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Foreword

One of the major contributions of Ludwig Boltzmann to science has been the
connection between time irreversibility and the increase of entropy as a well-
defined quantity associated to the macroscopic state of a system. His ideas
are at the basis of most studies in non-equilibrium statistical mechanics, and
many non-equilibrium processes are still now physically understood in terms
of their entropy production.

More recently entropy and entropy production have become mathematical
tools used in the context of kinetic and hydrodynamic limits, when deriving
the macroscopic behavior of systems from the interaction dynamics of their
(many) microscopic elementary constituents at the atomic or molecular level.

In this volume, we have put together two surveys on some recent results
in this direction. The first text, by Cedric Villani, illustrates the use of
entropy in the analysis of convergence to equilibrium for solutions of the
Boltzmann equation. The second text, by Fraydoun Rezakhanlou, discusses
the Boltzmann—Grad limit, in which the Boltzmann equation is derived from
the dynamics of a large number- of hard spheres. Both entropy and entropy
production play a major role in these problems.

To illustrate the relevance of entropy in both the kinetic theory of gases
and the dynamics of a large number N of hard spheres, we shall recall below
two fairly classical, and yet fundamental properties of Boltzmann’s entropy.

The first property, which is a particular case of the Gibbs principle, is
a variational characterization of Maxwellian equilibrium distributions in the
kinetic theory of gases. Call f = f(z,v) the single-particle phase space density
of molecules that are located at the position x with velocity v. (Here, both
x and v run through the Euclidian space R? for simplicity.) The following
mechanical observables are easily defined in terms of the density f (and the
mass m of each molecule):
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/ / f(x,v)dr dv = number of molecules,
R3xR3

// mu f(x,v)dr dv = total momentum,

J . RZSXRS

// %m|1'|2f(.1'. v)dr dv = total energy.
R:;XR";

Boltzmann’s notion of entropy defined in terms of the density f is —H(f),
where the functional H(f) is defined as

H(f)= //F'{x e flr,v)In f(x,v)dedo.

Consider the following minimization problem:

1 N
inf H(f) with constraints // muv flz,v)dedv= | P
RIXR\ 2mu|? E

where N, E >0 and P € R? are given.

There are obvious compatibility conditions to be verified by N, P, E for
the set of functions f satisfying the constraints to be non-empty: for instance,
by the Cauchy-Schwartz inequality, one should have

|P|? < 2mNE.

Forgetting momentarily the obvious constraint f > 0, we write the Euler
equation for this minimization problem as

// (In f(x,v) + 1)df(x,v)dxdv
R3xR3
a // df(x,v)drdv
R3xR?
-+ b// mvd f(x,v)dx dv
Rl‘xRK

+ p// %m|u|25f(.r.1r)d.r dov,
R3xR3

where a.c € R and b € R? are the Lagrange multipliers associated to the
constraints of total number of molecules, total energy and total momentum.
Since this equality must hold for each smooth, compactly supported df, it
follows that:

DH(f)-of

Inf(z,v)+1=a+b-(mv)+ c%m|v|2 ,
or, in other words,

f( T {,) = e(uﬁl)+b-(mv)+r%m1v\2
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Notice that the minimizing function f so defined is positive: we therefore ver-
ify a posteriori that there was no need for any Lagrange multiplier associated
with the constraint f > 0 a.e..
This expression can be put in the more familiar form of a Maxwellian
density N
; _ —mlv—ul|?/2k6
flz,v) = 7(271']?,9)3/2(3

by putting

a:l—l—lnN—%ln(Wff))f"’;ll;f‘()lz, b=Lu, c=-%,

where k is the Boltzmann constant. The bulk velocity v and temperature 6
are related to the total momentum P and the total energy E by the formulas

P=Nmu and E=N(3mlu]®+ 3k0).

This computation shows that Maxwellian distributions are the critical points
of the Boltzmann entropy on the affine manifold of densities f corresponding
to a prescribed total number of molecules, total momentum and total energy.

By the strict convexity of the map f — fln f, one easily concludes that
this critical point is in fact a global minimum of H.

