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" Preface

Since the appearante, in 1970, of Vol. I of the present monograph
{370], the theory of bases in Banach spaces has developed substantially.
Therefore, the present volume contains only Ch. III of the monograph,
instead of Ch. HI, IV and V, as was planned initially (cp. the table

- of contents of Vol. I). Since this volume is a continuation of Vol. I

of the same monograph, we shall refet to the results of Vol. I directly
as results of Ch. T or Ch. II (without specifying Vol. I). On the
other hand, sometimes we shall also mention that certain results
will be considered in Vol. IIT (Ch. TV, V).

In spite of the many new advances made ‘in this field, the

statement in the Preface to Vol. I, that “the existing books on

functional analysis contain only a few results on bases™, remains still
valid, with the exception of the recent book [248 a] of J. Lindenstrauss
‘and L. Tzafriri. Since we have learned about [248 a] only in 1978, in
this volume there are only references to previous works, instead of
[248 a]; however, this will cause no inconvenience, since the intersec-
tion of the present volume with [248 a] is very small. Let us also
mention the appearance, since 1970, of some survey papers on bases
in Banach spaces (V. D. Milman [287], [288], C. W. McArthur [275]
M. I. Kadec [204], § 3 and others).
The fact that the basis problem (and even the approximation prob-
lem) was solved in the negative, by Per Enflo [99] (due to its special

importance, we shall present this result in § 0), has increased the use-

fulness of a monograph on bases and their generalizations in Banach
spaces.

This volume attempts to present the results known today on gene-
ralizations of bases in Banach spaces and some unsolved problems
concerning them. The style is, deliberately, the same as that of Vol. I,
except that the section of Notes and remarks and the Bibliography
are larger. The works which have appeared after the main part of
this volume had been completed, are usually encompassed by the Notes
and remarks; also, this section is more detailed, since for most of the
results we indicate the paper and the place in it, where the result occurs.

We hope tnat, similarly to Vol. I, the present volume will be useful
to specialists, stimulating further research, and to a large circle of
those who want to use it for applications to other problems (for exam-
ple, orthogonal series, summability, functional equations, etc.). Also,
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in order to rhake the book suitable for study, the necessary tools from
functionfal analysis have been carefully explained (either by giving
them, as lemmas, with their proofs, or by giving references to treatises
containing their proofs). Some of our unpublished results and remarks
have been also included, without any special mention.

In order to give some applications of bases and their generalizations
to the study of Banach spaces, we shall publish, hopefully soon after the
appearance of this volume, a part of Ch. IV of the present monograph,
in the Lecture Notes in Mathematics series of the Springer Verlag.

We wish to thank here our friend, Professor Czeslaw Bessaga, for
reading a large part of the manuscript and making valuable sugges-
tions . and observations. We extend our thanks, fer valuable
remarks made in discussions and letters, to our colleagues and friends
Professors W. J. Davis, D. van Dulst, T. Figiel, D. J. H. Garling,
V. I. Gurarii, W. B. Johnson, M. I. Kadec, S. Kwapien, P. Masani,
R. J. Nessel, K. 1. Oskolkov and W. H. Ruckle. Furthermore, we
thank our colleagues in the University of Amsterdam and Purdue
University, who attended, in 1973/74, over a period of 5 months
and 3 months respectively, our seminars on § 0 and on parts of §§ 8—11,
for their stimulating interest and remarks. Also, we received useful
comments from the participants to our lectures on parts of § 10, 11,
at the Semester on approximation theory of the Stefan Banach
International Mathematical Center in Warsaw, in 1975.

During the writing of this volume we have benefited by excellent
working conditions at the Institute of Mathematics and at the National
Institute for Secientific and Technical Creation in Bucharest, as
well as at various Universitiess which we visited for periods
of several months and we wish to express our gratitude to all
who contributed to ensure these conditions. Our special thanks are
due to Dr. Ing, Constantin Teoderescu, General Director of the
National Institute for Scientific and Technical Creation and to Dr. Zoia
Ceausescu, Head of the Department of Mathematics at this Institute,
without whose support this ‘volume could not have been completed.

