- An ACM D/st/ngwshed Dissertation
1982

 Algorithmic
Program Debuggmg
Ehud Y Shap/ro >

1

“ The MIT Press | s

Lidd 85625592

Algorithmic Program Debugging

Ehud Y. Shapiro

il

E8562552

Il

The MIT Press
Cambridge, Massachusetts
London, England

© 1983 by Ehud Y. Shapiro and The Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form or by
any means, electronic or mechanical, including photocopying, recording, or by
any information storage and retrieval system, without permission in writing from
the publisher.

This book was printed and bound in the United States of America.

Publisher’s note: This format is intended to reduce the cost of publishing certain
work in book form and to shorten the gap between editorial preparation and the
final publication. Detailed editing and composition have been avoided by
photographing the text of this book directly from the author’s typescript or

word-processor output.

This dissertation was presented to the Faculty of the Graduate School of Yale
University on May 1982.

Apart from some stylistic changes and the correction of typographical errors, the
only difference in content is in Sections 2.1.3 and 4.5. To these sections there has
been added a description, without proof, of results obtained in [88, 91].

The thesis research was supported by the National Science Foundation, grant
no. MCS8002447.

Library of Congress Cataloging in Publication Data

Shapiro, Ehud Y.
Algorithmic Program Debugging

(ACM distinguished dissertations)

Thesis (Ph.D.)—Yale University, 1982

Bibliography: p.

Includes index.

1. Debugging in computer science 2. Prolog
(Computer program language) I. Title II. Series
QA76.6.549 1983 001.64'2 82-24992
ISBN 0-262-19218-7

Algorithmic Program Debugging

ACM Distinguished Dissertations
1982

Abstraction Mechanisms and Language Design, by Paul N. Hilfinger

Formal Specification of Interactive Graphics Programming
Languages, by William R. Mallgren

Algorithmic Program Debugging, by Ehud Y. Shapiro

8562552

7for the best
doctoral dissertation in computer-related science and engineering.

During the judging process that is designed to select the annual
winner, it has inevitably developed that some of the theses being con-
sidered in the final round are of such high quality that they also deserve
publication. This book is one of those dissertations. In the judgment of
the ACM selection committee and The MIT Press, it truly deserves
special recognition as a Distinguished Doctoral Dissertation.

Dr. Ehud Shapiro wrote his thesis on “Algorithmic Program Debug-
ging” while at Yale University. His thesis advisor was Dr. Dana
Angluin, and the thesis was selected by Yale for submission to the 1982
competition. The Doctoral Dissertation Award committee of ACM rec-
ommended its publication because it productively combines elements
of programming languages, environments, logic, and inductive infer-
ence to produce effective debugging aids. Its use of the PROLOG
language provides an efficient implementation of the debugging algo-
rithms.

Walter M. Carlson
Chairman, ACM Awards Committee

To Karl R. Popper
for his inspiring intellectual courage and clarity

and
to my parents, Shimon and Miriam

for bringing me up knowing that
the world is a great place to be

Acknowledgments

First and foremost, this thesis owes its shape and content to my
advisor, Dana Angluin. She has directed my research since I came to
Yale, and has had a great influence on what I have accomplished in
these years, and what I know today. Her thoroughness and sincerity
in doing this will be a model for me in the years to come. She also
tried to teach me her high professional and personal standards;
although I resisted as strongly as I could, there are still some traces of
them in this thesis.

Drew McDermott escorted my first steps in Prolog. He gave me
some insightful suggestions, which made me wish he had given me lots
more. Just to name a few, the definition of incremental inductive
inference, the idea of mechanizing oracle queries, and the methods
that led to the algorithm that diagnoses finite failure, were all
originated in some off-hand comments he made when he failed to
avoid me in the corridor.

Alan Perlis and Mike Fischer also contributed to the final form
of the thesis, especially to its introduction and conclusions. Without
Alan’s encouragement, I would not have had the nerve to make some
of the bold claims I have made, and his flamboyant manner helped to
counter-balance Dana’s caution and serenity.

I got a lot of support from the people of the logic programming
community. I have learned a lot from discussions with Lawrence
Byrd, Ken Bowen, Alan Colmerauer, Maarten van Emden, Bob
Kowalski, Frank McCabe, Fernando Pereira, and David Warren, to
name a few.

David Warren’s Prolog implementation was an indispensable
research tool. First across the ocean, and then across the Arpanet, he
reminded me that I am not the only Prolog hacker in the world, even
though that’s how it feels at Yale.

-ix-

Donald Michie’s enthusiasm about my research was an ultimate
source of pleasure, and helped me feel that what I am doing may be
worth while. Together with Alan Perlis, he showed me that
intellectual curiosity and openness are ageless and statusless.