To summarize: Maxwellian distributions maximize the Boltzmann entropy
under the constraints of a fixed total number of molecules, total momentum
and total energy.

Besides, the strict convexity of H implies that the relative entropy

H(f) —inf H

defines some kind of distance from f to the set of Maxwellian distributions.

The second property of the entropy which we want to discuss is a varia-
tional characterization of chaotic densities. Let F' = F(z,...,2n) be the
N-body phase space probability density of a system of particles. Here,
z; = (x;,v;) consists of the position z; and velocity v; of the ith parti-
cle; obviously z; runs through R3? x R3. We denote Zn = (z1,...,2y) and
Z}V = (21,-++,2i-1,2i+1,---,2N). To the density F' is associated the family
of its marginals

Fi(z) = | F(Zn)dZy, i=1,...,N.
(R3xR3)N -1
Consider the following minimization problem: to find

inf H(F') under the constraints F; = f

where f is a given a.e. non-negative function in L'(R? x R?). Since

F >0 a.e. and / F(Zy)dZy =1,
(R3xR3)N
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the function f should satisfy

f>0a.e. and flz)dz=1
R3xR3

in order for the set of constraints to define a non-empty set of probability
densities F'.

Neglecting again the obvious constraint F' > 0 a.e., we write the Euler
equation for the minimization problem above as

DH(F) - 6F = / (InF(Zy) + 1)6F(Zn)dZx
J(R3xR3)N

= ¥ / ai(z)0F(Zn)dZy .
IST,SN (RBXRK)N

Since this equality must be satisfied by each smooth, compactly supported
O0F, one must have

MF(Zy)+1= Y ai(z)

1<i<N

i.e.

F(z,...,2n) = exp <Za(z,) — 1) .

=1

In other words, F is of the form

N
F(zl,...,zN)=H¢,-(zi), with d)i:exp(ai—%).
i=1

Writing
N N
F(z,..., = i(2)d ilZi
g ! ICT 1 (T
with 5
VA S
/ di(2)dz
R3xR3

we see that, on account of the normalization condition on F', one has

N
i(2)dz =1
H/mxm‘“z) z

and
;= fforeachi=1,... N.
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In other words, the only critical point F' for this minimization problem is the
chaotic density

N
F(zl,...,zN):Hf(zi).

Hence, chaotic densities are the only critical points of the Boltzmann entropy
on the affine manifold of probability densities with all their marginals equal
to a given probability density f.

By using again the strict convexity of the functional H, we see that this
critical point is in fact the minimum point.

Therefore, chaotic densities maximize the Boltzmann entropy among all
probability densities with all their marginals equal to a given probability
density f.

Again, the strict convexity of H implies that the relative entropy

H(F)—inf H

measures the distance from F' to the set of chaotic distributions.

The two properties of the entropy described above pertain to the two topics
addressed in this volume.

Indeed, the first text, by Cédric Villani, concerns the use of the entropy
and entropy production as a tool in order to estimate the speed of convergence
to a (uniform) Maxwellian equilibrium density. As was explained above, the
relative entropy measures the distance of a non-equilibrium state to equilib-
rium; entropy production is another way to measure that distance. Finding
how these two measures of the distance to equilibrium are related is one of
the major arguments in estimating the speed of approach to equilibrium in
the kinetic theory of gases.

In spatially inhomogeneous non-equilibrium states it is then useful to
work with local entropy and local entropy production. Cédric Villani carefully
explains the mathematical difficulties arising in this problem: the system can
be locally close to equilibrium, and have small total entropy production, while
still being far from the set of global equilibria.

In Villani’s own words, “local equilibrium states are your worst enemies” if
you want to prove (and estimate) convergence to global equilibrium. In order
to obtain this global convergence, the system should locally move out of the
“local equilibrium” and Cédric Villani discusses various tools and conjectures
on this mostly open problem.

