an expression.

FUNCTION CALL: This is an intrinsic function of BASIC
such as SQR(4), which means find the square root of 4. There
are many other functions which will be presented in later
chapters.

OPERATOR: This is the +, —, [), <>, =, etc., used in a
statement or command. Many are used and will be detailed in
later chapters.

INTRINSIC FUNCTION: This is the same as a function
call, mentioned earlier.

ERROR messages: These are displayed by BASIC when
you do something you shouldn't. Dividing by 0, asking for the
square root of a negative number, making a syntax error such
as X)5 instead of X=5, or many other errors result in error
messages. Your BASIC documentation gives a long list of all
error messages and their causes. See also Appendix C.

EDIT: This can have two meanings. There is a simple
editing which permits you to reenter or change a character
while still typing a line (in direct or indirect mode). Another
edit feature, only in EXTENDED and DISK BASIC, permits
you to return to a program line and replace or insert one or
more characters in that line.

RESERVED WORDS: These are used as instructions to
BASIC. A reserved word, such as PRINT, cannot be used as a
variable in any version of BASIC. In 8K BASIC a reserved
word may not be imbedded in a variable name. Thus a
variable name such as APRINT or TOTAL would be illegal in
8K BASIC (APRINT contains the reserved word PRINT,
TOTAL contains the reserved word TO). A list of reserved
words for each version of BASIC is in Appendix B.

SUBROUTINE: This is a part of a program that will be
repeated one or more times. It is usually set off from the rest
of the program by using higher line numbers than the rest of
the program and ends with a RETURN statement. It is used so
a sequence of identical statements will not have to be entered

