Peter Sestoft (Ed.)

Programming
Languages
and Systems

15th European Symposium on Programming, ESOP 2006
Held as Part of the Joint European Conferences

on Theory and Practice of Software, ETAPS 2006

Vienna, Austria, March 2006, Proceedings

LNCS 3924

@ Springer

Peter Sestoft (Ed.)

Programming
Languages
and Systems

15th European Symposium on Programming, ESOP 2006
Held as Part of the Joint European Conferences

on Theory and Practice of Software, ETAPS 2006
Vienna, Austria, March 27-28, 2006

Proceedings

@ Springer

Volume Editor

Peter Sestoft

IT University of Copenhagen

Rued Langgaardsvej 7, 2300 Copenhagen S, Denmark
E-mail: sestoft@itu.dk

Library of Congress Control Number: 2006922219

CR Subject Classification (1998): D.3,D.1,D.2, F.3, F4,E.1
LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-33095-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-33095-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprimting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11693024 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3924

Foreword

ETAPS 2006 was the ninth instance of the European Joint Conferences on The-
ory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new confer-
ences. This year it comprised five conferences (CC, ESOP, FASE, FOSSACS,
TACAS), 18 satellite workshops (ACCAT, AVIS, CMCS, COCV, DCC, EAAI,
FESCA, FRCSS, GT-VMT, LDTA, MBT, QAPL, SC, SLAP, SPIN, TERM-
GRAPH, WITS and WRLA), two tutorials, and seven invited lectures (not in-
cluding those that were specific to the satellite events). We received over 550
submissions to the five conferences this year, giving an overall acceptance rate
of 23%, with acceptance rates below 30% for each conference. Congratulations
to all the authors who made it to the final programme! I hope that most of the
other authors still found a way of participating in this exciting event and I hope
you will continue submitting.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice
are represented, with an inclination towards theory with a practical motivation
on the one hand and soundly based practice on the other. Many of the issues
involved in software design apply to systems in general, including hardware sys-
tems, and the emphasis on software is not intended to be exclusive.

ETAPS is a loose confederation in which each event retains its own identity,
with a separate Program Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronized parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for “unifying” talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2006 was organized by the Vienna University of Technology, in co-
operation with:

— European Association for Theoretical Computer Science (EATCS);

— European Association for Programming Languages and Systems (EAPLS);
— European Association of Software Science and Technology (EASST);

— Institute for Computer Languages, Vienna;

— Austrian Computing Society;

— The Birgermeister der Bundeshauptstadt Wien;

— Vienna Convention Bureau;

— Intel.

VI Foreword

The organizing team comprised:

Chair: Jens Knoop

Local Arrangements: Anton Ertl
Publicity: Joost-Pieter Katoen
Satellite Events: Andreas Krall
Industrial Liaison: Eva Kiihn

Liaison with City of Vienna: Ulrich Neumerkel
Tutorials Chair, Website: Franz Puntigam
Website: Fabian Schmied

Local Organization, Workshops Proceedings: Markus Schordan

Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Perdita Stevens (Edinburgh, Chair), Luca Aceto (Aalborg and Reykjavik),
Rastislav Bodik (Berkeley), Maura Cerioli (Genova), Matt Dwyer (Nebraska),
Hartmut Ehrig (Berlin), José Fiadeiro (Leicester), Marie-Claude Gaudel (Paris),
Roberto Gorrieri (Bologna), Reiko Heckel (Leicester), Michael Huth (London),
Joost-Pieter Katoen (Aachen), Paul Klint (Amsterdam), Jens Knoop (Vienna),
Shriram Krishnamurthi (Brown), Kim Larsen (Aalborg), Tiziana Margaria (Go-
ttingen), Ugo Montanari (Pisa), Rocco de Nicola (Florence), Hanne Riis Nielson
(Copenhagen), Jens Palsberg (UCLA), Mooly Sagiv (Tel-Aviv), Jodao Saraiva
(Minho), Don Sannella (Edinburgh), Vladimiro Sassone (Southampton), Helmut
Seidl (Munich), Peter Sestoft (Copenhagen), Andreas Zeller (Saarbriicken).

