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PRELIMINARIES

The purpose of this book is to develop the understanding of basic numerical meth-
ods and their implementations as software that are necessary for solving fundamental
mathematical problems by numerical means. It is designed for the person who wants
to do numerical computing. Through the examples and exercises, the reader studies the
behavior of solutions of the mathematical problem along with an algorithm for solv-
ing the problem. Experience and understanding of the algorithm are gained through
hand computation and practice solving problems with a computer implementation. It
is essential that the reader understand how the codes provided work, precisely what
they do, and what their limitations are. The codes provided are powerful, yet simple
enough for pedagogical use. The reader is exposed to the art of numerical computing
as well as the science.

The book is intended for a one-semester course, requiring only calculus and a
modest acquaintance with FORTRAN, C, C++, or MATLAB. These constraints of
background and time have important implications: the book focuses on the problems
that are most common in practice and accessible with the background assumed. By
concentrating on one effective algorithm for each basic task, it is possible to develop
the fundamental theory in a brief, elementary way. There are ample exercises, and
codes are provided to reduce the time otherwise required for programming and debug-
ging. The intended audience includes engineers, scientists, and anyone else interested
in scientific programming. The level is upper-division undergraduate to beginning
graduate and there is adequate material for a one semester to two quarter course.

Numerical analysis blends mathematics, programming, and a considerable amount
of art. We provide programs with the book that illustrate this. They are more than mere
implementations in a particular language of the algorithms presented, but they are not
production-grade software. To appreciate the subject fully, it will be necessary to study
the codes provided and gain experience solving problems first with these programs and
then with production-grade software.

Many exercises are provided in varying degrees of difficulty. Some are designed
to get the reader to think about the text material and to test understanding, while others
are purely computational in nature. Problem sets may involve hand calculation, alge-
braic derivations, straightforward computer solution, or more sophisticated computing
exercises.

The algorithms that we study and implement in the book are designed to avoid
severe roundoff errors (arising from the finite number of digits available on computers
and calculators), estimate truncation errors (arising from mathematical approxima-
tions), and give some indication of the sensitivity of the problem to errors in the data.
In Chapter 1 we give some basic definitions of errors arising in computations and
study roundoff errors through some simple but illuminating computations. Chapter 2
deals with one of the most frequently occurring problems in scientific computation,
the solution of linear systems of equations. In Chapter 3 we deal with the problem of
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vi PRELIMINARIES

interpolation, one of the most fundamental and widely used tools in numerical com-
putation. In Chapter 4 we study methods for finding solutions to nonlinear equations.
Numerical integration is taken up in Chapter 5 and the numerical solution of ordinary
differential equations is examined in Chapter 6. Each chapter contains a case study
that illustrates how to combine analysis with computation for the topic of that chapter.

Before taking up the various mathematical problems and procedures for solving
them numerically, we need to discuss briefly programming languages and acquisition
of software.

PROGRAMMING LANGUAGES

The FORTRAN language was developed specifically for numerical computation and
has evolved continuously to adapt it better to the task. Accordingly, of the widely
used programming languages, it is the most natural for the programs of this book. The
C language was developed later for rather different purposes, but it can be used for
numerical computation.

At present FORTRAN 77 is very widely available and codes conforming to the
ANSI standard for the language are highly portable, meaning that they can be moved
to another hardware/software configuration with very little change. We have chosen
to provide codes in FORTRAN 77 mainly because the newer Fortran 90 is not in wide
use at this time. A Fortran 90 compiler will process correctly our FORTRAN 77
programs (with at most trivial changes), but if we were to write the programs so as
to exploit fully the new capabilities of the language, a number of the programs would
be structured in a fundamentally different way. The situation with C is similar, but
in our experience programs written in C have not proven to be nearly as portable as
programs written in standard FORTRAN 77. As with FORTRAN, the C language has
evolved into C++, and as with Fortran 90 compared to FORTRAN 77, exploiting fully
the additional capabilities of C++ (in particular, object oriented programming) would
lead to programs that are completely different from those in C. We have opted for a
middle ground in our C++ implementations.

