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Preface

Research on noncommutative stationary processes leads to an interesting in-
terplay between operator algebraic and probabilistic topics. Thus it is always
an invitation to an exchange of ideas between different fields. We explore some
new paths into this territory in this book. The presentation proceeds rather
systematically and elaborates many connections to already known results as
well as some applications. It should be accessible to anyone who has mas-
tered the basics of operator algebras and noncommutative probability but,
concentrating on new material, it is no substitute for the study of the older
sources (mentioned in the text at appropriate places). For a quick orientation
see the Summary on the following page and the Introduction. There are also
additional introductions in the beginning of each chapter.

The text is a revised version of a manuscript entitled ‘Elements of a spa-
tial theory for noncommutative stationary processes with discrete time in-
dex’, which has been written by the author as a habilitation thesis (Greifs-
wald, 2002). It is impossible to give a complete picture of all the mathemat-
ical influences on me which shaped this work. I want to thank all who have
been engaged in discussions with me. Additionally I want to point out that
B. Kiimmerer and his students C.Hertfelder and T.Lang, sharing some of
their conceptions with me in an early stage, influenced the conception of this
work. Getting involved with the research of C. Kostler, B.V.R. Bhat, U. Franz
and M. Schiirmann broadened my thinking about noncommutative probabil-
ity. Special thanks to M. Schiirmann for always supporting me in my struggle
to find enough time to write. Thanks also to B. Kiimmerer and to the referees
of the original manuscript for many useful remarks and suggestions leading to
improvements in the final version. The financial support by the DFG is also
gratefully acknowledged.

Greifswald Rolf Gohm
August 2003



Summary

In the first chapter we consider normal unital completely positive maps on von
Neumann algebras respecting normal states and study the problem to find
normal unital completely positive extensions acting on all bounded operators
of the GNS-Hilbert spaces and respecting the corresponding cyclic vectors. We
show that there exists a duality relating this problem to a dilation problem
on the commutants. Some explicit examples are given.

In the second chapter we review different notions of noncommutative
Markov processes, emphasizing the structure of a coupling representation.
We derive related results on Cuntz algebra representations and on endomor-
phisms. In particular we prove a conjugacy result which turns out to be closely
related to Kiimmerer-Maassen-scattering theory. The extension theory of the
first chapter applied to the transition operators of the Markov processes can
be used in a new criterion for asymptotic completeness. We also give an in-
terpretation in terms of entangled states.

In the third chapter we give an axiomatic approach to time evolutions of
stationary processes which are non-Markovian in general but adapted to a
given filtration. We call this an adapted endomorphism. In many cases it can
be written as an infinite product of automorphisms which are localized with
respect to the filtration. Again considering representations on GNS-Hilbert
spaces we define adapted isometries and undertake a detailed study of them
in the situation where the filtration can be factorized as a tensor product.
Then it turns out that the same ergodic properties which have been used in
the second chapter to determine asymptotic completeness now determine the
asymptotics of nonlinear prediction errors for the implemented process and
solve the problem of unitarity of an adapted isometry.

In the fourth chapter we give examples. In particular we show how com-
mutative processes fit into the scheme and that by choosing suitable noncom-
mutative filtrations and adapted endomorphisms our criteria give an answer
to a question about subfactors in the theory of von Neumann algebras, namely
when the range of the endomorphism is a proper subfactor.
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Introduction

This work belongs to a field called quantum probability or noncommutative
probability. The first name emphasizes the origins in quantum theory and
the attempts to achieve a conceptual understanding of the new probabilistic
features of this theory as well as the applications to physics which such a
clarification can offer in return. The second name, which should be read as
not necessarily commutative probability, puts the subject into the broader
program of noncommutative mathematics and emphasizes the development
of mathematical structures. The field has grown large and we do not intend
to give a survey here but refer to the books [Da76, Me91, Pa92, Bi95, Ho01,
QPCO03] for different ways of approaching it. Probability theory in the usual
sense appears as a part which is referred to as classical or commutative.

The core of classical probability consists of the theory of stochastic pro-
cesses and in this respect noncommutative probability follows its predeces-
sor. But the additional freedom to use noncommutative algebras offers vast
new possibilities. From the beginning in quantum theory it has been realized
that in particular operator algebras offer a rich source, i.e. algebras of oper-
ators on a Hilbert space. Especially since the eighties of the last century it
has been shown that on a Hilbert space with a special structure, the Fock
space, many aspects of classical probability and even rather advanced ones,
can be reconstructed in the noncommutative framework in a revealing way.
One of the highlights is a theory of noncommutative stochastic integration by
R.L. Hudson and K.R.Parthasarathy which can be used as a tool to realize
many noncommutative stochastic processes. Also the fundamental processes
of classical probability, such as Brownian motion, appear again and they are
now parts of noncommutative structures and processes in a very interesting
way.

