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Foreword

ETAPS 2006 was the ninth instance of the European Joint Conferences on The-
ory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new confer-
ences. This year it comprised five conferences (CC, ESOP, FASE, FOSSACS,
TACAS), 18 satellite workshops (ACCAT, AVIS, CMCS, COCV, DCC, EAAI,
FESCA, FRCSS, GT-VMT, LDTA, MBT, QAPL, SC, SLAP, SPIN, TERM-
GRAPH, WITS and WRLA), two tutorials, and seven invited lectures (not in-
cluding those that were specific to the satellite events). We received over 550
submissions to the five conferences this year, giving an overall acceptance rate
of 23%, with acceptance rates below 30% for each conference. Congratulations
to all the authors who made it to the final programme! I hope that most of the
other authors still found a way of participating in this exciting event and I hope
you will continue submitting.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice
are represented, with an inclination towards theory with a practical motivation
on the one hand and soundly based practice on the other. Many of the issues
involved in software design apply to systems in general, including hardware sys-
tems, and the emphasis on software is not intended to be exclusive.

ETAPS is a loose confederation in which each event retains its own identity,
with a separate Program Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronized parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for “unifying” talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2006 was organized by the Vienna University of Technology, in co-
operation with:

— European Association for Theoretical Computer Science (EATCS);

— European Association for Programming Languages and Systems (EAPLS);
— European Association of Software Science and Technology (EASST);

— Institute for Computer Languages, Vienna;

— Austrian Computing Society;

— The Birgermeister der Bundeshauptstadt Wien;

— Vienna Convention Bureau;

— Intel.



VI Foreword

The organizing team comprised:

Chair: Jens Knoop

Local Arrangements: Anton Ertl
Publicity: Joost-Pieter Katoen
Satellite Events: Andreas Krall
Industrial Liaison: Eva Kiihn

Liaison with City of Vienna: Ulrich Neumerkel
Tutorials Chair, Website: Franz Puntigam
Website: Fabian Schmied

Local Organization, Workshops Proceedings: Markus Schordan

Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Perdita Stevens (Edinburgh, Chair), Luca Aceto (Aalborg and Reykjavik),
Rastislav Bodik (Berkeley), Maura Cerioli (Genova), Matt Dwyer (Nebraska),
Hartmut Ehrig (Berlin), José Fiadeiro (Leicester), Marie-Claude Gaudel (Paris),
Roberto Gorrieri (Bologna), Reiko Heckel (Leicester), Michael Huth (London),
Joost-Pieter Katoen (Aachen), Paul Klint (Amsterdam), Jens Knoop (Vienna),
Shriram Krishnamurthi (Brown), Kim Larsen (Aalborg), Tiziana Margaria (Go-
ttingen), Ugo Montanari (Pisa), Rocco de Nicola (Florence), Hanne Riis Nielson
(Copenhagen), Jens Palsberg (UCLA), Mooly Sagiv (Tel-Aviv), Jodao Saraiva
(Minho), Don Sannella (Edinburgh), Vladimiro Sassone (Southampton), Helmut
Seidl (Munich), Peter Sestoft (Copenhagen), Andreas Zeller (Saarbriicken).

I would like to express my sincere gratitude to all of these people and or-
ganizations, the Program Committee chairs and PC members of the ETAPS
conferences, the organizers of the satellite events, the speakers themselves, the
many reviewers, and Springer for agreeing to publish the ETAPS proceedings.
Finally, I would like to thank the Organizing Chair of ETAPS 2006, Jens Knoop,
for arranging for us to have ETAPS in the beautiful city of Vienna.

Edinburgh, January 2006 Perdita Stevens
ETAPS Steering Committee Chair



Preface

This volume contains 21 papers presented at ESOP 2006, the annual European
Symposium on Programming, in Vienna, Austria, 27-28 March 2006. The first
ESOP was organized in 1986 by Bernard Robinet and Reinhard Wilhelm in Saar-
breken, so this marks the 20th anniversary of ESOP, but is the 15th symposium,
since the symposia were initially held biannually. On occasion of the anniver-
sary we are particularly happy that Reinhard Wilhelm agreed to join this year’s
program committee.

