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Chapter 1

INTRODUCTION

1.1 The problem

It is evident that a computer can neither construct nor debug a
program without being told, in one way or another, what problem the
program is supposed to solve, and some constraints on how to solve it.
No matter what language we use to convey this information, we are
bound to make mistakes. Not because we are sloppy and
undisciplined, as advocates of some program development
methodologies may say, but because of a much more fundamental
reason: we cannot know, at any finite point in time, all the
consequences of our current assumptions. A program is a collection of
assumptions, which can be arbitrarily complex; its behavior is a
consequence of these assumptions; therefore we cannot, in general,
anticipate all the possible behaviors of a given program. This
principle manifests itself in the numerous undecidability results, that
cover most interesting aspects of program behavior for any nontrivial
programming system [85].

It follows from this argument that the problem of program
debugging is present in any programming or specification language
used to communicate with the computer, and hence should be solved
at an abstract level. In this thesis we lay theoretical foundations for