Other aspects come into play if one tries to use the theory of operator
algebras more explicitly. This is also done in this work. An important starting
point for us is the work done by B. Kiimmerer since the eighties of the last
century. Here the main idea has been to consider stationary Markov processes.
In classical probability Markov processes received by far the most attention
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due to the richness of their algebraic and analytic properties. Stationarity, i.e.
the dependence of probability distributions only on time differences, yields
connections to further fields of mathematics such as dynamical systems and
ergodic theory. The same is true in noncommutative probability. The struc-
ture theory of noncommutative stationary Markov processes generalizes many
classical properties and exhibits new ones, giving also insights which relate
probabilistic notions and models in quantum physics. Stationarity gives rise
to time evolutions which are endomorphisms of operator algebras and thus
provides a link between research in noncommutative probability and in oper-
ator algebras. In this theory the role of the Hilbert space becomes secondary
and the abstract structure theory of operator algebras, especially von Neu-
mann algebras, comes into view.

Here we have arrived at a very interesting feature of the theory of opera-
tor algebras. While they may be defined as algebras of operators on a Hilbert
space, the most interesting of them, such as C*—algebras or von Neumann
algebras, also have intrinsic characterizations. Thus their theory can be de-
veloped intrinsically, what we have called abstract structure theory above,
or one can study representation theory, also called spatial theory, which uses
representations of the elements of the algebra as operators on a Hilbert space.
Of course, many properties are best understood by cleverly combining both
approaches.

Combining both approaches should also be useful in considering noncom-
mutative stochastic processes. A general idea behind this work can be formu-
lated as follows: For stationary Markov processes or stationary processes in
general which can be defined in an abstract way, study some of their properties
which become more accessible by including the spatial point of view.

Similar endeavours are of course implicit in many works on noncommuta-
tive probability, but starting from abstract stationary processes we can do it
more explicitly. The text is based on the author’s habilitation thesis with the
more lengthy and more precise title ‘Elements of a spatial theory for non-
commutative stationary processes with discrete time index’. We have already
explained what we mean by ‘spatial’. The precise titel also makes clear that
we do not intend to write a survey about all that is known about noncom-
mutative processes. In particular the restriction to discrete time steps puts
aside a lot of work done by quantum probabilists. While there are parts of
this text where generalization to continuous time is rather obvious there are
other parts where it is not, and it seems better to think about such things at
a separate place.

On the other hand, by this restriction we open up the possibility to discard
many technicalities, to concentrate on very basic problems and to discuss the
issue how a systematic theory of noncommutative stationary processes may
look like. Guided by the operator algebraic and in particular the corresponding
spatial point of view we explore features which we think should be elements of
a general theory. We will see analogies to the theory of commutative stationary
processes and phenomena which only occur in the noncommutative setting.
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It is encouraging that on our way we also achieve a better understanding of
the already known approaches and that some applications to physics show up.
It is clear however that many things remain to be done. The subject is still
not mature enough for a definite top-down axiomatic treatment and there is
much room for mental experimentation.

Now let us become more specific. Classical Markov processes are deter-
mined by their transition operators and are often identified with them, while
for the noncommutative Markov processes mentioned above this is no longer
the case. A very natural link between the classical and the noncommuta-
tive case occurs when they are both present together, related by extension
respectively by restriction. Using spatial theory, more precisely the GNS-
construction, we introduce the notion of an extended transition operator which
acts on all bounded operators on the GNS-Hilbert space. This notion plays
a central role in our theory and many sections study the delicate ways how
extended transition encodes probabilistic information. While the original tran-
sition operator may act on a commutative or noncommutative algebra, the
extended transition operator always acts on a noncommutative algebra and
thus can only be considered as a probabilistic object if one includes noncom-
mutative probability theory. In Chapter 1 we give the definitions and explore
directly the relations between transition and extended transition. There ex-
ists a kind of duality with a dilation problem arising from the duality between
algebras and commutants, and studying these problems together sheds some
light on both. We introduce the concept of a weak tensor dilation in order to
formulate a one-to-one correspondence between certain extensions and dila-
tions. The study of this duality is the unifying theme of Chapter 1. We also
give some examples where the extensions can be explicitly computed.