The goal of ESOP has always been to bridge the gap between theory and
practice, and the conferences continue to be devoted to addressing fundamental
issues in the specification, analysis, and implementation of programming lan-
guages and systems.

The volume begins with a summary of Sophia Drossopoulou’s ESOP invited
talk, continues with the contributed ESOP papers, and ends with the abstract of
Benjamin Pierce’s ETAPS joint invited talk. The 21 ESOP papers were selected
by the program committee from 87 full paper submissions, each reviewed by
three or more reviewers, with four being the typical number. The reviews were
done by the program committee and 143 additional referees, listed here. The
accepted papers were selected during a two-week electronic discussion within
the program committee.

Thanks go to the authors, the members of the program committee and the
external referees for their excellent work, to the ESOP steering committee chair
Hanne Riis Nielson, the ETAPS steering committee chair Perdita Stevens and
the ETAPS 2006 local organization chair Jens Knoop for providing infrastructure
and gentle reminders, and finally to the Online Conference System maintainer
Martin Karrusseit for fixing server problems and adding desirable functionality.

Copenhagen, January 2006 Peter Sestoft
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Types for Hierarchic Shapes*
(Summary)

Sophia Drossopoulou!, Dave Clarke?, and James Noble?

! Imperial College London, UK
2 CWI, Amsterdam, The Netherlands
3 Victoria University of Wellington, Wellington, NZ

Abstract. Heap entities tend to contain complex references to each
other. To manage this complexity, types which express shapes and hi-
erarchies have been suggested. We survey type systems which describe
such hierarchic shapes, how these types are used for reasoning about
programs, and applications in concurrent programming.

Most imperative programs create and manipulate heap entities (objects, or
records) which contain references to each other forming intricate topologies.
This creates complexity, and makes programs difficult to understand and ma-
nipulate. Programmers, on the other hand, tend to think in terms of shapes,
categorizations and hierarchies.

Thus, in the last decade, types describing shapes and hierarchies have been
proposed to express programming intuitions, to support verification, and for syn-
chronization and optimizations. We will discuss types for hierarchic shapes in
terms of object oriented programming, because, even though the ideas are ap-
plicable to any imperative language, most of the related research was conducted
in the context of object oriented languages.

1 Types for Hierarchic Shapes

Information hiding [28] was suggested as early as the 1970s, as a means to
make programs more robust and easy to understand. Mechanisms that achieve
information hiding by restricting the visibility of names, e.g., private/protected
annotations, are useful but insufficient. They prevent the name of an entity from
being used outside a class or package, but do not prevent a reference to an entity
from being leaked out of a structure [26].

To prevent such leaking of references, type systems have been suggested
which give guarantees about the topology of the object graph, i.e., about which
objects may access which other objects.

Ownership types [15] introduce the concept of an object owning its nested
objects; an ownership context is the set of objects with a given common owner.

* Slides available from slurp.doc.ic.ac.uk/pubs.html#esop06.

P. Sestoft (Ed.): ESOP 2006, LNCS 3924, pp. 1-6, 2006.
(© Springer-Verlag Berlin Heidelberg 2006



2 S. Drossopoulou, D. Clarke, and J. Noble

Objects have a unique owner, thus ownership contexts are organized hierarchi-
cally into a tree structure. Furthermore, the owner controls access to the owned
objects, because an object may only be accessed by its direct owner, or by ob-
jects (possibly indirectly) owned by the former object’s owner. Therefore, owners
are dominators [15], where 01 dominates oq, if any path from the “outside” (or
“root” of the object graph) to oy goes through o;.

Ownership types can thus be used to characterize the runtime structure of
object graphs. Analysis of the heaps of programs has demonstrated that indeed,
object graphs tend to have structure: In [29] analysis of heap dumps for a corpus
of programs demonstrated that the average nesting (ownership) depth of objects
is 5. In [30] heap dumps for 60 object graphs from 35 programs demonstrated
that the number of incoming and outgoing references follow a power law, whereby
the log of the number of objects with k references is proportional to log of k,
thus challenging the common perception that oriented programs are built out of
layers of homogeneous components.

