Klaus Schneider
Jens Brandt (Eds.)

Theorem Proving
in Higher Order Logics

20th International Conference, TPHOLs 2007
Kaiserslautern, Germany, September 2007
Proceedings

LNCS 4732

@ Springer

el e

7T~/ Klaus Schneider Jens Brandt (Eds.)

Theorem Proving
in Higher Order Logics

20th International Conference, TPHOLs 2007
Kaiserslautern, Germany, September 10-13,2007
Proceedings

A springer [|[IIIN]

E2007003442

Volume Editors

Klaus Schneider

Jens Brandt

University of Kaiserslautern

Department of Computer Science

Reactive Systems Group

P.O.Box 3049, 67653 Kaiserslautern, Germany

E-mail: {klaus.schneider,brandt} @informatik.uni-kl.de

Library of Congress Control Number: Applied for

CR Subject Classification (1998): F.4.1,1.2.3, F3.1, D.2.4, B.6.3
LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-74590-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-74590-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12115440 06/3180 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

-

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4732

Lecture Notes in Computer Science

Sublibrary 1: Theoretical Computer Science and General Issues

For information about Vols. 1— 4421
please contact your bookseller or Springer

Vol. 4743: P. Thulasiraman, X. He, T.L.. Xu, M.K. Denko,
R.K.Thulasiram, L.T. Yang (Eds.), Frontiers of High Per-
formance Computing and Networking ISPA 2007 Work-
shops. XXIX, 536 pages. 2007.

Vol. 4742: 1. Stojmenovic, R.K. Thulasiram, L.T. Yang,
W. Jia, M. Guo, R.F. de Mello (Eds.), Parallel and Dis-
tributed Processing and Applications. XX, 995 pages.
2007.

Vol. 4736: S. Winter, M. Duckham, L. Kulik, B. Kuipers
(Eds.), Spatial Information Theory. XV, 455 pages. 2007.

Vol. 4732: K. Schneider, J. Brandt (Eds.), Theorem Prov-
ing in Higher Order Logics. IX, 401 pages. 2007.

Vol. 4708: L. Kulera, A. Kucera (Eds.), Mathemati-
cal Foundations of Computer Science 2007. XVIII, 764
pages. 2007.

Vol. 4707: O. Gervasi, M.L. Gavrilova (Eds.), Computa-
tional Science and Its Applications — ICCSA 2007, Part
1. XXIV, 1205 pages. 2007.

Vol. 4706: O. Gervasi, M.L. Gavrilova (Eds.), Computa-
tional Science and Its Applications — ICCSA 2007, Part
I1. XXIII, 1129 pages. 2007.

Vol. 4705: O. Gervasi, M.L. Gavrilova (Eds.), Computa-
tional Science and Its Applications — ICCSA 2007, Part
I. XLIV, 1169 pages. 2007.

Vol. 4703: L. Caires, V.T. Vasconcelos (Eds.), CONCUR
2007 - Concurrency Theory. XIII, 507 pages. 2007.

Vol. 4697: L. Choi, Y. Paek, S. Cho (Eds.), Advances in
Computer Systems Architecture. XIII, 400 pages. 2007.

Vol. 4688: K. Li, M. Fei, G.W. Irwin, S. Ma (Eds.), Bio-

Inspired Computational Intelligence and Applications.
XIX, 805 pages. 2007.

Vol. 4684: L. Kang, Y. Liu, S. Zeng (Eds.), Evolvable
Systems: From Biology to Hardware. XIV, 446 pages.
2007.

Vol. 4683: L. Kang, Y. Liu, S. Zeng (Eds.), Intelligence
Computation and Applications. XVII, 663 pages. 2007.

Vol. 4681: D.-S. Huang, L. Heutte, M. Loog (Eds.),
Advanced Intelligent Computing Theories and Applica-
tions. XXVI, 1379 pages. 2007.

Vol. 4671: V. Malyshkin (Ed.), Parallel Computing Tech-
nologies. XIV, 635 pages. 2007.

Vol. 4668: J.M. de S4, L.A. Alexandre, W. Duch, D.P.
Mandic (Eds.), Artificial Neural Networks — ICANN
2007, Part I. XXXI, 978 pages. 2007.

Vol. 4667: J. Hertzberg, M. Beetz, R. Englert (Eds.), KI
2007: Advances in Artificial Intelligence. IX, 516 pages.
2007.

Vol. 4666: M.E. Davies, C.J. James, S.A. Abdallah, M.D
Plumbley (Eds.), Independent Component Analysis and
Blind Signal Separation. XIX, 847 pages. 2007.