Bob Nix kept me informed on what is going on in the world,
while T was too preoccupied with my work to pay attention to
anything else. I think I have learnt more about computer science from
discussions with him than from all of the courses I have taken
together. I wish I could take him with me as an office mate wherever
I go. He also devoted a lot of his time to reading and correcting my
thesis, which compensated for some of my ignorance of English and
Combinatorics.

Many people made specific technical contributions to the thesis,
which I would like to acknowledge: Frank McCabe was the first to
suggest that the query complexity of the diagnosis algorithms may be
improved; only after this realization, did I begin to believe that they
can be more than an exercise in formalizing some vague intuitions, but
a real debugging tool. He also found how to diagnose Prolog
programs with negation.

Ryszard Michalski insisted on understanding what I was doing,
which made things clearer to me too; he offered some terminological
improvements that made the formal machinery I used more intuitive
and appealing.

Bob Moore debugged my debugging algorithm while I was at
SRI, and refuted my naive belief that a binary search technique could
be readily used in the diagnosis of nontermination.

David Plaisted suggested an improvement to the algorithm that
diagnoses termination with incorrect output, which I accepted without
hesitation. He then refuted his improvement, but finally we made it
together to the current divide-and-query algorithm.

Last but not least, the Tools group at Yale, and in particular
John Ellis, Steve Wood, and Nat Mishkin, made the use of our
DEC-20 and its surrounding machinery tolerable, and even fun. I
cannot imagine what my productivity as a programmer and as a
writer would have been without Z, SM, and the kind help they

-X~

provided me. They have also contributed to the literary aspect of the
thesis, by telling me (or, more accurately, by allowing me to pick and
put) the Zen parable about the drawing of the fish.

In addition to the individuals mentioned above, I wish to thank
the National Science Foundation, whose grant, numbered
MCS8002447, supported me during the last two years.

Contents

Chapter 1: Introduction . s BB & b B R e - ow o
1.1 Theproblem
12Results, o » o 2 5 65 55 o 5 5« v n o o =5 5 &« «

1.3.1 The need for debugging

1.3.2 The software-engineering perspective on debugging...

1.3.3 Program testing.
1.3.4 Heuristic approaches to debugging
LAOUNG. ¢ « o 5 o & 5 4 5 6 s o w0 5 9w 5 s 85 5 s

Chapter 2: Concepts of logic programming and Prolog .
2.1 Logic programs0

2.1.3 Complexity measures
22Prolog
2.2.1 The execution and backtracking mechanism . . .
2.2.2 Running time and the “occur check”
223Control. oL

2.2.5 Second order predicates
2.2.6 Meta-programming

Chapter 3: Program Diagnosis .
3.1 Assumptions about the programming language.
3.2 Diagnosing termination with incorrect output
321 Correctness
3.2.2 A single-stepping algorithm for diagnosing
incorrect procedures.
3.2.3 A Prolog implementation.

15

16
17
19
22
23
23
24
26
28
28
30

32
33
37
37

39
40

-xii-

3.2.4 A lower bound on the number of queries. 42
3.2.5 Divide-and-query: a query-optimal diagnosis

algorithm.o 44
3.2.6 A Prolog implementation of the divide-and-query
algorithm. 48
3.3 Diagnosing finite failure 51
3.3.1 Completeness 51
3.3.2 An algorithm that diagnoses incomplete procedures
52
3.3.3 A Prolog implementation. 54
3.4 Diagnosing nontermination. 59
3.4.1 Termination. 59
3.4.2 An algorithm that diagnoses diverging procedures...........
62
3.4.3 A Prolog Implementation. 63
3.5 A diagnosissystem 000 ... 66
3.6 Extending the diagnosis algorithms to full Prolog . . . 73
3.6.1 Negation 74
3.6.2 Control predicates. 75
3.6.3 Second order predicates 76
3.7 Mechanizing theoracle. 77

Chapter 4: Inductive Program Synthesis 81

4.1 Concepts and methods of inductive inference 82
4.1.1 Identification in the limit. 82
4.1.2 Enumerative inductive inference algorithms . . . 83
4.1.3 Speeding up inductive inference algorithms . . . 85
4.1.4 Synthesis of Lisp programs from examples. . . . 89

4.2 An algorithm for inductive program synthesis 89
4.2.1 Limiting properties of the algorithm. 90
4.2.2 Complexity of the algorithm 95

4.3 The Model Inference System 97

4.4 Search strategies, 104
4.4.1 An eager search strategy 104
4.4.2 A lazy search strategy 109
4.4.3 An adaptive search strategy 115