In the last decade several computing environments have been developed. Popular
ones familiar to us are MATLAB [1] and Mathematica [2]. MATLAB is very much in
keeping with this book, for it is devoted to the solution of mathematical problems by
numerical means. It integrates the formation of a mathematical model, its numerical
solution, and graphical display of results into a very convenient package. Many of the
tasks we study are implemented as a single command in the MATLAB language. As
MATLAB has evolved, it has added symbolic capabilities. Mathematica is a similar
environment, but it approaches mathematical problems from the other direction. Orig-
inally it was primarily devoted to solving mathematical problems by symbolic means,
but as it has evolved, it has added significant numerical capabilities. In the book we
refer to the numerical methods implemented in these widely used packages, as well
as others, but we mention the packages here because they are programming languages
in their own right. It is quite possible to implement the algorithms of the text in these
languages. Indeed, this is attractive because the environments deal gracefully with a
number of issues that are annoying in general computing using languages like FOR-
TRAN or C.



SOFTWARE vii

At present we provide programs written in FORTRAN 77, C, C++, and MATLAB
that have a high degree of portability. Quite possibly in the future the programs will
be made available in other environments (e.g., Fortran 90 or Mathematica.)

SOFTWARE

In this section we describe how to obtain the source code for the programs that ac-
company the book and how to obtain production-grade software. It is assumed that the
reader has available a browser for the World Wide Web, although some of the software
is available by ftp or gopher.

The programs that accompany this book are currently available by means of anony-
mous ftp (log in as anonymous or as ftp) at

ftp.wiley.com

in subdirectories of public/college/math/sapcodes for the various languages discussed
in the preceding section.

The best single source of software is the Guide to Available Mathematical Soft-
ware (GAMS) developed by the National Institute of Standards and Technology (NIST).
It is an on-line cross-index of mathematical software and a virtual software repository.
Much of the high-quality software is free. For example, GAMS provides a link to
netlib, a large collection of public-domain mathematical software. Most of the pro-
grams in netlib are written in FORTRAN, although some are in C. A number of the
packages found in netlib are state-of-the-art software that are cited in this book. The
internet address is

http:// gams.nist.gov

for GAMS.
A useful source of microcomputer software and pointers to other sources of soft-
ware is the Mathematics Archives at

http://archives.math.utk.edu:80/

It is worth remarking that one item listed there is an “Index of resources for numerical
computation in C or C++.”

There are a number of commercial packages that can be located by means of
GAMS. We are experienced with the NAG and IMSL libraries, which are large col-
lections of high-quality mathematical software found in most computing centers. The
computing environments MATLAB and Mathematica mentioned in the preceding sec-
tion can also be located through GAMS.
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CHAPTER 1

ERRORS AND FLOATING POINT
ARITHMETIC

Errors in mathematical computation have several sources.. One is the modeling that
led to the mathematical problem, for example, assuming no wind resistance in study-
ing projectile motion or ignoring finite limits of resources in population and economic
growth models. Such errors are not the concern of this book, although it must be kept
in mind that the numerical solution of a mathematical problem can be no more mean-
ingful than the underlying model. Another source of error is the measurement of data
for the problem. A third source is a kind of mathematical error called discretization
or truncation error. It arises from mathematical approximations such as estimating an
integral by a sum or a tangent line by a secant line. Still another source of error is the
error that arises from the finite number of digits available in the computers and cal-
culators used for the computations. It is called roundoff error. In this book we study
the design and implementation of algorithms that aim to avoid severe roundoff errors,
estimate truncation errors, and give some indication of the sensitivity of the problem
to errors in the data. This chapter is devoted to some fundamental definitions and a
study of roundoff by means of simple but illuminating computations.

1.1 BASIC CONCEPTS

How well a quantity is approximated is measured in two ways:

absolute error = true value — approximate value

true value — approximate value
true value )

relative error =

Relative error is not defined if the true value is zero. In the arithmetic of computers,
relative error is the more natural concept, but absolute error may be preferable when
studying quantities that are close to zero.