February, 1978 IVAN SINGER

After this book has been typeset, we added an Appendix,
containing further notes and remarks and further bibliography.
We extend our thanks to Professors B. V. Godun, M. I. Kadec,
A. N. Plicko and P. Terenzi, for correspondence concerning
some parts of the Appendix. Finally, our thanks are due to
Editura Academici and to Springer Verlag, for undertaking the task
of publishing this volume and for their help during its preparation.

May, 1980 - IvaN SINGER
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ChapterLi]

Generalizations of the Notion of a Basis

§ 0. Banach spaces which do not have
the approximation property

We recall that a Banach space E is said to6 have the approximation
property if the identity operator I;:E — E can be approximated, uni-
formly on every compact subsét of E, by continuous linear operators
of finite rank (i.e., of finite-dimensional range), that is, if for every com-
pact subset QcE and every & > 0O there exists an endomorphlsm*
v = v, ., € L(E, E) of finite rank, such that

lo(x) — x|l < e (xe Q). (0.1)

We have seen in Ch. I, § 17, theorem 17.3, that every Banach space
E with a basis has the approximation property. The same argument
also shows that a similar result holds** for “‘basis’’ replaced by various
generalizations of bases which will be introduced in the sequel (involv-
ing a sequence of finite rank operators on E converging pointwise to
the identity operator I;). Thus, the examples of separable Banach
spaces failing to have the approximation property, which will be con-
structed in the present section, will give a (negative) solution to the
basis problem (Ch. I, § 1, problem 1.1) and to the similar existence
problems for these generalizations of bases.

The existence of separable Banach spaces without the approxima-
tion property has also other applications. For example, this fact implies,
as we shall see below, that there exist Banach spaces with bases, whose
conjugate space is separable and fails to have the approximation prop-
erty. This latter result will be used in § 9 to show that there exists a
separable, Banach space E with the approximation property, having
no basis (and which even fails to have any of the generalizations of
bases mentioned above) and having E* separable.

*) We recall that L(E, E) denotes the Banach space of all endomomhlsms (con-

tinuous linear mappings of E into E), with the norm |uj] = sup |u(x)!.
xX€EE
ixi<1
**) However, we shall see in § 9, example 9.2, that the converse results are
not true.

¥



2 II1. Generalizations of the notion of a basis

We shall give two different proofs of the existence of subspaces of
co and- I? 2 < p < oo) which fail to have the approximation property
(theorems 0.1 and 0.2 below). Aithough these proofs have, essentially,
the same underlying idea, each of them has its own interest. The first
one will be of a constructive character, using a combinatorial lemma,
while the second one will be a proof of existence, using a probabilistic
lemma.

In both proofs we shall make use of the following sufficient con-
dition for a Banach space E to fail the approximation property:

Lemma 0.1. a) Let E be a Banach space. Assume that there exists
a sequence {@,}n-o of linear functionals on L(E, E), such that

ol = 1 (n=3,45...), 0.2)
lim @,(v) = 0 (ve L(E, E), dim v(E) < 0), (0.3)

a sequence {4, of finite subsets of E and a sequence a, >0 (n =
[ee]

=0,12,3,...) with ), o, < 00, such that

n=0 " |

() — @u-a(W)i<oty maxiu()l| - (u€ L(E, E),n=012,...), (0.4)

n

max ||x|| >0 as n— oo, (0.5)
xed,

where @_, = 0. Then E does not have the approximation property.
b) In particular, the last assumption (0.4), (0.5) is satisfied if
@o = @y = @5 = 0 and if there exist decompositions

: b

¢n . '2_— Z (pn,lv D3~ = Z '/’n k (n = 3’4,5y * . ) (06)
where @, and Y, , (k = 1, ...,2"% n = 3,4,5, ...) are linear functionals
on L(E, E), and a family {.s&’,, ,,}K k<on Of ﬁmte subsets of E such that

<n<oo

@ () — Y, k(u)l max llu(x) |l
dn,k

(ue L(E, E), k = 1, o1 M8 7 wesSibidelk 0.7
and such that the numbers C,= max |x{ (n=34,5,...) satisfy

2"

xX€ U “nx

k=1

Y, G, < oo. (0.8)
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0. Spaces which do not have the app'roximation property 3
; -Proof. a) Put ¢
pe . (5L e e 3
Qo ={0}u U o, 0.9)
n=0 / \