In Chapter 2 we study the significance of extended transition for Markov
processes. In B. Kiimmerer’s theory of noncommutative stationary Markov
processes their coupling structure is emphasized. Such a coupling representa-
tion may be seen as a mathematical structure theorem about noncommutative
Markov processes or as a physical model describing the composition of a quan-
tum system as a small open system acted upon by a large reservoir governed
by noise. In this context we now recognize that the usefulness of extended
transition lies mainly in the fact that it encodes information on the coupling
which is not contained in the original transition operator of the Markov pro-
cess. This encoding of the relevant information into a new kind of transition
operator puts the line of thought nearer to what is usual in classical probabil-
ity. This becomes even more transparent if one takes spatial theory one step
further and extends the whole Markov process to an extended Markov pro-
cess acting on all bounded operators on the corresponding GNS-Hilbert space.
Here we notice a connection to the theory of weak Markov processes initiated
by B.V.R.Bhat and K.R. Parthasarathy and elaborated by Bhat during the
nineties of the last century. To connect Kiimmerer’s and Bhat’s approaches by
an extension procedure seems to be a natural idea which has not been studied
up to now, and we describe how it can be done in our context.
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For a future similar treatment of processes in continuous time this also
indicates a link to the stochastic calculus on Fock space mentioned earlier. In
fact, the invariant state of our extended process is a vector state, as is the
Fock vacuum which is in most cases the state chosen to represent processes
on Fock space. The possibility to get pure states by extension is one of the
most interesting features of noncommutativity. Part of the interest in Fock
space calculus always has been the embedding of various processes, such as
Brownian motion, Poisson processes, Lévy processes, Markov processes etc.,
commutative as well as noncommutative, into the operators on Fock space.
Certainly here are some natural possibilities for investigations in the future.

In Chapter 2 we also explore the features which the endomorphisms arising
as time evolutions of the processes inherit from the coupling representation.
This results in particular in what may be called coupling representations of
Cuntz algebras. A common background is provided by the theory of dilations
of completely positive maps by endomorphisms, and in this rerspect we see
many discrete analogues of concepts arising in W. Arveson’s theory of Fj-
semigroups.

The study of cocycles and coboundaries connecting the full time evolu-
tion to the evolution of the reservoir leads to an application of our theory to
Kiimmerer-Maassen-scattering theory. In particular we show how this scat-
tering theory for Markov processes can be seen in the light of a conjugacy
problem on the extended level which seems to be somewhat simpler than the
original one and which yields a new criterion for asymptotic completeness. An
interpretation involving entanglement of states also becomes transparent by
the extension picture. Quantum information theory has recently rediscovered
the significance of the study of entanglement and of related quantities. Here we
have a surprising connection with noncommutative probability theory. Some
interesting possibilities for computations in concrete physical models also arise
at this point.

Starting with Chapter 3 we propose a way to study stationary processes
without a Markov property. We have already mentioned that stationarity
yields a rich mathematical structure and deserves a study on its own. Further,
an important connection to the theory of endomorphisms of operator algebras
rests on stationarity and one can thus try to go beyond Markovianity in this
respect. We avoid becoming too broad and unspecific by postulating adapted-
ness to a filtration generated by independent variables, and independence here
means tensor-independence. This leads to the concept of an adapted endomor-
phism. There are various ways to motivate this concept. First, in the theory
of positive definite sequences and their isometric dilations on a Hilbert space
it has already been studied, in different terminology. Second, it is a natural
generalization of the coupling representation for Markov processes mentioned
above. Third, category theory encourages us to express all our notions by suit-
able morphisms and this should also be done for the notion of adaptedness.
We study all these motivations in the beginning of Chapter 3 and then turn
to applications for stationary processes.
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It turns out that in many cases an adapted endomorphism can be written
as an infinite product of automorphisms. The factors of this product give some
information which is localized with respect to the filtration and can be thought
of as building the endomorphism step by step. Such a successive adding of
time steps of the process may be seen as a kind of ‘horizontal’ extension
procedure, not to be confused with the ‘vertical’ extensions considered earlier
which enlarge the algebras in order to encode better the information about
a fixed time step. But both procedures can be combined. In fact, again it
turns out that it is the spatial theory which makes some features more easily
accessible.

The applications to stationary processes take, in a first run, the form of a
structure theory for adapted isometries on tensor products of Hilbert spaces.
Taking a hint from transition operators and extended transition operators
of Markov processes we again define certain completely positive maps which
encode properties in an efficient way. We even get certain dualities between
Markov processes and non-Markovian processes with this point of view. These
dualities rely on the fact that the same ergodic properties of completely pos-
itive maps which are essential for our treatment of asymptotic completeness
in Kiimmerer-Maassen scattering theory also determine the asymptotics of
nonlinear prediction errors and answer the question whether an adapted en-
domorphism is an automorphism or not.