Vol. 4664: J. Durand-Lose, M. Margenstern (Eds.), Ma-
chines, Computations, and Universality. X, 325 pages.
2007.

Vol. 4649: V. Diekert, M.V. Volkov, A. Voronkov (Eds.),
Computer Science — Theory and Applications. XIII, 420
pages. 2007.

Vol. 4647: R. Martin, M. Sabin, J. Winkler (Eds.), Math-
ematics of Surfaces XII. IX, 509 pages. 2007.

Vol. 4644: N. Azemard, L. Svensson (Eds.), Integrated
Circuit and System Design. XIV, 583 pages. 2007.

Vol. 4641: A.-M. Kermarrec, L. Bougé, T. Priol (Eds.),

Euro-Par 2007 Parallel Processing. XXVII, 974 pages.
2007.

Vol. 4639: E. Csuhaj-Varjii, Z. Esik (Eds.), Fundamentals
of Computation Theory. XIV, 508 pages. 2007.
Vol. 4638: T. Stiitzle, M. Birattari, H.H. Hoos (Eds.),

Engineering Stochastic Local Search Algorithms. X, 223
pages. 2007.

Vol. 4628: L.N. de Castro, F.J. Von Zuben, H. Knidel
(Eds.), Artificial Immune Systems. XII, 438 pages. 2007.

Vol. 4627: M. Charikar, K. Jansen, O. Reingold,
J.D.P. Rolim (Eds.), Approximation, Randomization,
and Combinatorial Optimization. XII, 626 pages. 2007.
Vol. 4624: T. Mossakowski, U. Montanari, M. Haveraaen
(Eds.), Algebra and Coalgebra in Computer Science. XI,
463 pages. 2007.

Vol. 4619: F. Dehne, J.-R. Sack, N. Zeh (Eds.), Algo-
rithms and Data Structures. XVI, 662 pages. 2007.

Vol. 4618: S.G. Akl, C.S. Calude, M.J. Dinneen, G.
Rozenberg, H.T. Wareham (Eds.), Unconventional Com-
putation. X, 243 pages. 2007. -

Vol. 4616: A. Dress, Y. Xu, B. Zhu (Eds.), Combinatorial
Optimization and Applications. XI, 390 pages. 2007.

Vol. 4613: FP. Preparata, Q. Fang (Eds.), Frontiers in
Algorithmics. XI, 348 pages. 2007.

Vol. 4600: H. Comon-Lundh, C. Kirchner, H. Kirch-
ner (Eds.), Rewriting, Computation and Proof. XVI, 273
pages. 2007.

Vol.4599: S. Vassiliadis, M. Berekovic, T.D. Hamaildinen
(Eds.), Embedded Computer Systems: Architectures,
Modeling, and Simulation. XVIII, 466 pages. 2007.
Vol. 4598: G. Lin (Ed.), Computing and Combinatorics.
XII, 570 pages. 2007.

Vol. 4596: L. Arge, C. Cachin, T. Jurdziriski, A. Tarlecki

(Eds.), Automata, Languages and Programming. XVII,
953 pages. 2007.

Vol. 4595: D. Bosnacki, S. Edelkamp (Eds.), Model
Checking Software. X, 285 pages. 2007.

Vol. 4590: W. Damm, H. Hermanns (Eds.), Computer
Aided Verification. XV, 562 pages. 2007.

Vol. 4588: T. Harju, J. Karhumiki, A. Lepisto (Eds.),
Developments in Language Theory. X1, 423 pages. 2007.
‘.

Vol. 4583: S.R. Della Rocca (Ed.), Typed Lambda Cal-
culi and Applications. X, 397 pages. 2007.

Vol. 4580: B. Ma, K. Zhang (Eds.), Combinatorial Pat-
tern Matching. XII, 366 pages. 2007.

Vol. 4576: D. Leivant, R. de Queiroz (Eds.), Logic,
Language, Information and Computation. X, 363 pages.
2007.

- Vol. 4547: C. Carlet, B. Sunar (Eds.), Arithmetic of Finite
Fields. XI, 355 pages. 2007.

Vol. 4546: J. Kleijn, A. Yakovlev (Eds.), Petri Nets and
Other Models of Concurrency — ICATPN 2007. XI, 515
pages. 2007. .

Vol. 4545: H. Anai, K. Horimoto, T. Kutsia (Eds.), Alge-
braic Biology. XIII, 379 pages. 2007.

Vol. 4533: F. Baader (Ed.), Term Rewriting and Appli-
cations. XII, 419 pages. 2007.