I would like to express my sincere gratitude to all of these people and or-
ganizations, the Program Committee chairs and PC members of the ETAPS
conferences, the organizers of the satellite events, the speakers themselves, the
many reviewers, and Springer for agreeing to publish the ETAPS proceedings.
Finally, I would like to thank the Organizing Chair of ETAPS 2006, Jens Knoop,
for arranging for us to have ETAPS in the beautiful city of Vienna.

Edinburgh, January 2006 Perdita Stevens
ETAPS Steering Committee Chair

Preface

This volume contains 21 papers presented at ESOP 2006, the annual European
Symposium on Programming, in Vienna, Austria, 27-28 March 2006. The first
ESOP was organized in 1986 by Bernard Robinet and Reinhard Wilhelm in Saar-
breken, so this marks the 20th anniversary of ESOP, but is the 15th symposium,
since the symposia were initially held biannually. On occasion of the anniver-
sary we are particularly happy that Reinhard Wilhelm agreed to join this year’s
program committee.

The goal of ESOP has always been to bridge the gap between theory and
practice, and the conferences continue to be devoted to addressing fundamental
issues in the specification, analysis, and implementation of programming lan-
guages and systems.

The volume begins with a summary of Sophia Drossopoulou’s ESOP invited
talk, continues with the contributed ESOP papers, and ends with the abstract of
Benjamin Pierce’s ETAPS joint invited talk. The 21 ESOP papers were selected
by the program committee from 87 full paper submissions, each reviewed by
three or more reviewers, with four being the typical number. The reviews were
done by the program committee and 143 additional referees, listed here. The
accepted papers were selected during a two-week electronic discussion within
the program committee.

Thanks go to the authors, the members of the program committee and the
external referees for their excellent work, to the ESOP steering committee chair
Hanne Riis Nielson, the ETAPS steering committee chair Perdita Stevens and
the ETAPS 2006 local organization chair Jens Knoop for providing infrastructure
and gentle reminders, and finally to the Online Conference System maintainer
Martin Karrusseit for fixing server problems and adding desirable functionality.

Copenhagen, January 2006 Peter Sestoft

Program Chair

Peter Sestoft

Organization

Royal Veterinary and Agricultural University (KVL)
and IT University Copenhagen, Denmark

Program Committee

Anindya Banerjee
Anton Ertl

David Warren
Didier Rmy

Erik Meijer
Eugenio Moggi
German Vidal
Giuseppe Castagna
Joe Wells

Kostis Sagonas
Michele Bugliesi
Mooly Sagiv

Nick Benton

Peter O’Hearn
Peter Sestoft (chair)
Peter Stuckey
Peter Thiemann
Pieter Hartel
Reinhard Wilhelm
Stephanie Weirich
Susan Eisenbach
Todd Veldhuizen
Ulrik Pagh Schultz

Additional Referees

E. Albert
T. Amtoft
D. Ancona

Kansas State University, USA
Technische Universitt Wien, Austria
Stony Brook University, USA

INRIA Rocquencourt, France

Microsoft Corporation, USA

University of Genova, Italy

Technical University of Valencia, Spain
cole Normale Suprieure, France
Heriot-Watt University, UK

Uppsala University, Sweden

University of Venice, Italy

Tel-Aviv University, Israel

Microsoft Research, UK

Queen Mary, University of London, UK
KVL and IT University Copenhagen, Denmark
Melbourne University, Australia
Freiburg University, Germany

Twente University, Netherlands
Saarland University, Germany
University of Pennsylvania, USA
Imperial College London, UK