~ Then, by (0.5), Q, is compact. Furthermore, by (0.4),
| @u®) — @, (1) <2, sug lu(x)| (e L(E, E),n=0,1, ...), (0.10)
t XEQ, -

o
whence, since «, > 0, Y 2, < oo, the limits

n=0

o) = lim @,(u) (ue L(E, E)) (0.11)

exist and satisfy thé_ inequalities
|G| < Y %, sup ()| (e L(E, E)). ~ (0.12)
P X€EQ,

Now let v be an arbitrary continuous linear operator of finite rank
on E(i.e.,v € L(E, E),dim v(E)< co) and let u = Iy — v. Then, by (0.11)
and (0.2), (0.3), ; ;

@) = lim @,(u) = lim ¢, (I;) — lim ¢,(v) = 1, (0.13)

n-—->co n—-oo n-—->00

whence, by (0.12),

I'=lo@)] < Y, 2 sup fx — o),
n=0 YE€Q
so there is an Xg € @y such that |lx, — v(xg)l = ;—l — - Thus, since
X %

. ' n=0
ve L(E, E) was an arbitrary operator of finite rank, £ does not have
the approximation property.

- b) By (0.8), we can choose* a sequence {0, }2°_5 of positive numbers

such that ¥} «, < oo, lim—" = 0. Put

n=3 © n-o oz,,
2R) : .
AT O =B Hlas (014
k=1 %, ~ 5
fee]
*) Indeed, since Z C; < oo, there exist integers m, > 2 such that

a8

(el . ¢
1 .
> G e (n=1,2,...). Hence, putting o; =nC; (j=my+1,...

J=mu+1 o
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4 5 " {II. Generalizations of the notion of a basis

~"Then , is finite and by (0.6), (0.7) we have

1 on : on
o) Bus@] = |3 @) — V@D | 5, max WO <
2'_' k=1 | 2 el XE

i o

< 1 njax flu(x) || = Ot;. mgx lu(x)l|  (ue L(E, E),n=3,4, .. o):
RO xed,

XE U Fuk .
k=1

which, together with @ = @1 = @2 = 0, gives (0.4) (with any finite
sets &g, A1, ). Also,

max |lx|| = max x|l < == > 0 as n —» oo,
2"

x€Fpn Oy

1
x€ U — Fni
k=1 o,

and thus we have (0.5), which complectes the proof.

Remark 0.1. @) One can also give the following geometric inter-
pretation of the above proof of part a): Since each ¢, is linear on
I(E, E), so is ¢ defined by (0.11) (we have used this above, in (0.13)).
Moreover, by (0.12) ¢ is also continuous for the topology of uniform
convergence on compact subsets of E (since a neighborhood base of &

for that topology is* the family V,,(0) = {ue L(E, E)| sup u)li<r},
: ueQ
wheggzQ < E is compact and r > 0, and since for each ¢ > 0 there

exists Vg, ,,(0); namely, Q. = Qoand r, = £ such that lp(u)| <&

o
Y %
n=0

for_all ue Vg, ,(0)). Since by (0.2) and (0.3), o(y) = lim @I =1
n-»00

and @(v) = lim @,(v) =0 for each ve L(E, E) with-dim v(E) < o0, ¢

separates [ from the closure of the. linear subspace fve L(E,E) |
dim ©o(E) < oo} of L(E, E) in the topology of compact convergence,
which is equivalent to the fact that E does not have the approximation
property.

: & 1
TR P R have = —f=m, + 1, ., Mpyy), Which — o
a; n
5
oo oo my s oo 1 |
HES v N - e .
as j ~ 0o, and Z 2= Y. 1 P R T Y, 2 = —, so'it remains to
; Je=my--1 ne=1" J=m,*1 =1 <" 2
take arbitrary g, . .., %m, > 0.

%} See e.8: [355]: P 79: this topology is also called the “topology of compact
convergenge’’. andmon (0.4) means that, for each n, ¢,isso *near’” to ¢,_,, as to
guarantee the existence and the continuity of ¢ for this topology.

shao s cn e Bl Co i Lo
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0. Spaces which do not have the apﬁroximation property v

» o -

R >

J = s I F

b) Let us observe that—any decompositions ¢, = - 2 Ok
k-1

(n = 3,4.5, ...) imply the obvious decompositions ¢, ; = o Y Yo
'y
=345 . 1, =0) where

n-1

5~ 20 Pob bk =F (8852
i 0 for &= 2F:

however, we shall work with other decompositions (0.6).