Vol. 4528: J. Mira, J.R. Alvarez (Eds.), Nature Inspired
Problem-Solving Methods in Knowledge Engineering,
Part II. XXII, 650 pages. 2007.

Vol. 4527: J. Mira, J.R. Alvarez (Eds.), Bio-inspired
Modeling of Cognitive Tasks, Part I. XXII, 630 pages.
. 2007.

Vol. 4525: C. Demetrescu (Ed.), Experimental Algo-
rithms. X111, 448 pages. 2007.

Vol. 4514: S.N. Artemov, A. Nerode (Eds.), Logical
Foundations of Computer Science. XI, 513 pages. 2007.

Vol. 4513: M. Fischetti, D.P. Williamson (Eds.), Integer
Programming and Combinatorial Optimization. IX, 500
pages. 2007.

Vol. 4510: P. Van Hentenryck, L.A. Wolsey (Eds.), Inte-

_ gration of Al and OR Techniques in Constraint Program-
ming for Combinatorial Optimization Problems. X, 391
pages. 2007.

. Vol.4507: F. Sandoval, A. Prieto, J. Cabestany, M. Grafia
(Eds.), Computational and Ambient Intelligence. XX VI,
1167 pages. 2007.

Vol. 4501: J. Marques-Silva, K.A. Sakallah (Eds.), The-
ory and Applications of Satisfiability Testing — SAT
2007. XI, 384 pages. 2007.

Vol. 4497: S.B. Cooper, B. Lowe, A. Sorbi (Eds.), Com-
putation and Logic in the Real World. XVIII, 826 pages.
2007.

Vol.4494: H. Jin, O.F. Rana, Y. Pan, V.K. Prasanna (Eds.),
Algorithms and Architectures for Parallel Processing.
X1V, 508 pages. 2007.

Vol. 4493: D. Liu, S. Fei, Z. Hou, H. Zhang, C. Sun
(Eds.), Advances in Neural Networks — ISNN 2007, Part
III. XXVI, 1215 pages. 2007.

Vol. 4492: D. Liu, S. Fei, Z. Hou, H. Zhang, C. Sun
(Eds.), Advances in Neural Networks — ISNN 2007, Part
II. XXVII, 1321 pages. 2007.

K403 094

Vol. 4491: D. Liu, S. Fei, Z.-G. Hou, H. Zhang, C. Sun
(Eds.), Advances in Neural Networks — ISNN 2007, Part
I. LIV, 1365 pages. 2007.

Vol. 4490: Y. Shi, G.D. van Albada, J. Dongarra, PM.A.
Sloot (Eds.), Computational Science — ICCS 2007, Part
IV. XXXVII, 1211 pages. 2007.

Vol. 4489: Y. Shi, G.D. van Albada, J. Dongarra, PM.A.
Sloot (Eds.), Computational Science — ICCS 2007, Part
L. XXXVII, 1257 pages. 2007.

Vol. 4488: Y. Shi, G.D. van Albada, J. Dongarra, PM.A.
Sloot (Eds.), Computational Science — ICCS 2007, Part
II. XXXV, 1251 pages. 2007.

Vol. 4487:Y. Shi, G.D. van Albada, J. Dongarra, PM.A.
Sloot (Eds.), Computational Science — ICCS 2007, Part
I. LXXXI, 1275 pages. 2007.

Vol. 4484: J.-Y. Cai, S.B. Cooper, H. Zhu (Eds.), Theory
and Applications of Models of Computation. XIII, 772
pages. 2007.

Vol. 4475: P. Crescenzi, G. Prencipe, G. Pucci (Eds.),
Fun with Algorithms. X, 273 pages. 2007.

Vol. 4474: G. Prencipe, S. Zaks (Eds.), Structural Infor-
mation and Communication Complexity. XI, 342 pages.
2007.

Vol. 4459: C. Cérin, K.-C. Li (Eds.), Advances in Grid
and Pervasive Computing. XVI, 759 pages. 2007.

Vol. 4449: Z. Horvath, V. Zs6k, A. Butterfield (Eds.), Im-
plementation and Application of Functional Languages.
X, 271 pages. 2007.

Vol. 4448: M. Giacobini (Ed.), Applications of Evolu-
tionary Computing. XXIII, 755 pages. 2007.

Vol. 4447: E. Marchiori, J.H. Moore, J.C. Rajapakse
(Eds.), Evolutionary Computation, Machine Learning
and Data Mining in Bioinformatics. XI, 302 pages. 2007.

Vol. 4446: C. Cotta, J. van Hemert (Eds.), Evolutionary
Computation in Combinatorial Optimization. XII, 241
pages. 2007.