Indiana University, USA

University of Southern Denmark, Denmark

C. Anderson S. Barker
J. Avery J. Bauer
B. Aydemir J. Berdine

ke

. Bierman
Birkedal

. Bono

. Bossi

. Brassel

. Brinkman
. Brogi
Buchlovsky
. Busi

. Caballero

. Cameron

. Capretta
Cardelli
Cederquist
R. Chatley

S. Chong

A. Compagnoni
B. Cook

R. Corin

A. Cortesi

S. Crafa

K. Crary

D. Cunningham
M. Czenko

F. Damiani
R. Davies

J. den Hartog
D. Distefano
J. Doumen

D. Dreyer

S. Drossopoulou
G. Dufay

N. Dulay

M. Elsman

E. Ernst

S. Escobar

S. Fagorzi

T. Field

A. Filinski

J. Foster

C. Fournet

A. Francalanza
R. Garcia

P. Giannini
D. Gorla

“H<ZTZUPPWE <0

Organization

W. Heaven

T. Hildebrandt
T. Hirschowitz
J. Jaffar

N.D. Jones

A. Kennedy

D. Kesner

J. Knoop

K. Kristoffersen
G. Lagorio

J. Lawall

J. Lee

S. Lengrand

M. Lenisa

X. Leroy

P. Levy

P. Li

H.H. Lvengreen
M. Maffei

S. Maffeis

M. Maher

P. Maier

H. Makholm

Y. Mandelbaum
R. Manevich

L. Maranget

C. McBride

I. Mijajlovic

A. Myers

A. Mller

R. Mller Jensen
S. Nanz

M. Neubauer
U. Neumerkel
S. Nishimura
B. Nordstrm

L. Ong

R. Pagh

N.S. Papaspyrou
J. Parrow

A. Petrounias
M. Pettersson
S. Peyton Jones
A. Phillips

1. Phillips

. Pierce

. Pitts

. Podelski

. Pottier

. Puebla

. Puntigam
. Ranzato

. Rehof
Reineke
Rossi
Russo
Rydhof Hansen
Sadler
Saptawijaya
Schmitt
Schrmann
Segura

. Sewell

J. Silva

C. Skalka

M. Smith

. Sobocinski
Somogyi

. Sndergaard
. Stoughton
Sumii
Syme

Tse
Varacca
Villanueva
Vytiniotis
Wachter
Wadler
Walker
Washburn
Wasowski
Xi

Yang
Yorsh

. Zappa Nardelli
. Zarfary
Zdancewic
. Zucca

A. Zych

TOQPPORQRE=TIQTE W

HOCHOEE > QU YRIPUROE P EN'T

Table of Contents

Types for Hierarchic Shapes (Summary)

Sophia Drossopoulou, Dave Clarke, James Noble 1
Linear Regions Are All You Need

Matthew Fluet, Greg Morrisett, Amal Ahmed 7
Type-Based Amortised Heap-Space Analysis

Martin Hofmann; Steffen Jost < : s:cvnesosvssvinsinipuinssssmesas 22
Haskell Is Not Not ML

Ben Rudiak-Gould, Alan Mycroft, Simon Peyton Jones 38
Coinductive Big-Step Operational Semantics

XAUIET LETOY . . oo oot e 54
Step-Indexed Syntactic Logical Relations for Recursive and Quantified
Types

Amial Ahmed o:s5 suims insmsssims iRt inins Rims sTEEDINTESIHEHE S 69

Approaches to Polymorphism in Classical Sequent Calculus
Alexander J. Summers, Steffen van Bakel 84

Pure Pattern Calculus
Barry Jay; Delia Kesner ..« xcuwses swsws swsws sasis imsmosss amans s 100

A Verification Methodology for Model Fields
K. Rustan M. Leino, Peter Miiller 115

ILC: A Foundation for Automated Reasoning About Pointer Programs
Limin Jia, David Walker @ 131

Bisimulations for Untyped Imperative Objects
Vasileios Koutavas, Mitchell Wand0........ 146

A Typed Assembly Language for Confidentiality
Dachuan Yu, Nayeem Islamueuiiiiiuino.. 162

Flow Locks: Towards a Core Calculus for Dynamic Flow Policies
Niklas Broberg, David Sands uiiiiiiiiinn.. 180

A Basic Contract Language for Web Services
Samuele Carpineti, Cosimo Laneve.................c...cccuuuiuiun.. 197

XII Table of Contents

Types for Dynamic Reconfiguration
Jodo Costa Seco, Luis CAiTesour e, 214

Size-Change Termination Analysis in k-Bits
Michael Codish, Vitaly Lagoon, Peter Schachte, Peter J. Stuckey 230

Path Optimization in Programs and Its Application to Debugging
Akash Lal, Junghee Lim, Marina Polishchuk, Ben Liblit 246

