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Preface

The energy strategy is changing all over the world. There are different reasons for
this: Fossil fuels will become rare in less than 50 years; more than 64% of the current
petroleum reserve is located in the Middle East, while less than 14% is available in
Europe, USA and the former USSR region together. Energy independence is a
security issue. At least as important as these arguments is the undeniable evidence
of climate change resulting from excessive emission of greenhouse gases. As a
consequence different low emission renewable energy technologies are being
implemented, favoring the use of biofuels and hydrogen to power our future. At
the same time the modernization of conventional power plants and refineries is
being stimulated to reduce their emission of CO, in a transition period when
petroleum and coal are still the predominant fuel sources. In all these new technol-
ogies and transition steps, membranes have a huge opportunity to become a key
player.

A clear example is the vision of a society moved by hydrogen. Hydrogen is
currently produced on a large scale from natural gas. Membrane technology can
offer several advantages for hydrogen separation, like for instance the possibility of
integration of different processes so that hydrogen shift and purification or possibly
reforming could be carried out in a single, simplified, compact membrane reactor
system.

While the US has just a small part of the world’s available oil, the US coal reserves
are nearly equivalent to the total world oil reserve. A large program was recently
launched to produce hydrogen from coal with near zero emission, using a series of
clean technologies, which also include membranes.

Membranes for hydrogen separation are available for different temperature
ranges. Two classes of inorganic membranes for hydrogen separation are treated
in this book: palladium membranes (temperature 300-450 °C) and mixed proton
and electron conductive materials (above 600 °C). For temperatures up to 550°C
molecular sieve membranes based on silica or zeolite are the state-of-the-art (M. C.
Duke et al., Advanced Functional Materials 16 (2006) 1215-1220). For temperatures
higher than 250 °C polymer membranes cannot compete but for the low tempera-
ture range they have some advantages, being easy to produce and manufacture in
modules on a large scale. A potential application for this temperature range is the
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recovery of hydrogen from fuel gas and platform off gas. Glassy polymers with high
temperature stability like some polyimides are suitable for membranes for prefer-
ential hydrogen transport (S. Shishatskiy et al., Advanced Engineering Materials 8
(2006) 390-397). The best currently available polymer membranes have a H,/CHy
selectivity of about 100 and a hydrogen permeance of 8 x 10 ®*molm %s ' Pa .

A renewable source of hydrogen is water, which can be split using electrolyzers
powered by wind energy. In 2006 wind farms with a total capacity of 20.6 x 10> MW
were available in Germany, which corresponds to about 28% of the world capacity
(D. Fairless, Nature 447 (2007) 1046-1048). A fundamental part of the electrolyzer is
a polyelectrolyte membrane.

A polyelectrolyte membrane is also the core of the low temperature fuel cell. Fuel
cells are the main zero emission energy converters fed with hydrogen or renewable
fuels like methanol and ethanol to power vehicles, portable devices or to supply
electricity to buildings. Six chapters of this book are devoted to fuel cell membranes,
covering some of the most promising material classes currently under investigation
besides the more conventional Nafion-type materials. Two main challenges for
membranes are connected to fuel cells for portable and automotive application:
low alcohol crossover for membranes with direct feed of methanol or ethanol
(portable application) and new materials for operation at 100 °C and low humidity
levels in hydrogen fuel cells (automotive application).

As mentioned above an important challenge for membranes is also the separation
of CO, from other gases as in its removal from flue gas. In modern coal power
plants, potential tasks for membranes are the separation of CO, from other combus-
tion gases and separation of H, from CO,/H, mixtures from gasification processes.
CO, separation using inorganic membranes is also a topic of this book. A bigissue is
CO, separation with polymeric membranes. Different approaches for material
development for membranes with preferential CO, transport include functionalized
polymers and polymer composites containing polar ether oxygens (H. Lin and B. D.
Freeman, Journal of Molecular Structure 739 (2005) 57—74) and/or amine groups. An
approach which is under investigation by different groups is the use of polymers
with ethylene oxide segments. A commercial block copolymer of amide and ethylene
oxide, Pebax, has a CO,/N, selectivity of about 60 (I. Blume and I. Pinnau US Patent
4963 165). Recently, highly branched, cross-linked poly (ethylene oxide) was
reported (H. Lin et al., Science 311 (2006) 639) with particularly high selectivity
(up to 30) for CO,/H,.