Vol. 4445: M. Ebner, M. O’Neill, A. Ekdrt, L. Vanneschi,
AL Esparcia-Alcdzar (Eds.), Genetic Programming. XI,
382 pages. 2007.

Vol. 4436: C.R. Stephens, M. Toussaint, D. Whitley, P.F.
Stadler (Eds.), Foundations of Genetic Algorithms. IX,
213 pages. 2007.

Vol. 4433: E. Sahin, W.M. Spears, A.E.T. Winfield (Eds.),
Swarm Robotics. XII, 221 pages. 2007. *

Vol. 4432: B. Beliczynski, A. Dzielinski, M. Iwanowski,
B. Ribeiro (Eds.), Adaptive and Natural Computing Al-
gorithms, Part II. XX VI, 761 pages. 2007.

Vol. 4431: B. Beliczynski, A. Dzielinski, M. Iwanowski,
B. Ribeiro (Eds.), Adaptive and Natural Computing Al-
gorithms, Part I. XXV, 851 pages. 2007.

Vol. 4424: O. Grumberg, M. Huth (Eds.), Tools and Al-
gorithms for the Construction and Analysis of Systems.
XX, 738 pages. 2007.

Vol. 4423: H. Seidl (Ed.), Foundations of Software Sci-

ence and Computational Structures. XVI, 379 pages.
2007.

Vol. 4422: M.B. Dwyer, A. Lopes (Eds.), Fundamental
Approaches to Software Engineering. XV, 440 pages.
2007.

Preface

This volume constitutes the proceedings of the 20th International Conference
on Theorem Proving in Higher-Order Logics (TPHOLs 2007) held September
10-13, 2007 in Kaiserslautern, Germany. TPHOLs covers all aspects of theorem
proving in higher-order logics as well as related topics in theorem proving and
verification.

There were 52 submissions, and each submission was refereed by at least 4
reviewers, who had been selected by the program committee. Of these submis-
sions, 26 were accepted for presentation at the conference and publication in this
volume. In keeping with tradition, TPHOLSs 2007 also offered a venue for the
presentation of work in progress, where researchers invite discussion by means
of a brief preliminary talk and then discuss their work at a poster session. A
supplementary proceedings containing associated papers for work in progress
was published by the University of Kaiserslautern. The organizers are grate-
ful to Constance Heitmeyer (Naval Research Laboratory), Xavier Leroy (INRIA
Rocquencourt) and Peter Liggesmeyer (Fraunhofer IESE) for agreeing to give
invited talks at TPHOLs 2007.

The TPHOLS conference traditionally changes continent each year in order to
maximize the chances of researchers from around the world being able to attend.
Starting in 1993, the proceedings of TPHOLs and its predecessor workshops have
been published in the Lecture Notes in Computer Science series of Springer-
Verlag:

1993 Vancouver LNCS 780 2000 Portland LNCS 1869
1994 Valletta LNCS 859 2001 Edinburgh LNCS 2152
1995 Aspen Grove LNCS 971 2002 Hampton LNCS 2410
1996 Turku LNCS 1125 2003 Rome LNCS 2758
1997 Murray Hill LNCS 1275 2004 Park City LNCS 3223
1998 Canberra LNCS 1479 2005 Oxford LNCS 3603
1999 Nice LNCS 1690 2006 Seattle LNCS 4130

We would like to thank our sponsors: Fraunhofer IESE (Institute of Experimental
Software Engineering), DASMOD (Dependable Adaptive Systems and Mathe-
matical Modeling) Cluster, and DFKI (German Research Center for Artificial
Intelligence).

July 2007 Klaus Schneider
Jens Brandt

Conference Organization

Program Chairs

Klaus Schneider
Jens Brandt

Program Committee

Mark Aagaard

Yves Bertot
Ching-Tsun Chou
Thierry Coquand

Amy Felty
Jean-Christophe Filliatre
Ganesh Gopalakrishnan
Mike Gordon

Jim Grundy

Elsa Gunter

John Harrison

Jason Hickey

Peter Homeier

Joe Hurd

External Reviewers

Behzad Akbarpour
Ulrich Berger
Stefan Berghofer
Pierre Castéran
Pierre Corbineau
Amjad Gawanmeh
Florian Haftmann
Osman Hasan
Nathan Linger
Claude Marche
Jia Meng

Paul Miner

Paul Jackson
Thomas Kropf
John Matthews
Tom Melham
Cesar Munoz
Tobias Nipkow
Sam Owre
Christine Paulin-Mohring
Lawrence Paulson
Klaus Schneider
Konrad Slind
Sofiene Tahar
Burkhart Wolff