Inference of User-Defined Type Qualifiers and Qualifier Rules
Brian Chin, Shane Markstrum, Todd Millstein, Jens Palsberg. 264

Assertion Checking over Combined Abstraction of Linear Arithmetic
and Uninterpreted Functions

Sumit Gulwani, Ashish Tiwari.c. ... 279

Embedding Dynamic Dataflow in a Call-by-Value Language
Gregory H. Cooper, Shriram Krishnamurthi 294

Polymorphic Type Inference for the JNI
Michael Furr, Jeffrey S. Fosterc.oouiiiiiiiineinninn... 309

Type Safety of Generics for the .NET Common Language Runtime
NUCU G FPUJE 5 s 5m5 sosms s5sma 0565 50555 52565 8 5 uiindmsmme s wmmmnms 325

The Weird World of Bi-directional Programming
Benjamin C. Pierceo 342

Author Index 343

Types for Hierarchic Shapes*
(Summary)

Sophia Drossopoulou!, Dave Clarke?, and James Noble?

! Imperial College London, UK
2 CWI, Amsterdam, The Netherlands
3 Victoria University of Wellington, Wellington, NZ

Abstract. Heap entities tend to contain complex references to each
other. To manage this complexity, types which express shapes and hi-
erarchies have been suggested. We survey type systems which describe
such hierarchic shapes, how these types are used for reasoning about
programs, and applications in concurrent programming.

Most imperative programs create and manipulate heap entities (objects, or
records) which contain references to each other forming intricate topologies.
This creates complexity, and makes programs difficult to understand and ma-
nipulate. Programmers, on the other hand, tend to think in terms of shapes,
categorizations and hierarchies.

Thus, in the last decade, types describing shapes and hierarchies have been
proposed to express programming intuitions, to support verification, and for syn-
chronization and optimizations. We will discuss types for hierarchic shapes in
terms of object oriented programming, because, even though the ideas are ap-
plicable to any imperative language, most of the related research was conducted
in the context of object oriented languages.

1 Types for Hierarchic Shapes

Information hiding [28] was suggested as early as the 1970s, as a means to
make programs more robust and easy to understand. Mechanisms that achieve
information hiding by restricting the visibility of names, e.g., private/protected
annotations, are useful but insufficient. They prevent the name of an entity from
being used outside a class or package, but do not prevent a reference to an entity
from being leaked out of a structure [26].

To prevent such leaking of references, type systems have been suggested
which give guarantees about the topology of the object graph, i.e., about which
objects may access which other objects.

Ownership types [15] introduce the concept of an object owning its nested
objects; an ownership context is the set of objects with a given common owner.

* Slides available from slurp.doc.ic.ac.uk/pubs.html#esop06.

P. Sestoft (Ed.): ESOP 2006, LNCS 3924, pp. 1-6, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

2 S. Drossopoulou, D. Clarke, and J. Noble

Objects have a unique owner, thus ownership contexts are organized hierarchi-
cally into a tree structure. Furthermore, the owner controls access to the owned
objects, because an object may only be accessed by its direct owner, or by ob-
jects (possibly indirectly) owned by the former object’s owner. Therefore, owners
are dominators [15], where 01 dominates oq, if any path from the “outside” (or
“root” of the object graph) to oy goes through o;.

Ownership types can thus be used to characterize the runtime structure of
object graphs. Analysis of the heaps of programs has demonstrated that indeed,
object graphs tend to have structure: In [29] analysis of heap dumps for a corpus
of programs demonstrated that the average nesting (ownership) depth of objects
is 5. In [30] heap dumps for 60 object graphs from 35 programs demonstrated
that the number of incoming and outgoing references follow a power law, whereby
the log of the number of objects with k references is proportional to log of k,
thus challenging the common perception that oriented programs are built out of
layers of homogeneous components.

The owners as dominators approach, also known as deep ownership, gives
very strong encapsulation properties which are natural in containers and nested
structures [13]. The approach has been used in program visualization [25].