A mathematical problem with input (data) x and output (answer) y = F(x) is said
to be well-conditioned if “small” changes in x lead to “small” changes in y. If the

1
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CHAPTER 1

ERRORS AND FLOATING POINT ARITHMETIC

changes in y are “large,” the problem is said to be ill-conditioned. Whether a problem
is well- or ill-conditioned can depend on how the changes are measured. A concept
related to conditioning is stability. It is concerned with the sensitivity of an algorithm
for solving a problem with respect to small changes in the data, as opposed to the sen-
sitivity of the problem itself. Roundoff errors are almost inevitable, so the reliability
of answers computed by an algorithm depends on whether small roundoff errors might
seriously affect the results. An algorithm is stable if “small” changes in the input lead
to “small” changes in the output. If the changes in the output are “large,” the algorithm
is unstable.

To gain some insight about condition, let us consider a differentiable function F (x)
and suppose that its argument, the input, is changed from x to x + €x. This is a relative
change of € in the input data. According to Theorem 4 of the appendix, the change
induces an absolute change in the output value F(x) of

F(x) - F(x+ex) ~ —exF'(x).
The relative change is

F)-Fx+ex) _ F'(x)
F(x) F(x)’

Example 1.1. If, for example, F(x) = ¢*, the absolute change in the value of the
exponential function due to a change &x in its argument x is approximately —exe*, and
the relative change is about —&x. When x is large, the conditioning of the evaluation of
this function with respect to a small relative change in the argument depends strongly
on whether the change is measured in an absolute or relative sense. ]

Example 1.2. If F(x) = cosx, then near x = 1/2 the absolute error due to perturbing
x to x + €x is approximately —ex(—sinx) = ne/2. The relative error at x = 7/2 is not
defined since cos(m/2) = 0. However, the accurate values

cos(1.57079) = 0.63267949 x 107>
c0s(1.57078) = 1.63267949 x 1073

show how a very small change in the argument near 7/2 can lead to a significant (63%)
change in the value of the function. In contrast, evaluation of the cosine function is
well-conditioned near x = O (see Exercise 1.4). |

Example 1.3. A common application of integration by parts in calculus courses is
the evaluation of families of integrals by recursion. As an example, consider

1
E,,=/ ¢ ldx forn=1,2,....
0

From this definition it is easy to see that

Ey>E,>--->E, 1 >E,>--->0.
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To obtain a recursion, integrate by parts to get
1 1 | ael
- / " e dx
0 0

=1-—nE, ;.

E,=x"&"1

The first member of the family is
1
E=1 —/ Fldx=el,
0

and from it we can easily compute any E,. If this is done in single precision on a PC
or workstation (IEEE standard arithmetic), it is found that

E, = 0367879

E, = 0.264241

Ey = 0.0506744

En = 0.442581 (the exact E, decrease!)

Ep, = —4.31097 (the exact E, are positive!)

Ey = —0.222605x 10!! (the exact E, are between 0 and 1!)

This is an example of an unstable algorithm. A little analysis helps us understand what
is happening. Suppose we had started with £; = E; 4 & and made no arithmetic errors
when evaluating the recurrence. Then

E, = 1-2E,=1-2E,-28=E,-2%
Ey = 1-3E,=1-3E,+68=E5;+3!8

E, = E,tn%.
A small change in the first value E; grows very rapidly in the later E,. The effect is
worse in a relative sense because the desired quantities E, decrease as n increases.
For this example there is a way to get a stable algorithm. If we could find an
approximation Ey to Ey for some N, we could evaluate the recursion in reverse order,

1-E
Ep 1= n n’ n=N,N-1,...,2,

to approximate Ey_y,En_3,...,E;. Studying the stability of this recursion as before,
if Ey = Ey +¢, then

~ 1-Ey 1-Ey ¢ 3
1= = ——=FEy - =

En_ ~ N v =Ev-1—y

P €

Ey_ =EN—2+N—‘(N_ 1

. €
Ei=Ey;.
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The recursion is so cheap and the error damps out so quickly that we can start with a

poor approximation Ey for some large N and get accurate answers inexpensively for
the E, that really interest us. Notice that recurring in this direction, the E, increase,
making the relative errors damp out even faster. The inequality

1 1
O<En<‘/0 x"dx:m

shows how to easily get an approximation to E, with _an error that we can bound. For
example, if we take N = 20, the crude approximation Ezo = 0 has an absolute error less
than 1/21 in magnitude. The magmtude of the absolute error in E19 is then less than
1/(20 x 21) = 0.0024,..., and that in E,s is less than 4 x 1078, The approximations
to Ei4,...,E1 will be even more accurate.