John O’Leary
Sam Owre

Tom Ridge
Norbert Schirmer
Natarajan Shankar
Alan Smaill
Mark-Oliver Stehr
Christian Urban
Makarius Wenzel
Yu Yang
Mohamed Zaki

Table of Contents

On the Utility of Formal Methods in the Development and Certification
of Software (Invited Talk)uuuuiiiiiinns 1
Constance L. Heitmeyer

Formal Techniques in Software Engineering: Correct Software and Safe
Bystems (Iavited TAIRY 1oy imsas corupensenrasamime e5smE 46280 s mmen 3
Peter Liggesmeyer

Separation Logic for Small-Step Cminor 5
Andrew W. Appel and Sandrine Blazy

Formalising Java’s Data Race Frep GUATATEE ;s smsms smsmmemsanins i 22
David Aspinall and Jaroslav Sevéik

Finding Lexicographic Orders for Termination Proofs in
ISADElle/ HOL « i v s 6 ascncuinn vmnus cmnmmememamomnens ovenssmsnssmsss 38
Lukas Bulwahn, Alexander Krauss, and Tobias Nipkow

Formalising Generalised Substitutions 54
Jeremy E. Dawson

Extracting Purely Functional Contents from Logical Inductive Types . . . 70
David Delahaye, Catherine Dubois, and Jean-Frédéric Etienne

A Modular Formalisation of Finite Group Theory 86
Georges Gonthier, Assia Mahboubi, Laurence Rideau,
Enrico Tassi, and Laurent Théry

Verifying Nonlinear Real Formulas Via Sums of Squares 102
John Harrison

Verification of Expectation Properties for Discrete Random Variables
in HOL . ..o 119
Osman Hasan and Sofiéne Tahar

A Formally Verified Prover for the ALC Description Logic 135
José-Antonio Alonso, Joaquin Borrego-Diaz, Maria-José Hidalgo,
Francisco-Jesus Martin-Mateos, and José-Luis Ruiz-Reina

Proof Pearl: The Termination Analysis of TERMINATOR 151
Joe Hurd

Improving the Usability of HOL Through Controlled Automation
ACEIEE! s 5155556 55 565 4 e ie e eomm e omrn cve o s 5 8 8 B8 4 S LS e 157
Eunsuk Kang and Mark D. Aagaard

VIII Table of Contents

Verified Decision Procedures on Context-Free Grammars
Yasuhiko Minamide

Using XCAP to Certify Realistic Systems Code: Machine Context
Management w: ssims saies a0 imiEniPiRiTsIHiEs $5ms SN EG EHEERIS
Zhaozhong Ni, Dachuan Yu, and Zhong Shao

Proof Pearl: De Bruijn Terms Really Do Work
Michael Norrish and René Vestergaard

Proof Pearl: Looping Around the Orbit
Steven Obua

Source-Level Proof Reconstruction for Interactive Theorem Proving
Lawrence C. Paulson and Kong Woei Susanto

Proof Pearl: The Power of Higher-Order Encodings in the Logical
Framework LF
Brigitte Pientka

Automatically Translating Type and Function Definitions from HOL to
ACL 2
James Reynolds

Operational Reasoning for Concurrent Caml Programs and Weak

Memory Models
Tom Ridge

Proof Pearl: Wellfounded Induction on the Ordinals Uptoeg..........
Matt Kaufmann and Konrad Slind

A Monad-Based Modeling and Verification Toolbox with Application
10 SECUTIEY PrOtOCOIS 5 inm s msmms sz 60 ms S50 £ 505 mons mro st st o roioc o o 0 ot 2 i m
Christoph Sprenger and David Basin

Primality Proving with Elliptic Curves
Laurent Théry and Guillaume Hanrot

HOL2P - A System of Classical Higher Order Logic with Second Order
Polymorphism
Norbert Vilker

Building Formal Method Tools in the Isabelle/Isar Framework
Makarius Wenzel and Burkhart Wolff

Simple Types in Type Theory: Deep and Shallow Encodings...........
Frangois Garillot and Benjamin Werner

Mizar’s Soft Type System
Freek Wiedijk

Author Index

On the Utility of Formal Methods in the
Development and Certification of Software

Constance L. Heitmeyer

Naval Research Laboratory
Washington, DC 20375
http://chacs.nrl.navy.mil/personnel/heitmeyer.html