On the other hand, deep ownership makes coding some popular structures,
notably iterators, rather cumbersome. To alleviate this, shallow ownership has
given up on the notion of owners as dominators. In [10] inner classes have privi-
leged access to the objects enclosed by the corresponding outer class object; i.e.,
objects of an inner class may refer to objects owned by their outer class objects.
In [14, 2] objects on the stack are allowed to break deep ownership, and to refer
to the inside of an ownership context. A more refined approach [1] decouples
the encapsulation policy from the ownership mechanism, by allowing multiple
ownership domains (contexts in our terminology) per object, and by allowing
the programmer to specify permitted aliasing between pairs of contexts.

Ownership types usually cannot easily handle change of owner, except for
externally unique objects, i.e., for objects for which references from the outside
are unique [17].

The type of an object describes the owner of the object itself as well as
the owners of the fields of the object; because these may be distinct, types are
parameterized by ownership parameters which will be instantiated by objects
enclosing the current object. This requires all types to be annotated by a number
of ownership parameters.

Universes [22] suggest a more lightweight approach, whereby references to
owned objects, or references to objects with the same owner may be used for
modifications, and references to any other objects are readonly. Thus, universe
type systems do not require ownership parameters, and instead only distinguish
between rep for owned, peer for same owner, and readonly annotations. Types
are coarser: readonly are readonly references which may point into any context.

Confined types, on the other hand, introduce the concept of classes confined
to their defining package, and guarantee that instances of a confined class are
only accessible by instances of classes from the same package; thus, they are only

Types for Hierarchic Shapes 3

manipulated by code belonging to the same package as the class [8]. The anno-
tations required for confined types are simple, and the object graph structure
is simpler in the sense that the ownership contexts represent the packages, and
thus are statically known.

1.1 Hierarchic Shapes for Program Verification

The decomposition of heaps into disjoint sets of objects allows these objects to
be treated together for the purposes of verification. Central issues in the context
of program verification are that an object’s properties may depend on other
objects’ properties, that objects’ invariants need to be temporarily broken and
later re-established, and the treatment of abstraction layers, e.g., when a Set is
implemented in terms of a List. The notion of ownership is primarily related to
the dependence of objects’ properties rather than the topology of object graphs.

Universes were developed with the aim to support modular program verifi-
cation; in [24] universe types were applied to JML for the description of frame
properties, where modifies clauses of method specifications define which objects
may be modified. Modularity is achieved by a form of “underspecification” of
the semantics, allowing method calls to modify objects outside the ownership
context of the receiver without being mentioned in the relevant modifies-clause.

In [6] a methodology for program specification and verification is proposed,
whereby an object’s invariants may depend on (possibly indirectly) owned ob-
jects. The state space of programs is enriched to express whether an object’s
validity holds (i.e., whether its invariant holds); there is support for explicitly
altering an object validity, and explicit ownership transfer. Subclassing means
that an object’s invariant may hold at the level of different superclasses of the
given object. This approach is refined and adapted to universes in [21], and is
implemented in Boogie, and further extended in [7] to allow invariants to be
expressed over shared state.

However, the necessity to explicitly manipulate an object’s validity increases
the overhead of verification; therefore, [23] defines implicitly in which execution
states an object’s invariants must hold, based on an ownership model which is
enforced by the type system.

Representation independence, which means that a class can safely be replaced
by another “equivalent” class provided it is encapsulated, i.e., its internal repre-
sentation is owned by instances of that class, is proven in [4]. In [5] the approach
is extended to deal with shared state, recursive methods and callbacks, and the
application to program equivalence.

In a more fundamental approach, [20] develops a logic for reasoning about
mutable data structures whereby the spatial conjunction operator * splits the
heap into two disjoint parts, usually one representing the part necessary for
some execution, and the other representing the rest. In [19] the conjunction x
is used to separate the internal resources of a module from those accessed by
its client, to support verification in the context of information hiding. Work in
[27] introduces abstract predicates, which are treated atomically outside a data
structure, but whose definition may be used within the data structure, thus

4 S. Drossopoulou, D. Clarke, and J. Noble

supporting reasoning about modules, ADT's and classes. In these approaches the
heap is split afresh in each verification step; there is no hierarchy in that the
heap is just split into two parts. The approaches are very flexible, but do not
yet handle issues around the dependency of objects’ properties and breaking/re-
establishing of objects’ invariants.