A stable recurrence like the second algorithm is the standard way to evaluate cer-
tain mathematical functions. It can be especially convenient for a series expansion in
the functions. For example, evaluation of an expansion in Bessel functions of the first
kind,

f) = i_";oa,,z,,<x>,

requires the evaluation of J,(x) for many n. Using recurrence on the index n, this is
accomplished very inexpensively. |

Any real number y # 0 can be written in scientific notation as
y=.dydy- - dsdgy - X 10 (1.1)

Here there are an infinite number of digits d;. Each d; takes on one of the values
0,1,...,9 and we assume the number y is normalized so that d; > 0. The portion
.dyds... is called the fraction or mantissa or significand; it has the meaning

dy X107 4 dy x 10724 4+ dg X 10754+,
There is an ambiguity in this representation; for example, we must agree that
0.24000000 - - -

is the same as
0.23999999. ...

The quantity e in (1.1) is called the exponent, it is a signed integer.

Nearly all numerical computations on a digital computer are done in floating point
arithmetic. This is a number system that uses a finite number of digits to approximate
the real number system used for exact computation. A system with s digits and base
10 has all of its numbers of the form

y=.didy---dy x 10°. (1.2)
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Again, for nonzero numbers each d; is one of the digits 0,1,...,9 and d; > 0 for a
normalized number. The exponent e also has only a finite number of digits; we assume
the range

m<e<M.
The number zero is special; it is written as
0.0---0 x 10™.

Example 1.4. If s=1,m= —1, and M = 1, then the set of floating point numbers is

+0.1x107!, +02x107!, ..., 4+0.9x107!
+0.1x10% 40.2x10° ..., +0.9x10°
+0.1x 10!, +02x10!, ..., 40.9x10,

together with the negative of each of these numbers and 0.0 x 107! for zero. There are
only 55 numbers in this floating point number system. In floating point arithmetic the
numbers are not equally spaced. This is illustrated in Figure 1.1, which is discussed
after we consider number bases other than decimal. ]

Because there are only finitely many floating point numbers to represent the real
number system, each floating point number must represent many real numbers. When
the exponent e in (1.1) is bigger than M, it is not possible to represent y at all. If in
the course of some computations a result arises that would need an exponent e > M,
the computation is said to have overflowed. Typical operating systems will terminate
the run on overflow. The situation is less clear when e < m, because such a y might
reasonably be approximated by zero. If such a number arises during a computation,
the computation is said to have underflowed. In scientific computation it is usually ap-
propriate to set the result to zero and continue. Some operating systems will terminate
the run on underfiow and others will set the result to zero and continue. Those that
continue may report the number of underflows at the end of the run. If the response of
the operating system is not to your liking, it is usually possible to change the response
by means of a system routine.

Overflows and underflows are not unusual in scientific computation. For exam-
ple, exp(y) will overflow for y > O that are only moderately large, and exp(—y) will
underflow. Our concern should be to prevent going out of range unnecessarily.

FORTRAN and C provide for integer arithmetic in addition to floating point arith-
metic. Provided that the range of integers allowed is not exceeded, integer arithmetic
is exact. It is necessary to beware of overflow because the typical operating system
does not report an integer overflow; the computation continues with a number that is
not related to the correct value in an obvious way.

Both FORTRAN and C provide for two precisions, that is, two arithmetics with
different numbers of digits s, called single and double precision. The languages deal
with mixing the various modes of arithmetic in a sensible way, but the unwary can get
into trouble. This is more likely in FORTRAN than C because by default, constants in
C are double precision numbers. In FORTRAN the type of a constant is taken from the
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way it is written. Thus, an expression like (3/4)*5. in FORTRAN and in C means that
the integer 3 is to be divided by the integer 4 and the result converted to a floating point
number for multiplication by the floating point number 5. Here the integer division 3/4
results in 0, which might not be what was intended. It is surprising how often users
ruin the accuracy of a calculation by providing an inaccurate value for a basic constant
like . Some constants of this kind may be predefined to full accuracy in a compiler
or a library, but it should be possible to use intrinsic functions to compute accurately
constants like T = acos(—1.0).