During the past three decades, many formal methods have been proposed whose
goal is to improve the quality of computer systems. I use the term formal method
to refer to any mathematically-based technique or tool useful in either hardware
or software development. Recently, formal methods have played a significantly
increased role in hardware design. More and more companies that sell micro-
processors and hardware chips, including Intel, IBM, and Motorola, are using
formally-based tools, such as model checkers, theorem provers, and equivalence
checkers, to check hardware designs for flaws. While applied less frequently in
practical software development, formal methods have, in a few recent cases, also
been effective in detecting software defects. A prominent example is the set of
tools developed in Microsoft’s SLAM project which were designed to detect flaws
in device drivers [1], a primary source of software defects in Microsoft programs.
In 2006, Microsoft released the Static Driver Verifier (SDV) as part of Win-
dows Vista, the latest Microsoft operating system. SDV uses the SLAM model
checker to detect cases in which device drivers linked to Vista violate one of a
set of interface rules.

This talk reviews several formally-based techniques of value in developing
software systems, focusing on techniques for specifying, validating, and verifying
software requirements [2], a primary cause of software defects. Next, the talk
describes our recent experience applying formal techniques in the certification
of a security-critical module of an embedded software device [3]. TAME [4],
one formal technique applied in this effort, is a front-end to the higher-order
logic theorem prover PVS. The benefits of using a higher-order logic are
described.

References

1. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., On-
drusek, B., Rajamani, S., Ustuner, A.: Thorough static analysis of device drivers.
In: European Systems Conference (2006)

2. Heitmeyer, C., Archer, M., Bharadwaj, R., Jeffords, R.: Tools for constructing re-
quirements specifications: The SCR toolset at the age of ten. Computer Systems
Science and Engineering 20(1), 19-35 (2005)

K. Schneider and J. Brandt (Eds.): TPHOLs 2007, LNCS 4732, pp. 1-2, 2007.
© Springer-Verlag Berlin Heidelberg 2007

2 C.L. Heitmeyer

3. Heitmeyer, C.L., Archer, M., Leonard, E.I., McLean, J.: Formal specification and
verification of data separation in a separation kernel for an embedded system. In:
Proc. 13th ACM Conference on Computer and Communications Security, ACM
Press, New York (2006)

4. Archer, M.: TAME: Using PVS strategies for special-purpose theorem proving. An-
nals of Mathematics and Artificial Intelligence 29(1-4), 131-189 (2001)

Formal Techniques in Software Engineering;:
Correct Software and Safe Systems

Peter Liggesmeyer

Department of Computer Science
University of Kaiserslautern, Germany
Peter.Liggesmeyer@informatik.uni-kl.de
Fraunhofer Institute Experimental Software Engineering
Kaiserslautern, Germany
Peter.Liggesmeyer@iese.fraunhofer.de

In embedded systems, safety and reliability are usually important quality char-
acteristics. It is required to determine these properties including hardware and
software. Many techniques have been proposed to analyze, model and predict
software and hardware quality characteristics on a quantified basis, e.g. fault
trees, Markov analysis, and statistical reliability models.

Formal techniques are increasingly used to prove properties of critical systems.
They support safety and reliability modelling by generating models based on
formal analysis. Approaches for the automated generation of fault trees augment
the traditional manual procedures.

We developed fault tree generation techniques that are based on finite state
descriptions, and specifications of safety properties using temporal logic. Model
checking is used to determine how specific failures can cause unsafe behaviour.
This information is converted into a fault tree that propagates the failure proba-
bilities of components, e.g. sensors, on residual risks on the system level. This is
a combination of formal techniques, safety modelling and statistical analysis. Fi-
nite state machines are used to represent a system comprising a controller and a
technical process under control. The controller is represented by a deterministic
state machine. The process under control is, in general, non-deterministic, and
so is the model. In the beginning, the verification by symbolic model checking
assumes that the process may produce any arbitrary input for the controller.
This will in most cases yield unreasonable inputs to the controller. By means of
a process specification that is used by a model checker, transitions of the process
are restricted to those transitions that are physically reasonable. Model checking
is then used to determine whether unsafe states are reachable if certain failures
oceur.

Statistical reliability growth models are another approach that may be used
to measure and predict reliability and safety. Since different software reliability
models can produce very different answers when used to predict future reliabil-
ity, users need to know which, if any, of the competing models are trustworty
in a specific context. We developed a reliability assessment tool that helps in
reaching such decisions and supports the reliability analysis of software-based
systems. It incorporates reliability models and supports model selection based
on observed failure data using statistically sound criteria. The tool was used to

K. Schneider and J. Brandt (Eds.): TPHOLs 2007, LNCS 4732, pp. 3-4, 2007.
© Springer-Verlag Berlin Heidelberg 2007

4 P. Liggesmeyer

apply statistical reliability modelling to various projects within Siemens. These
include, e.g., telecommunication software, railway systems, and medical applica-
tions. Although it only supports software reliability models, we also applied the
tool to SW-/HW-Systems to get experience whether and how software reliability
models can be applied to such systems. Model preselection, the selection criteria,
aspects of the failure data used for model selection and calibration, scales (e.g.,
execution time vs. calendar time), the application of software reliability models
to software-/hardware-systems, and the precision and usefulness of the results
are discussed.