This convergence problem is another aspect that shows the inadequacy
of the notion of local equilibrium in order to understand non-equilibrium
phenomena. Also transport in stationary non-equilibrium states (like the heat
conductivity when the system is under a gradient of temperature imposed
by external thermostats) cannot be explained in terms of local equilibrium
states. Such local equilibrium states can only be a zeroth-order approximation
of the real non-equilibrium state, and only further order approximations can
explain transport and convergence to equilibrium.
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The Boltzmann—-Grad limit is the process by which the Boltzmann
equation, which governs the evolution of the single-particle phase space
density of the molecules of a monatomic gas, is derived from the N-body
molecular dynamics. Hence, this limit necessarily involves the approximation
of the N-body phase space density by chaotic densities whose single-body
marginal is a solution of the Boltzmann equation. Therefore, the second
property of entropy recalled above obviously plays a role in this limit.

The text by Fraydoun Rezakhanlou discusses various aspects of the
Boltzmann—-Grad limit. This is a classical open problem in mathematical
physics, where little progress has been made since the seminal work of Lanford
in 1975 (extended by Illner and Pulvirenti in 1986).

Rezakhanlou recalls the main conjecture, that can be formulated as a
law of large numbers in a non-equilibrium situation, and also formulates
the corresponding conjectures about small and large fluctuations about this
limit. Then he propose a stochastic version of the hard sphere dynamics.
Stochasticity helps in proving molecular chaos (the Stosszahlansatz) which is
the key argument in all derivations of this type of limits.

We hope that these surveys, addressing two very different issues in the
statistical mechanics of non-equilibrium processes with similar methods based
on the concept of entropy as defined by Boltzmann, will convince the reader
of the versatility of that notion.

We conclude this brief overview with a few words about the origin of these
texts. In the fall term of 2001, we organized a four-month session supported
by the Centre Emile Borel on “Hydrodynamic Limits” at the Institut Henri
Poincaré in Paris. Various events were proposed in this period, including an
international congress focussed on the state of the art as well as open prob-
lems and perspectives in the subject of hydrodynamic limits. This congress
was dedicated to Claude Bardos in recognition of his fundamental contri-
butions to this subject. In addition, several research courses were given
during that period, among these the courses by Cedric Villani and Fraydoun
Rezakhanlou whose notes are gathered together in this volume.

We express our deepest gratitude to both directors of Institut Henri
Poincaré, Profs. Michel Broué and Alain Comtet, for the warm hospitality so
generously offered to all participants in this session.

Our heartfelt thanks also go to all members of the staff at the Institute
Henri Poincaré for their most competent help throughout the organization of
this session.

Finally, the tragic events of September 11 2001 regretably struck the family
of one of our guests; we are especially grateful to Mrs Annie Touchant and
Mrs. Sylvie Lhermitte of the Centre Emile Borel for their kind assistance and
support in these sad circumstances.

Paris, December 2006 Francgois Golse
Stefano Olla,
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Chapter 1

Entropy Production and Convergence
to Equilibrium

C. Villani

Abstract This set of notes was used to complement my short course on
the convergence to equilibrium for the Boltzmann equation, given at Institut
Henri Poincaré in November—December 2001, as part of the Hydrodynamic
limits program organized by Stefano Olla and Frangois Golse. The informal
style is in accordance with the fact that this is neither a reference book nor a
research paper. The reader can use my review paper, A review of mathemat-
1cal topics in collisional kinetic theory, as a reference source to dissipate any
ambiguity with respect to notation for instance. Apart from minor correc-
tions here and there, the main changes with respect to the original version
of the notes were the addition of a final section to present some more recent
developments and open directions, and the change of the sign convention
for the entropy, to agree with physical tradition. Irene Mazzella is warmly
thanked for kindly typesetting a preliminary version of this manuscript.

1.1 The Entropy Production Problem
for the Boltzmann Equation

I shall start with Boltzmann’s brilliant discovery that the H functional
(or negative of the entropy) associated with a dilute gas is nonincreasing
with time. To explain the meaning of this statement, let me first recall the
model used by Boltzmann.

1.1.1 The Boltzmann Equation: Notation
and Preliminaries

Unknown. f(t,x,v) = fi(z,v) > 0 is a time-dependent probability distrib-
ution on the phase space 2, x IR_fY , where 2, C RY (N = 2 or 3) is the

C. Villani
ENS Lyon, France e-mail: cvillani@umpa.ens-lyon.fr



2 C. Villani

spatial domain where particles evolve and IR{,V is the space of velocities (to be
thought of as a tangent space).