The main competitor of fuel cells, at least in the automotive sector, is a battery
system with high energy density like Li-ion. A critical component of batteries is the
separator, which is also a membrane placed between the positive and the negative
electrode to prevent physical contact between them, providing electronic insulation
but allowing free ionic transport (S. S. Zhang, Journal of Power Sources 164 (2007)
351-364). The separator should also be able to activate a thermal shutdown avoiding
fire or excessive heating. This is a large market for membranes. The requirements
for a good separator are: (i) thickness lower than 25 pm to reach high energy and
power density, but still high enough for good mechanical strength and safety;
(ii) porosity for sufficient ionic conductivity but not too high to allow shutdown in
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the case of heating; (iii) good wettability for the electrolyte; (iv) low cost. The
separator usually has a semi-crystalline polyolefin microporous layer like the Celgard
membrane or preferably a bilayer system with layers with different melting tem-
peratures. An interesting inorganic composite separator is the Separion, which is a
flexible perforated polymeric non-woven material coated with porous ceramic layers.

The last chapter of this book deals with a quite innovative membrane technology
for power production from the entropy change of mixing of fresh water and sea
water, the osmotic power.

October 2007 Suzana Nunes,
Klaus-V. Peinemann
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1
Sulfonated Poly(aryl ether)-type Polymers as Proton

Exchange Membranes: Synthesis and Performance*
Baijun Liu, Dae-Sik Kim, Michael D. Guiver, Yu Seung Kim, Bryan S. Pivovar

1.1
Introduction

Fuel cells, which are devices for efficiently transforming chemical energy directly into
electricity, are regarded as promising future clean power sources. Proton exchange
membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) utilize
polymeric proton exchange membranes (PEMs), which are a key component for
transferring protons from the anode to the cathode as well as providing a barrier to
fuel cross-over between the electrodes, are attracting increasing attention for use in
automotive, stationary and portable electronic applications [1-3].

The PEM or solid polymer electrolyte fuel cell (SPEFC) was initially developed at
General Electric by Grubb and Niedrach to provide on-board electrical power for the
Gemini Earth-orbiting program in the early 1960s. The initial PEMs utilized did not
exhibit long-term stability, due to the poor oxidative stability of the sulfonated
polystyrene-divinylbenzene. The most practical PEM material to emerge having
improved stability was Nafion, developed by the DuPont de Nemours Company in the
late 1960s. This was initially used as the permselective separator in chlor-alkali
electrolyzers [3,4]. The present-day Nafion series of membranes possess some
attractive properties, such as excellent chemical and mechanical stabilities, and high
proton conductivity because of the unique chemical structure of perfluorosulfonic
acid (Scheme 1.1). The excellent performance of Nafion has promoted the further
development of other PEMs with similar chemical structure to Nafion, and some of
these are now commercially available. However, the high cost, low operation
temperature (<80 °C), propensity for dehydration, high methanol crossover, and
environmental recycling uncertainties of Nafion and other similar perfluorinated
membranes are limiting their widespread commercial application in PEMFC and
DMEFC [5,6].

Apart from polymer—inorganic hybrid materials, we consider that there are three
approaches for the design of alternative PEMs. The first involve polymers with a
perfluoroalkyl backbone and stable side-group-acid pendants, such as aromatic
pendant groups bearing sulfonic acids, which might combine the good properties

* NRC publication number PET-1574-07S
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2 | 1 Sulfonated Poly(aryl ether)-type Polymers as Proton Exchange Membranes
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Scheme 1.1 Chemical structures of perfluorinated polymers
from DuPont (a) and Dow Chemical (b).

of Nafion with aromatic systems. A typical example is a polymer developed by
Ballard Advanced Materials Corporation, as shown in Scheme 1.2 [7].

A few polymers with Teflon backbones and stable non-aromatic side-group acid
may also show attractive performance, and a typical structure of fluorinated cross-
linked polymers is given in Scheme 1.3 [8]. There are some partially fluorinated

+ CF2-CF){-CF,-CF ) CFp- CF}£-CFo-CF)-

A Qg a Q.

Ry, Ra, Rg = alkyls, halogens, OR, CF=CF,, CN, NO,, OH

Scheme 1.2 Chemical structure of PEM with Teflon backbone
and aromatic side group bearing a sulfonic acid.
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F
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Scheme 1.3 Claimed chemical structure of crosslinked polymers with Teflon backbone.