Safety and reliability analysis of complex systems will probably not be per-
formed in a pure formal way. But formal and statistical techniques may
contribute to enhance precision and reliability of the models. The traditional
manual analyses are increasingly inappropriate. They are usually based on in-
formal documents that describe the system. Considerable knowledge, system
insight, and overview is necessary to consider many failure modes and depen-
dencies between system components and their functionality at a time. Often,
the behavior is too complicated to fully comprehend all possible failure conse-
quences. Manual analysis is error-prone, costly and not necessarily complete.
Formal and statistical techniques may be used to improve the reliability of the
results.

Separation Logic for Small-Step Cminor

Andrew W. Appell>* and Sandrine Blazy?'*

! Princeton University
2 ENSIIE

Abstract. Cminor is a mid-level imperative programming language;
there are proved-correct optimizing compilers from C to Cminor and
from Cminor to machine language. We have redesigned Cminor so that
it is suitable for Hoare Logic reasoning and we have designed a Sepa-
ration Logic for Cminor. In this paper, we give a small-step semantics
(instead of the big-step of the proved-correct compiler) that is moti-
vated by the need to support future concurrent extensions. We detail
a machine-checked proof of soundness of our Separation Logic. This is
the first large-scale machine-checked proof of a Separation Logic w.r.t. a
small-step semantics. The work presented in this paper has been carried
out in the Coq proof assistant. It is a first step towards an environment
in which concurrent Cminor programs can be verified using Separation
Logic and also compiled by a proved-correct compiler with formal end-
to-end correctness guarantees.

1 Introduction

The future of program verification is to connect machine-verified source pro-
grams to machine-verified compilers, and run the object code on machine-verified
hardware. To connect the verifications end to end, the source language should
be specified as a structural operational semantics (SOS) represented in a log-
ical framework; the target architecture can also be specified that way. Proofs
of source code can be done in the logical framework, or by other tools whose
soundness is proved w.r.t. the SOS specification; these may be in safety proofs
via type-checking, correctness proofs via Hoare Logic, or (in source languages
designed for the purpose) correctness proofs by a more expressive proof theory.
The compiler—if it is an optimizing compiler—will be a stack of phases, each
with a well specified SOS of its own. There will be proofs of (partial) correctness
of each compiler phase, or witness-driven recognizers for correct compilations,
w.r.t. the SOS’s that are inputs and outputs to the phases.

Machine-verified hardware/compiler/application stacks have been built be-
fore. Moore described a verified compiler for a “high-level assembly language”
[13]. Leinenbach et al. [11] have built and proved a compiler for C0, a small
C-like language, as part of a project to build machine-checked correctness proofs

* Appel supported in part by NSF Grants CCF-0540914 and CNS-0627650. This work
was done, in part, while both authors were on sabbatical at INRIA.

K. Schneider and J. Brandt (Eds.): TPHOLs 2007, LNCS 4732, pp. 5-21, 2007.
© Springer-Verlag Berlin Heidelberg 2007

6 A.W. Appel and S. Blazy

of source programs, Hoare Logic, compiler, micro-kernel, and RISC processor.
These are both simple one- or two-pass nonoptimizing compilers.

Leroy [12] has built and proved correct in Coq [1] a compiler called CompCert
from a high-level intermediate language Cminor to assembly language for the
Power PC architecture. This compiler has 4 intermediate languages, allowing
optimizations at several natural levels of abstraction. Blazy et al. have built and
proved correct a translator from a subset of C to Cminor [5]. Another compiler
phase on top (not yet implemented) will then yield a proved-correct compiler
from C to machine language. We should therefore reevaluate the conventional
wisdom that an entire practical optimizing compiler cannot be proved correct.

A software system can have components written in different languages, and we
would like end-to-end correctness proofs of the whole system. For this, we propose
a new variant of Cminor as a machine-independent intermediate language to
serve as a common denominator between high-level languages. Our new Cminor
has a usable Hoare Logic, so that correctness proofs for some components can
be done directly at the level of Cminor.