Evolution equation.

of +o.V,f =

f Q1)
¢ (BE)
- / / (f'fi = ff)B(v —v..0)dv.do

SN-—1 IR,V

+ boundary conditions.

Notation.
o f=f(t.x,v), f/=f(t.x. V), fo=f(t.x,v). fl= f(t.x.0)),
o U+ Uy v — v,)m 1’1 _ v+ v, B v — v, (o c SN*I)

2 2 2 2

Think of (v',v.) as possible pre-collisional velocities in a process of elas-
tic collision between two particles, leading to post-collisional velocities
(v,v,) € RV x RV,

Physical quantity. B = B(v — v,,0) > 0, the collision kernel (= cross-
section times relative velocity) keeps track of the microscopic interaction.
It is assumed to depend only on |v — v,| and cos §, where

v —
cosf) = 17*,(7 )
v — v

(Brackets stand for scalar product.) By abuse of notation I may some-
times write B(v — v.,0) = B(|v — v.|,cos0).
The picture of collisions is as follows (in ]R{,\ )
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Boundary conditions. I shall consider three simple cases:

(1) Periodic condition: £2 = TV (not really a subset of IR™1), no bound-
aries.
(2) Bounce-back condition: {2 smooth bounded,

fe(xz,v) = fi(z,—v) for x € 9N
(3) Specular reflection: {2 smooth bounded,
fi(x, Ryv) = fi(xz,v) for x € 012,
Ryv =v —2(n(x),v)n(zx)
where {n(:r,) = normal to 0f2 at x

Local hydrodynamic fields. The following definitions constitute the bridge
between the kinetic theory of Maxwell and Boltzmann on one hand, and
the classical hydrodynamics on the other hand. Whenever f(z,v) is a
kinetic distribution, define the

e Local density p(x / flz,v)dv

ff x,v)vdv
p(x)
[ f(x,v)|v — u(zx)|*dv
Np(x)

e Local velocity (mean) u(x)

e Local temperature T'(z) =

A simple symmetry argument shows that / Q(f, fledv = 0 for p =
3 mN

@(v) in Vect (1,v;, [v]?)1<i<n, as soon as f = f(v) is integrable enough
at large velocities. Those @’s are called collision invariants.

Global conservation laws. Let (f;)i>0 be a well-behaved solution of the
BE. Then

o /ft z,v)dvdr =0 (conservation of mass)
d

2
— /f,(r v)% dvdxr =0 (conservation of kinetic energy)

- Also % / fi(z,v)vdvdz = 0 in the case of periodic boundary condi-
dt

tions (conservation of momentum).
When {2 has an axis of symmetry k and specular reflection is enforced,
then there is an additional conservation law:

T /ft (z,v) vg (kAn)dvdx = 0 (conservation of angular momentum)
d

(|k] = 1, and n = n(z) is still the normal).



4 C. Villani

Normalizations. Without loss of generality I shall assume

. /ft(x,v)dvda: =1 /ft(x,v)g dvdr = %

fi(z,v)vdvdz = 0 in the periodic case
[£2] =1 (]§2| = N-dimensional Lebesgue measure of §2)

Moreover, in this course I will not consider the case when 2 has an axis
of symmetry and specular boundary condition is imposed. A discussion
would have to take into account angular momentum, and consider sepa-
rately the particular case when §2 is a ball.

1.1.2 H Functional and H Theorem

Let us now introduce Boltzmann’s H functional: when f is a probability
distribution on £2 x RY, define

H(f) = /flogf dvdz.

This quantity is well-defined in IR U {+o00} provided that /j(r v)|v|* dv dx

is finite, and will be identified with the negative of the entropy associated
with f.

The following theorem, essentially due to Boltzmann, will be our starting
point.