Let us explain now how we shall define the subspaces E of ¢, and /?
(2 < p < o), the linear functionals ¢, on L(E, £) and the finite sub-
sets &, of E satisfying the conditions of lemma 0.1. We-recall that if
E is a Banach space and if (x;, /))iew ({x;}ies = E, {fi}iew = £*) is a
countablé biorthogonal system, ther for any finite non-empty subset
M of the index set .#, the average trace over M is the linear functional
on L(E, E) defined by : :
T (M; u) e __1
!M§ ieM _r—»

whete |M| denotes*’ the cardinality of the set M. =

The desired subspaces £ of ¢, and 7 (2<p < oo) will be of the form
E = [x;)ic.u, where (x;, fic.u (iXi}ieu = E, {fi}ie.u = E*) is a suitable
countable E-complete biorthogonal system (the index set .4 will be
chosen later). Each functional ¢,(u) (except @, = ¢; == ¢, = 0 in the
first proof) will be of the form 7 (M,; u), for a suitable sequence {M,}
of pairwise disjoint finite subsets** of .# such that U M, = .4 (thus,
the nearness condition (0.4) will mean that the “jump” of .7 from M, _,
{0 M, is***» small enough) and each &/, will be a finite set of finite
linear combinations of the x;'s.

Let us first observe that by (0.15) and biorthogonality we have, for
any finite hon-empty subset M < .#,

1 .
TAM, Tpyes ML 5 filx) =24,
I

ieM

and hence the linear functionals ¢,(1) = Z(M,: u) will certainly satisfy
(0.2). Furthermore, if » € L(£, E) is an operator of rank | of the form

v(x) = folx)vy, (x e E), (0.16)

*) In the other sections we shall use the notation card M.

**) In theorems 0.1 and 0.2 we shall have [M,| = 2*"1 and [M,| -~ 2" (n =
= 1,2, ...), respectively.

**#) For a consequence of this fact see remark 0.5.

- Y flu(x) wellE E), (0.15
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»
~»

where” 7y € E*, ip€ 1, then, by biorthogonality,

) = Ty 0) =~ 5 filfidry) =

! "l ieM,

1
SR et ] f ("‘i)éi;i (H = 0,1,2, R
iMm! i§!n b . ! )

However, when 7 is large enough, we have i, ¢ M,, so J; ; = 0
(i€ M,), and hence ¢, (v) = 0. Consequently, since the set of all opei-
ators of rank 1 of the form (0.16) is complete, for the norm topology
of L(E, E), in the set. of all finite rank operators on E, in order to prove
(0.3) it is enough to show that .sup [l,|| < co. But, by (0.10) and

0<n<oo

x>0V‘a l,wehave”

det
1Pul0), = Z (qo,(u) —@i-1W)| < Yo S:p ()|} <
j=o j=0 ~ *€Q
© ; ';«,
< (Z o; sup rxll) flal] @ e l(E By, n=.0,1,2.%:.),
3 =0 XEQ,

whenee sup  {lg,|l < co0,* which will prove (0.3), provided that we
O<n<oo

shall have (0.4) and (0.5) assured, Thus, it will be sufficient to con-
centrate our efforts to achieve (0.4) and (0.5),

In both proofs below it will be convenient to replace ¢, and 7
(2 < p < c0), by the (isometric) spaces cy(F) and //(I') 2 < p < )
. for a suitable countable set I', so the elements of the desired space
E will be**) scalar-valued functions on I'. We shall take the x;’s to be
certain functions on I' with finite,supports supp x; and such that

- lxd@l =1 (g €supp x;; i .H), 0.17)

. _1_

whence ' x;€ ¢ () = IP(), |l xllegry = b,' i x;lisery = |supp x;|”
(1<p < o0), and then we shall put E = [xlic.« in co(I'), respectively
*) Actually, we shall see in a moment that the biorthogonal system (x;, fie g will

be chosen so as to satisfy |ix;[lllf;ll = 1 (i€ #), whence |9,(w)| = [T(M,, w)| < {ull

and thus, by (0.2), lig,!l = 1 for all .
gl For any countable set I" = {y,}, co(I') is the Banach space of all functions