While such product representations for endomorphisms have occurred oc-
casionally in the literature, even in the work of prominent operator algebraists
such as A. Connes and V.F.R. Jones and in quantum field theory in the form
developed by R.Longo, there exists, to the knowledge of the author, no at-
tempt for a general theory of product representations as such. Certainly such
a theory will be difficult, but in a way these difficulties cannot be avoided if
one wants to go beyond Markovianity. The work done here can only be ten-
tative in this respect, giving hints how our spatial concepts may be useful in
such a program.

Probably one has to study special cases to find the most promising di-
rections of future research. Chapter 4 provides a modest start and treats the
rather abstract framework of Chapter 3 for concrete examples. This is more
than an illustration of the previous results because in all cases there are specific
questions natural for a certain class of examples, and comparing different such
classes then leads to interesting new problems. First we cast commutative sta-
tionary adapted processes into the language of adapted endomorphisms, which
is a rather uncommon point of view in classical probability. More elaboration
of the spatial theory remains to be done here, but we show how the com-
putation of nonlinear prediction errors works in this case. Noncommutative
examples include Clifford algebras and their generalizations which have some
features simplifying the computations. Perhaps the most interesting but also
rather difficult case concerns filtrations given by tensor products of matrices.
Our criteria can be used to determine whether the range of an adapted endo-
morphism is a proper subfactor of the hyperfinite I [, —factor, making contact
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to a field of research in operator algebras. However here we have included only
the most immediate observations, and studying these connections is certainly a
work on its own. We close this work with some surprising observations about
extensions of adapted endomorphisms, exhibiting phenomena which cannot
occur for Markov processes. Remarkable in this respect is the role of matrices
which in quantum information theory represent certain control gates.

There is also an Appendix containing results about unital completely pos-
itive maps which occur in many places of the main text. These maps are the
transition operators for noncommutative processes, and on the technical level
it is the structure theory of these maps which underlies many of our results.
It is therefore recommended to take an early look at the Appendix.

It should be clear by these comments that a lot of further work can be
done on these topics, and it is the author’s hope that the presentation in this
book provides a helpful starting point for further attempts in such directions.

Preliminaries and notation

N:={1,2,3,...} and Ny :={0,1,2,3,...}
Hilbert spaces are assumed to be complex and separable: G, 'H, IC, P, ...

The scalar product is antilinear in the first and linear in the second compo-
nent.

Often £ € G, e H, ne K, neP.

2 is a unit vector, often arising from a GNS-construction.

[sometries, unitaries: v, u

Projection on a Hilbert space always means orthogonal projection: p, ¢

pe denotes the one-dimensional projection onto C§. Sometimes we also use
Dirac notation, for example pe = |£)(£].

M, denotes the n x n-matrices with complex entries,

B(H) the bounded linear operators on H.

‘stop’ means: strong operator topology

‘wop’ means: weak operator topology

T(H) trace class operators on H

T!(H) density matrices ={p € T(H):p >0, Tr(p) =1}
T'r is the non-normalized trace and tr is a tracial state.

Von Neumann algebras A C B(G), B C B(H), C C B(K) with

normal states ¢ on A or B, ¢ on C.
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Note: Because H is separable, the predual A, of A C B(H) is separable and
there exists a faithful normal state for A, see [Sa71], 2.1.9 and 2.1.10.

By ‘stochastic matrix” we mean a matrix with non-negative entries such that
all the row sums equal one.

We use the term ‘stochastic map’ as abbreviation for ‘normal unital com-
pletely positive map’: S, T (compare also A.1),

in particular Z : B(G) — B(H).

Z denotes a certain set of stochastic maps, see 1.2.1.

S : (A, ¢4) — (B, ¢p) means that the stochastic map S maps A into B and
respects the states ¢4 and ¢p in the sense that ¢go S = ¢ 4.

Preadjoints of stochastic maps: C, D, ...

Homomorphism of a von Neumann algebra always means a (not necessarily
unital) normal *—homomorphism: j, J

Unital endomorphisms: a

Conditional expectations: P, Q)

If w: G — H is a linear operator, then we write Adw = w-w* : B(G) —
B(H), even if w is not unitary.

General references for operator algebras are [Sa71, Ta79, KR83].

Probability spaces: (£2, X, u)

M(p, q) are the joint probability distributions for measures p, ¢ and S(q,p)
are the transition operators S with po .S = ¢, see Section 4.1.

Larger objects often get a tilde ~ or hat ~, for example A.