4.5 A pruning strategy 118

=xiii-

4.5.1 The refinement graph 118

4.5.2 Examples of refinement operators. 119

4.5.3 Searching the refinement graph. 127
4.5.4 An implementation of the pruning search algorithm

129

4.6 Comparison with other inductive synthesis systems. . . 130

Chapter 5: Program Debugging 138

5.1 The bug-correction problem 138
5.2 A bug correction algorithm. 142
5.2.1 Describing errors via refinement operators 143
5.2.2 Searching the equivalence class 144
5.3 An interactive debugging system 146
5.3.1 Debugging quicksort 147

Chapter 6: Conclusions 157

6.1 Algorithmic debugging. 157

6.2 Incremental inductive inference. 158

6.3 Prolog as aresearchtool. 159

6.4 Prolog versus Lisp. 162

6.5 Programming environments and simplicity. 164
Appendix I: Applications of the Model Inference System
166

I.1 Inferring insertionsort 166

.2 Inferring a context-free grammar 174

Appendix II: Listings 185

II.1 The diagnosis programs v v v v « . . 187
I1.2 The diagnosis system 190
[1.3 The Model Inference System 190
I1.4 A general refinement operator 191
II.5 A refinement operator for definite clause grammars . . 194
1.6 Search strategies 195
1.7 Pruning search of the refinement graph. 196
I1.8 The interactive debugging system 198

I1.9 The bug-correction program 200

I1.10 Database interface utilities
II.11 General utilities
I1.12 Initialization
[1.13 Type inference and checking
II1.14 A note on Prolog programming style

References

Name Index

.......

-Xiv-

200
204
210
211
213
215

231

Algorithms

Algorithm 1: Tracing an incorrect procedure by single-
stepping L L Lo e e
Algorithm 2: Tracing an incorrect procedure by divide-
and-query.ol 0 e e ..
Algorithm 3: Tracing an incomplete procedure
Algorithm 4: Tracing a diverging procedure
Algorithm 5: Inductive program synthesis
Algorithm 6: A pruning breadth-first search of the
refinement graph
Algorithm 7: Interactive debugging
Algorithm 8: A bug-correction algorithm.

Figures

Figure 1: A scheme for a debugging algorithm.
Figure 2: Common programming concepts in logic
Programs . . . « ¢ v v v v v 4 4 e e e e e e .
Figure 3: An example of a refutation.
Figure 4: An example of a refutation tree.
Figure 5: The computation tree of (incorrect) insertion sort

Figure 6: Part of the refinement graph for member
Figure 7: System statistics.

39

46
53
63
91

128
141
146

17
20
20

41
121

Programs

Program 1: Insertionsort
Program 2: An implementation of bagof
Program 3: An interpreter for pure Prolog
Program 4: Tracing an incorrect procedure by single-
stepping 0 e e e e e e e e e
Program 5: An interpreter that computes the middle point
of a computation 000 L.
Program 8: Tracing an incorrect procedure by divide-and-
QUETY ¢« v v v v v e e a e e e e e e e e e e e
Program 7: Tracing an incomplete procedure
Program 8: Tracing an incomplete procedure (improved).
Program 9: A depth-bounded interpreter.
Program 10: Tracing a stack overflow
Program 11: A diagnosissystem.
Program 12: An interpreter that monitors errors
Program 13: The Model Inference System
Program 14: The eager coverstest.
Program 15: The lazy coverstest
Program 16: The adaptive coverstest
Program 17: A pruning breadth-first search of the
refinement graph 0oL ..

16
29
30

40

48

49
55
57
64
65
67
78
99
109
115
118

129

Chapter 1

INTRODUCTION

1.1 The problem

It is evident that a computer can neither construct nor debug a
program without being told, in one way or another, what problem the
program is supposed to solve, and some constraints on how to solve it.
No matter what language we use to convey this information, we are
bound to make mistakes. Not because we are sloppy and
undisciplined, as advocates of some program development
methodologies may say, but because of a much more fundamental
reason: we cannot know, at any finite point in time, all the
consequences of our current assumptions. A program is a collection of
assumptions, which can be arbitrarily complex; its behavior is a
consequence of these assumptions; therefore we cannot, in general,
anticipate all the possible behaviors of a given program. This
principle manifests itself in the numerous undecidability results, that
cover most interesting aspects of program behavior for any nontrivial
programming system [85].

It follows from this argument that the problem of program
debugging is present in any programming or specification language
used to communicate with the computer, and hence should be solved
at an abstract level. In this thesis we lay theoretical foundations for