Theorem 1. Let (fi)t>0 be a well-behaved (smooth) solution of the BE (in
particular with finite entropy), with one of the boundary conditions discussed
above Then

(z) —H(f:) < 0. Moreover, one can define a functional D on L'(IRY), called

entmpy production functional”, or “dissipation of H functional”, such that

d ]
— —/ D(fi(z,.))dx.
df Q.
(ii) Assume that the collision kernel B(v — v4,0) is > 0 for almost all
(v,0s,0) € R?N x SN=1. Let f(x,v) be a probability distribution dis-
tribution on 2 x RN, with /f($,11)|v|2 dvdz < 400. Then

D(f(z,.))dz = 0 <= f is in local equilibrium, i.e. there exist
0
functions p(z) > 0, u(z) € RY, T(z) > 0,
e—lv—u(@)*/2T (z)

such that f(z,v) = p(I)W
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(#3) Assume that the boundary condition is either periodic, or bounce-back,
or specular, and in the latter case assume that the dimension is either 2
or 3 and that 2 has no axis of symmetry (is not a disk or a cylinder or
an annulus or a ball or a shell). Without loss of generality, assume that
f satisfies the normalizations discussed above. Then

(ft)t>0 is stationary <=Vt >0 / D(fi(z,.))dz =0
o)

o= lvl?/2

= fi(z,v) =

The proof of this theorem is well-known (actually there are several proofs
for point (ii), even though not so many), but is is useful to sketch it in order
to help understanding refinements to come.

Proof of Theorem 1 (sketch).
(i)
G [oer= [ QU sitossi+ 1 - [w5.faog £+ 1)
— [ QUi s10g fi - JAAATYA
= / QUfs, fi)log fi — / v n(@)fe log f,
NxRN

N xRN

Under any one of the boundary conditions that we use, the second integral
is 0. As for the first one, it can be rewritten as

o o 0 s108 Bl ) v doas

By a simple symmetry trick, this is also

: g I
e — IIx 1 Bdodv, d :
4 /_Q /]R2N /S'N*1 (f f* ff ) 0g ff* o du vdx

which takes the form — [ D(f)dxz if one defines the entropy production
e’
functional:
_ 1 1 gt f/fi
D(f)=- (f'f. = ffe) log B(v — vy, 0) do dv, dv.
4 mZN X S!\/ -1 ff*

X
Clearly D(f) > 0 because B > 0 and (X —Y') log v > 0 as a consequence

of log being increasing.
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(ii) Since B > 0 almost everywhere, the equality means that for (almost) all
x € {2 the L! function f = f(x,-) satisfies the functional equation of
Maxwell-Boltzmann:

FWf(L) = f(v)f(vs) for almost all v,v,, o (MB)

(and also /f(v)(l + |[v|*)dv < 400, up to deletion of a negligible set
of 2’s).
Integrate equation (MB) with respect to 0 € S¥~!, to find that

1
|SN‘1’ SN—1

1 ~
) m /S('U.xu) fla)f(@) da

f)f(v) = fW)f(,)do

where

v+ s |v — vy

+ Vs

e S(v,v.) is the collision sphere, centered at , with radius

- i . v
e « is the symmetric of o with respect to

The important point about this average over S(v,v,) is that it only depends

v+ v, [v — vy
upon S(v, v« ), whence only upon and 3

, or (which is equivalent,)

upon the physically meaningful variables

m=v+v, (total momentum)

2 4 | |2
€= w (total kinetic energy)
Thus f(v)f(ve) = G(m,e). Note. In this argument, due to Boltzmann, the
Maxwell distribution arises from this conflict of symmetries between the ten-
sor product structure of ff, and the dependence of g upon a reduced set of
variables: m and e.
Let us continue with the proof of (ii). We first assume f to be smooth (C,
positive). Taking logarithms, we find

log f(v)+log f(vi) =log G(m,e)

03 — Vg f(v)+0= Vv[log G(m,e)]
v

=Vmn [log G(m,e)] + % [log G(m,e)] v
Similarly, Vlog f(v.) = Vm[log G(m,e)] + ()i [log G(mm)]’u*. So

(&

(Vlog f)(v)— (Viog f)(vi) JJv—v. Vv,v. € RY x R".