Evaluation of an asymptotic expansion for the special function Ei(x), called the
exponential integral, involves computing terms of the form n!/x". To contrast com-
putations in integer and floating point arithmetic, we computed terms of this form for
a range of n and x = 25 using both integer and double precision functions for the
factorial. Working in C on a PC using IEEE arithmetic, it was found that the results
agreed through n = 7, but for larger n the results computed with integer arithmetic were
useless—the result for n = 8 was negative! The integer overflows that are responsible
for these erroneous results are truly dangerous because there was no indication from
the system that the answers might not be reliable.

Example 1.5. In Chapter 4 we study the use of bisection to find a number z such
that f(z) = 0, that is, we compute a root of f(x). Fundamental to this procedure is
the question, Do f(a) and f(b) have opposite signs? If they do, a continuous function
f(x) has a root z between a and b. Many books on programming provide illustrative
programs that test for f(a)f(b) < 0. However, when f(a) and f(b) are sufficiently
small, the product underflows and its sign cannot be determined. This is likely to
happen because we are interested in a and b that tend to z, causing f(a) and f(b) to
tend to zero. It is easy enough to code the test so as to avoid the difficulty; it is just
necessary to realize that the floating point number system does not behave quite like
the real number system in this test. [ ]

As we shall see in Chapter 4, finding roots of functions is a context in which
underflow is quite common. This is easy to understand because the aim is to find a z
that makes f(z) as small as possible.

Example 1.6. Determinants. In Chapter 2 we discuss the solution of a system of
linear equations. As a by-product of the algorithm and code presented there, the deter-
minant of a system of n equations can be computed as the product of a set of numbers
returned:

det =y1y2--"yn-

Unfortunately, this expression is prone to unnecessary under- and overflows. If, for
example, M = 100 and y| = 10%0, y, = 1090, y; = 10~39, ail the numbers are in range
and so is the determinant 1080, However, if we form (y; X y») X y3, the partial product
¥1 X y3 overflows. Note that y; x (y2 X y3) can be formed. This illustrates the fact that
floating point numbers do not always satisfy the associative law of multiplication that
is true of real numbers.
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The more fundamental issue is that because det(cA) = c"det(A), the determinant
is extremely sensitive to the scale of the matrix A when the number of equations n
is large. A software remedy used in LINPACK [4] in effect extends the range of
exponents available. Another possibility is to use logarithms and exponentials:

n
In|det| = ) In|y;]
i=1
|det| = exp(In|det]|).
If this leads to an overflow, it is because the answer cannot be represented in the float-
ing point number system. [ |

Example 1.7. Magnitude. = When computing the magnitude of a complex number

z=x+1y,
|z] = V/x2+¥2,

there is a difficulty when either x or y is large. Suppose that |x| > [y|. If |x| is suf-
ficiently large, x2 will overflow and we are not able to compute |z| even when it is a
valid floating point number. If the computation is reformulated as

|2l = |xly/ 1+ (v/x)?,

the difficulty is avoided. Notice that underflow could occur when |y| < |x|. This is
harmless and setting the ratio y/x to zero results in a computed |z| that has a small
relative error.

The evaluation of the Euclidean norm of a vector v = (vq,v7,...,v,),

L \05
[Vl = (Zivlz) ;

involves exactly the same kind of computations. Some writers of mathematical soft-
ware have preferred to work with the maximum norm

Ille = max i,

because it avoids the unnecessary overflows and underflows that are possible with a
straightforward evaluation of the Euclidean norm. ]

If a real number y has an exponent in the allowed range, there are two standard
ways to approximate it by a floating point number fI(y). If all digits after the first s
in (1.1) are dropped, the result is known as a chopped or truncated representation. A

floating point number that is usually closer to y can be found by adding 5 x 10~ (+D)
to the fraction in (1.1) and then chopping. This is called rounding.

Example 1.8. Ifm=—-99, M =99, s =5, and © = 3.1415926-- -, then in chopped
arithmetic

fl(m) = 0.31415 x 10!