Cminor has a “calculus-like” view of local variables and procedures (i.e. local
variables are bound in an environment), while Leinenbach’s C0 has a “storage-
allocation” view (i.e. local variables are stored in the stack frame). The calculus-
like view will lead to easier reasoning about program transformations and easier
use of Cminor as a target language, and fits naturally with a multi-pass optimiz-
ing compiler such as CompCert; the storage-allocation view suits the one-pass
nonoptimizing CO compiler and can accommodate in-line assembly code.

Cminor is a promising candidate as a common intermediate language for end-
to-end correctness proofs. But we have many demands on our new variant of
Cminor, only the first three of which are satisfied by Leroy’s Cminor.

Cminor has an operational semantics represented in a logical framework.
There is a proved-correct compiler from Cminor to machine language.
Cminor is usable as the high-level target language of a C compiler.

Our semantics is a small-step semantics, to support reasoning about in-

put/output, concurrency, and nontermination.

o Cminor is machine-independent over machines in the “standard model” (i.e.
32- or 64-bit single-address-space byte-addressable multiprocessors).

o Cminor can be used as a mid-level target language of an ML compiler [8], or
of an OO-language compiler, so that we can integrate correctness proofs of
ML or OO programs with the proofs of their run-time systems and libraries.

o As we show in this paper, Cminor supports an axiomatic Hoare Logic (in fact,
Separation Logic), proved sound with respect to the small-step semantics,
for reasoning about low-level (C-like) programs.

o In future work, we plan to extend Cminor to be concurrent in the “stan-

dard model” of thread-based preemptive lock-synchronized weakly consistent

shared-memory programming. The sequential soundness proofs we present
here should be reusable in a concurrent setting, as we will explain.

O e o o

Leroy’s original Cminor had several Power-PC dependencies, is slightly clumsy
to use as the target of an ML compiler, and is a bit clumsy to use in Hoare-style

Separation Logic for Small-Step Cminor 7

reasoning. But most important, Leroy’s semantics is a big-step semantics that
can be used only to reason about terminating sequential programs. We have
redesigned Cminor’s syntax and semantics to achieve all of these goals. That
part of the redesign to achieve target-machine portability was done by Leroy
himself. Our redesign to ease its use as an ML back end and for Hoare Logic
reasoning was fairly simple. Henceforth in this paper, Cminor will refer to the
new version of the Cminor language.

The main contributions of this paper are a small-step semantics suitable for
compilation and for Hoare Logic; and the first machine-checked proof of sound-
ness of a sequential Hoare Logic (Separation Logic) w.r.t. a small-step semantics.
Schirmer [17] has a machine-checked big-step Hoare-Logic soundness proof for
a control flow much like ours, extended by Klein et al. [10] to a C-like memory
model. Ni and Shao [14] have a machine-checked proof of soundness of a Hoare-
like logic w.r.t. a small-step semantics, but for an assembly language and for
much simpler assertions than ours.

2 Big-Step Expression Semantics

The C standard [2] describes a memory model that is byte- and word-addressable
(vet portable to big-endian and little-endian machines) with a nontrivial seman-
tics for uninitialized variables. Blazy and Leroy formalized this model [6] for
the semantics of Cminor. In C, pointer arithmetic within any malloc’ed block
is defined, but pointer arithmetic between different blocks is undefined; Cmi-
nor therefore has non-null pointer values comprising an abstract block-number
and an int offset. A NULL pointer is represented by the integer value 0. Pointer
arithmetic between blocks, and reading uninitialized variables, are undefined but
not illegal: expressions in Cminor can evaluate to undefined (Vundef) without
getting stuck.

Each memory load or store is to a non-null pointer value with a “chunk”
descriptor ch specifying number of bytes, signed or unsigned, int or float. Storing
as 32-bit-int then loading as 8-bit-signed-byte leads to an undefined value. Load

3 ch ’ ch .
and store operations on memory, m - vy — v and m’ = m[v; := vy], are partial
functions that yield results only if reading (resp., writing) a chunk of type ch

at address v is legal. We write m F vy £ v to mean that the result of loading
from memory m at address v; a chunk-type ch is the value v.

The values of Cminor are undefined (Vundef), integers, pointers, and floats.
The int type is an abstract data-type of 32-bit modular arithmetic. The expres-
sions of Cminor are literals, variables, primitive operators applied to arguments,
and memory loads.

There are 33 primitive operation symbols op; two of these are for accessing
global names and local stack-blocks, and the rest is for integer and floating-point
arithmetic and comparisons. Among these operation symbols are casts. Cminor
casts correspond to all portable C casts. Cminor has an infinite supply ident of
variable and function identifiers id. As in C, there are two namespaces—each id