-x(.) on I" such that x(y,,)},. 1.€ Co, With (). (= H{x(I}, = sup Ix(y,)!|;
o) 0 1<n<eo

the case of /7(I") is similar,
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»

P(I’) Naturally, the supports of the x;’s cannot be pairwise disjoint
(smce if they were,  thén {x;};e.« would be a bloc basic sequence with
respect to the unit vector basis of ¢,(I') and /2(I"), and hence a basis
of E = [x;]ie.x), but we shall choose the x;’s in such a way that the
sequence {x;}ic.« Will be orthogonal in /*(I"). Therefore, defining

2 1 i =
x’ xi PR e ( ‘l' xe E, . p ‘/// :
”xi”?’(r) (’ ) Isupp xil gesuzpp i X g),X (g) ( l )

Jix) =

we shall have f; € E* and (x;, f;)ic.« Will be an-E-complete biorthbgonar
system; also, clearly,

3
el

k.'»_k\ii 4 1
e 1
il . mllxillmnf |supp x;1¢
it oot 3o oy el P WS gy, et = 1
P q 0

(i€ #). Then, by the above choice of the functionals P

e D e 5 D i e

IMl i€M,  ger. .

g s poled G (g)x,(g)

IM,_\l ie,., éer

=0%; "(;| | 5 D,-?c?@xi) (&)

8 % Dix(g)x; —
nl ieEM,

g€l IMn 1| ieMa-s
‘ (e L(E, E), n=0,1,...),
where I, = ) supp x; and D; = ———1———-— This formula can
ieM, UM, Isupp x;|
s 1 :
be further simplified by choosing the x;’s so that D;=———is
Isupp x|

constant on each M,, say D; =9, (i€ M,). Then, putting

J’Z“i— Yy x x{g)x; L Y, x@x L0 ¥ R pdt iegy

IM‘ JEA:I' ]A{n 1| iEMy,_y
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wg;;a;t;t;lin 13
10u) — Pur@] =1 % u0D (@) < % WOD (@) <

g€l g€ly

<Y WODlpy, S 10 max WOy, (@e LE E), n=01,...),
gely g€r,

where 1<p< oo. Thus, it is intuitively clear that if we could take the

elements of the finite sets &, to be of a suitable similar form* to the
o :
'-‘&"-' y%’s, then (0.4) would be satisfied and we would have to concen-

trate only to obtain such elements with norms smail enough to assure
(0.5) as well. Actually, in otder to define such elements, in the first
proof we shall also exploit that each @, admits two different decompo-
sitions, as in (0.6) (the functionals @, (1), ¥, «(u) will be average traces

T (M, u), 7 (L,y; u) over some suitable subsets M, ., L, of M, and.

M, _,, respectively), while in the second proof we shall be able to write
each f; in two different forms and to exploit both of them. This will
lead to (0.4), (0.5) for ||. |lwr), where 2 < p < o0.

To this end, we shall take I' to be a countable union of certain pair-
wise disjoint finite groups G, and we shall take each x; to be a certain
linear combination, with coefficients -1, of a constant finite number**’
of characters (or, equivalently, Walsh functions) on different groups
G,, extended by 0 on I'\G,. Then, in order to prove the existence of
elements of similar form to (0.18), with norms growing not too fast,
we shall need (in each proof) a lemma on the existence of a “good”
partition of the set of all characters of the groups G, entering in the
definition of I'. Also, in the first proof we shall use a combinatorial
lemma which will enable us to “stretch out” I' so much as to obtain
disjoint supports for the five summands in the definition of the func-
tions x; and supports with small intersection for the summands in the
elements of the sets &, (thus, this lemma will help to make our choice
of I' and of the x;’s and &,’s), while in the second proof we shall use,
instead, a probabilistic lemma, to show that “good’’ partitions of sets
. of characters and “‘good” choices of the above mentioned coefficients
-1 in the definition of the x;'s exist. :

Let us pass now to the first proof. We start with the lemma on the
partition of the set of characters, mentioned above. For convenience,

*) In fact, in both proofs we shall take the.elements of &/, to be linear combina-
-tions of the x;’s withie M, UM,,_,. 3

*#) In the first proof this number will be five, while in the second proof it will
be two.

i



0. Spaces which do not have the approximation property ° 9

.