Using a simpler methodology, rather than attempt full-fledged verification,
[14] describes read-write effects of methods in terms of the ownership contexts,
and uses these to determine when method calls are independent, i.e., their ex-
ecution does affect each other. In [31] the approach is extended to describe
read-effects of predicates, and to infer when some execution does not affect the
validity of some predicate.

1.2 Applications of Hierarchic Shapes

Hierarchic shapes have successfully been applied in concurrent programming,
garbage collection, and in deployment time checks of architectural invariants.

Guava [3] introduces additional type rules to Java which control synchro-
nization by distinguishing between objects which can be shared across threads,
and those which cannot. The former are monitors, and the latter are either
thread-local, or encapsulated within a monitor.

In [11] race-free programs are obtained though an extension of ownership
types, where an object may be owned not only by another object (as in the
classical system) but also by the object itself, or by a thread (to express objects
local to threads). By acquiring the lock at the root of an ownership tree, a thread
acquires exclusive access to all the members of that tree. In [9] the approach is
extended to prevent deadlocks, by requiring a partial order among all locks, and
statically checking that threads holding more than one lock acquire them in
descending order.

In real-time Java, timely reclamation of memory is achieved through scoped
types [32,12]. Scopes correspond to ownership contexts, in that they contain ob-
jects, are hierarchically organized into a tree, and outer scopes may not hold
references to objects within more deeply nested inner scopes. When a thread
working in scope S; enters scope Sa, then S; becomes the owner of Sy. When
a thread enters a scope it is dynamically checked that it originated in its owner
scope, thus guaranteeing nesting of scopes into a tree hierarchy. Scopes are re-
leased upon thread exit.

In [16] the architectural integrity constraints of the Enterprise Java Beans
architecture, which require beans to be confined within their wrappers, are en-
forced through a lightweight confinement model and a deployment checker.

1.3 Inference of Hierarchic Shapes

The various systems for hierarchic shapes impose an extra burden of annotation
to programmers, as they require each appearance of a class in a type description
to be annotated by ownership parameters or restrictions such as rep.

Types for Hierarchic Shapes 5

Kacheck/J [18] is a tool which infers which classes are confined within a
package in the sense of [8]. Applied on a corpus of 46,000 classes, it could deduce
that around 25% of package scoped classes are confined.

In [2] an algorithm to infer ownership types is developed and successfully
applied to 408 classes of the Java standard library. However, inferred types often
contain too many ownership parameters, so precision needs to be improved.

2 Conclusions

Hierarchic shapes have successfully been used for program visualization and ver-
ification, in concurrent programming, garbage collection, and for architectural
integrity constraints. Hierarchic shapes come in different flavours, and differ
in whether they support change of owner, whether ownership implies restric-
tions on aliasing (through deep or shallow ownership) or dependence of proper-
ties, whether the ownership contexts correspond to objects, classes or packages,
whether the number of ownership contexts is statically or dynamically known,
whether ownership is checked statically or dynamically, how many annotations
are required, and whether inference is supported.

Further work is required to combine the different uses of the shapes, to de-
velop more lightweight yet powerful systems, to develop better inference tools to
alleviate the process of annotating programs, to combine shape types with new
trends in program development (most notably with aspect oriented program-
ming), and finally to combine the ease of use offered by types with the flexibility
offered by full-fledged verification as in separation logic.

References

1. Jonathan Aldrich and Craig Chambers. Ownership Domains: Separating aliasing
Policy from Mechanism. In ECOOP, 2004.

2. Jonathan Aldrich, Valentin Kostadinov, and Craig Chambers. Alias Annotations
for Program Understanding. In OOPSLA, November 2002.

3. David F. Bacon, Robert E. Strom, and Ashis Tarafdar. Guava: a dialect of Java
without data races. In OOPSLA, 2000.

4. Anindya Banerjee and David A. Naumann. Ownership confinement ensures repre-
sentation independence for object-oriented programs. JACM, 2005.