This should help to get a quick orientation but of course the conventions may
be violated in specific situations and the reader has to look for the definition
in the main text. We have made an attempt to invent a scheme of notation
which provides a bridge between different chapters and sections and stick to
it even if it is more clumsy than it would have been possible if the parts had
been treated in isolation. We think that the advantages are more important.
Besides the quick orientation already mentioned, the reader can grasp con-
nections in this way even before they are explicitly formulated. Nevertheless,
there is a moderate amount of repetition of definitions if the same occurs in
different chapters to make independent reading easier.

Numbering of chapters, sections and subsections is done in the usual way.
Theorems, propositions, lemmas etc. do not get their own numbers but are
cross-referenced by the number of the subsection in which they are contained.






1

Extensions and Dilations

In this chapter we are concerned with normal unital completely positive maps
on von Neumann algebras which we call ‘stochastic maps’ for short. In the
context of noncommutative stochastic processes, such maps play the role of
transition operators and therefore they deserve a careful study on their own.
To come as directly as possible to the heart of the matter and to new results,
we have postponed a review of the basic structure theory of such maps to
the Appendix (in particular A.1 and A.2) which can be used by the reader
according to individual needs.

Our first topic is an extension problem for stochastic maps which occurs
naturally in connection with the GNS-construction. For concreteness, we start
with some elementary computations in the easiest nontrivial case and then dis-
cuss the general case. Extension problems for completely positive maps are
first discussed by W. Arveson in [Ar69], see also [ER00] for a recent survey.
The additional point which we make consists in the inclusion of states. This
is well motivated from the probabilistic point of view. Our main observa-
tion here is a duality between this extension problem and a dilation problem.
The latter is described under the heading ‘weak tensor dilations’ of stochastic
maps. While this is new as an explicit concept, it should be compared espe-
cially to some early dilation theories of completely positive maps, for example
by D.E. Evans and J.T. Lewis [EL77], E.B. Davies [Da78|, G.F. Vincent-Smith
[Vig4]. It differs from them by insisting on a tensor product structure.

We define an equivalence relation for weak tensor dilations which later
turns out to be the correct one in the duality with the extension problem.
To formulate the correspondence between extension and dilation, we have to
consider commutants and the dual stochastic map on the commutants. Then
under specified conditions every solution of the extension problem gives rise to
an equivalence class of solutions of the dilation problem and conversely. Thus
we see that these problems shed some light onto each other. The remainder of
the chapter discusses further details of this correspondence, instructive spe-
cial cases and further examples. Applications based on the fact that stochastic
maps can be interpreted as transition operators in noncommutative probabil-
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ity are postponed to the following chapters. The correspondence then proves
to be a useful tool. Parts of the contents of Chapter 1 are also discussed in

[Gol].

1.1 An Example with 2 X 2 - Matrices

1.1.1 A Stochastic Map

I-X A

- ,u) with 0 < A\, p < 1.

Consider a stochastic matrix (

We think of it as an operator

.02, 2 Ty (1 =Nz + Axo
o ’ T pry + (1 —p)ze )
S is a stochastic map, which means here that it is positive and unital. See

A.1 for the general definition and further discussion. There is an invariant

robability measure ¢ = (£, ~2-) in the sense that ¢ 0 S = ¢.
P A A Ap

We can apply the GNS-construction for the algebra A = C? with respect
to the state ¢, and we get the Hilbert space H = C? (with canonical scalar

product) and the unit vector 2 = \/AIT/: (%) Now the state ¢ is realized

1 0 ) 02). Identifying A = C? with
0 Iro

the diagonal subalgebra of B(H) = M, we have

o . [T 0 . (1—/\).’1“1+/\.'If2 0
T 0 0 pxy + (1 — p)xs

and (2, x02) = (2, S5(x)§2). We shall now ask for stochastic maps Z : My —
My (i.e.unital completely positive maps, see A.1.1) which extend S and satisfy
(2,282) = (2, Z(x)$2) for all x € M>.

as a vector state, i.e. ¢ <jl) = (2, (
o

1.1.2 Direct Approach

Let us try a direct approach. Any completely positive map Z : My — My can
be written in the form Z(x) = Zzzl ay xaj, with a; € M,. Introduce four
vectors a;j € €9, i,j = 1,2, whose k-th entry is the ij-entry of a; (compare
[Kii85b]). With the canonical scalar product and euclidean norm on C? we
get by direct computation:

7 (J‘l 0 _ ||a11||21r1 + ”(Lw”zl‘z <(121.(111‘>1'1 + <H,22,{112>([2>
0 x2 (ai1, a21)x1 + (@12, a2)r: ||G21||211 + |lasz||* 2

If Z is an extension of S we conclude that