ﬁi-ir; the sequel we shall use the notation ||. ||, instead of ||. iz (g (where’

G is any set). =

* Lemma 0.2. Let n be a positive integer, let G be the (abeliqn)
group {—1,1}" (of all functions from {1,2, ...,n} into {—1, 1}, with

-pointwise multiplication) and let H < C(G) be the set of all characters™®

of G. Then there exist two disjoint subsets W+, W‘ of H with cardi-
nalities satisfying '

| , W = W= % 1G] = 21 0.19)

(hence W+ Uy W~ = H), such that

2] |
Rt ol €20 1 .(0.20)

WEW + weWw-

Probf. Let k = [n; le and let s — n— 2k, "henee -5 > ] and

n =2k --s. Define r; € H by

ri{g) = g(j) (eeG.j=1,....n 0.21)

t

and y, € C(G) by
k % ¥
Yo II(1 Tl BTk H €l = ras). (0.22)
J=1 t=1

Now, by (0.:21), each product II7)» where S {1,2,...,n, is a
JES

character w = wg e H and the set of all such products coincides with

the set H of all characters (since it contains 2" distinct elements, so

it has the same cardinality as H). Since at “term by term multiplica-

tion” in (0.22) each such product occurs exactly once, we obtain y, =

= 3, ¢,w, where each coefficient c,, is either 1 or —1. Put
weH

W+ =1{weHle, =1}, W- = {(weHc, = —1}, (0.23)

w

*) Ie., of all homomorphisms of G into f¢1L1 = 1}. Singe-G = {—1, I
all characters have real values, e, =1,

2 — 213 23
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10 II. Generalizations'of, the notion of a basis

and lej;g -denote the unit of G. Since r,k+s(e) = rfe) = e(n) =.1; the
last factor in (0.22) is O at e, so yo(e) 0, whence, since w(e) =1
(we H), we obtam : :

4

weH ' weH

IW+| IW”I— Z Cy = Z W(e) J'o(e)—‘)

which proves (0.19). Fmally, for any geg, by (0.22) yo(g) is a product :
ofk + 5= 1 + [ =, ] numbers, each of them being 2, —2 or 0, whence,

since y, = Z CW = Z W Y w, we obtain (0 20), Wthh com-
weWw+ eEW—
pletes the proof of lemma 0.2. st

Remark 0.2. Let 2™ denote the (abelian) group of all subsets of
the set [1, n] = {1,2, ..., n}, with the group operation S,S, = S, +
2 Se=(S\%) (SZ\SI) (the symmetrlc difference of the subsets
Sy, Sy of [1, n]). Then G = {—1, 1}" is isomorphic to 2(%.7, by the map-
ping g - S, = {je[l,n]|g(j) = —1}; and C(G) is 1somorphlc to IS
(the Banach’ space of all scalar functions ¢ = {&(S)}seot™ with the
norm [i¢l} = max [¢(s)]), by the mapping x — ¢,, where (.(S,) =

saath
= x(g) (g € G). This latter 1somorphxsm carries H onto the set of all
Walsh functions fs(S,) = (—1)!SNSel and {r;}}_, onto the set of all
Rademacher functions pi(S)=1 for S,$7 and —1 for S,3j(j=
= 1, ..., n). This motivates the notations w and r; used above.

Let us give now the combinatorial lemma mentioned above:

Lemma 0.3. Let n> 4 be a positive integer and let (A ,-),:e 1 (B))jer be
two families of mutually disjoint sets with cardinalities satisfying

!A,-iz»;—illzr'-z Geh: '] - (0.29)

B} = % Ty Bei s ol (0.25)

(i.e., there are 2! sets A;, each of cardinality 2"* and there are 2"
sets B,, each of cardinality - ). Then there exists a function p: \_J B; —

jeJ
— \UJ 4, such that
iel
ip(Bj) n A4l =1 Gedijed), (0.26)
lp Wa)l = (ae U]Ai), (0.27)
ie

lp(B;)) n p(B;) <2 (i edj#J) (0.28)