5. Anindya Banerjee and David A. Naumann. State based ownership, renetrnace and
encapsulation. In ECOOP, 2005.

6. Mike Barnett, Robert DeLine, Manuel Fahndrich, K. Rustan M. Leino, and Wol-
fram Schulte. Verification of Object-Oriented Programs with Invariants. Journal
of Object Technology, 2004.

7. Mike Barnett and David A. Naumann. Freinds Need a Bit More: Maintaining

Invariants Over Shared State. In Mathematics of Program Construction, 2004.

Boris Bokowski and Jan Vitek. Confined Types. In OOPSLA, 1999.

Chandrasekar Boyapati, Robert Lee, and Martin Rinard. Ownership Types for

Safe Programming: Preventing Data Races and Deadlocks. In OOPSLA, 2002.

10. Chandrasekar Boyapati, Barbara Liskov, and Liuba Shrira. Ownership Types for

Object Encapsulation. In POPL, 2003.

© o

6

12.

13.

14.

15.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

S. Drossopoulou, D. Clarke, and J. Noble

. Chandrasekar Boyapati and Martin Rinard. A Parameterized Type System for

Race-Free Java Programs. In OOPSLA, 2002.

Chandrasekhar Boyapati, Alexandru Salcianu, William Beebee, and Martin Ri-
nard. Ownership Types for Safe Region-Based Memory Management in Real-Time
Java. In PLDI, June 2003.

Gustaf Cele and Sebastian Stureborg. Ownership Types in Practice. Technical
Report TR-02-02, Stockholm University, 2002.

David Clarke and Sophia Drossopolou. Ownership, Encapsulation and the Dis-
jointness of Type and Effect. In OOPSLA, 2002.

David Clarke, John Potter, and James Noble. Ownership Types for Flexible Alias
Protection. In OOPSLA, 1998.

. David Clarke, Michael Richmond, and James Noble. Saving the world from bad

beans: Deployment-time confinement checking. In OOPSLA, 2003.

David Clarke and Tobias Wrigstad. External Uniqueness is Unique Enough. In
ECOOP, 2003.

Christian Grothoff, Jens Palsberg, and Jan Vitek. Encapsulating Objects with
Confined Types. In OOPSLA, 2001.

Peter W. O’ Hearn, Hongseok Yang, and John C. Reynolds. Separation and infor-
mation hiding. In POPL, 2004.

Samin Ishtiaq and Peter W. O’ Hearn. Bi as an assertion language for mutable
data structures. In POPL, 2000.

K. Rustan M. Leino and Peter Miiller. Object Invariants in Dynamic Contexts. In
ECOOP, 2004.

Peter Miiller and Arnd Poetzsch-Heffter. Universes: A Type System for Control-
ling Representation Exposure. In Programming Languages and Fundamentals of
Programming, 1999.

Peter Miiller, Arnd Poetzsch-Heffter, and Gary Leavens. Modular Invariants for
Layered Object Structures. Technical Report 424, ETH Ziirich, 2004. further
development under way.

Peter Miiller, Arnd Poetzsch-Heffter, and Gary T. Leavens. Modular Specifica-
tion of Frame Properties in JML. Concurrency and Computation Practice and
Ezperience, 2003.

James Noble. Visualising Objects: Abstraction, Encapsulation, Aliasing and Own-
ership. In Haim Kilov, Bernhard Rumpe, and lan Simmonds, editors, Software
Visualisation, State of the Art Survey, pages 58-72. LNCS 2269, 2002.

James Noble, Jan Vitek, and John Potter. Flexible Alias Protection. In ECOOP,
1998.

Matthew Parkinson and Gavin Bierman. Separation logic and abstraction. In
POPL, 2004.

David Parnas. On the Criteria to be Used in Decomposing Systems into Modules.
Comm. ACS, 1972.

Alex Potanin and James Noble. Checking ownership and confinement properties.
In Formal Techniques for Java-like Programs, 2002.

Alex Potanin, James Noble, Marcus Frean, and Robert Biddle. Scale-free geometry
in OO programs. Commun. ACM, 2005.

Matthew Smith and Sophia Drossopoulou. Cheaper Reasoning with Ownership
Types. In IWACO. 2003.

Tian Zhao, James Noble, and Jan Vitek. Scoped Types for Real-time Java. In
RTSS, 2004.