The owners as dominators approach, also known as deep ownership, gives
very strong encapsulation properties which are natural in containers and nested
structures [13]. The approach has been used in program visualization [25].

On the other hand, deep ownership makes coding some popular structures,
notably iterators, rather cumbersome. To alleviate this, shallow ownership has
given up on the notion of owners as dominators. In [10] inner classes have privi-
leged access to the objects enclosed by the corresponding outer class object; i.e.,
objects of an inner class may refer to objects owned by their outer class objects.
In [14, 2] objects on the stack are allowed to break deep ownership, and to refer
to the inside of an ownership context. A more refined approach [1] decouples
the encapsulation policy from the ownership mechanism, by allowing multiple
ownership domains (contexts in our terminology) per object, and by allowing
the programmer to specify permitted aliasing between pairs of contexts.

Ownership types usually cannot easily handle change of owner, except for
externally unique objects, i.e., for objects for which references from the outside
are unique [17].

The type of an object describes the owner of the object itself as well as
the owners of the fields of the object; because these may be distinct, types are
parameterized by ownership parameters which will be instantiated by objects
enclosing the current object. This requires all types to be annotated by a number
of ownership parameters.

Universes [22] suggest a more lightweight approach, whereby references to
owned objects, or references to objects with the same owner may be used for
modifications, and references to any other objects are readonly. Thus, universe
type systems do not require ownership parameters, and instead only distinguish
between rep for owned, peer for same owner, and readonly annotations. Types
are coarser: readonly are readonly references which may point into any context.

Confined types, on the other hand, introduce the concept of classes confined
to their defining package, and guarantee that instances of a confined class are
only accessible by instances of classes from the same package; thus, they are only
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manipulated by code belonging to the same package as the class [8]. The anno-
tations required for confined types are simple, and the object graph structure
is simpler in the sense that the ownership contexts represent the packages, and
thus are statically known.

1.1 Hierarchic Shapes for Program Verification

The decomposition of heaps into disjoint sets of objects allows these objects to
be treated together for the purposes of verification. Central issues in the context
of program verification are that an object’s properties may depend on other
objects’ properties, that objects’ invariants need to be temporarily broken and
later re-established, and the treatment of abstraction layers, e.g., when a Set is
implemented in terms of a List. The notion of ownership is primarily related to
the dependence of objects’ properties rather than the topology of object graphs.

Universes were developed with the aim to support modular program verifi-
cation; in [24] universe types were applied to JML for the description of frame
properties, where modifies clauses of method specifications define which objects
may be modified. Modularity is achieved by a form of “underspecification” of
the semantics, allowing method calls to modify objects outside the ownership
context of the receiver without being mentioned in the relevant modifies-clause.

In [6] a methodology for program specification and verification is proposed,
whereby an object’s invariants may depend on (possibly indirectly) owned ob-
jects. The state space of programs is enriched to express whether an object’s
validity holds (i.e., whether its invariant holds); there is support for explicitly
altering an object validity, and explicit ownership transfer. Subclassing means
that an object’s invariant may hold at the level of different superclasses of the
given object. This approach is refined and adapted to universes in [21], and is
implemented in Boogie, and further extended in [7] to allow invariants to be
expressed over shared state.

However, the necessity to explicitly manipulate an object’s validity increases
the overhead of verification; therefore, [23] defines implicitly in which execution
states an object’s invariants must hold, based on an ownership model which is
enforced by the type system.

Representation independence, which means that a class can safely be replaced
by another “equivalent” class provided it is encapsulated, i.e., its internal repre-
sentation is owned by instances of that class, is proven in [4]. In [5] the approach
is extended to deal with shared state, recursive methods and callbacks, and the
application to program equivalence.

In a more fundamental approach, [20] develops a logic for reasoning about
mutable data structures whereby the spatial conjunction operator * splits the
heap into two disjoint parts, usually one representing the part necessary for
some execution, and the other representing the rest. In [19] the conjunction x
is used to separate the internal resources of a module from those accessed by
its client, to support verification in the context of information hiding. Work in
[27] introduces abstract predicates, which are treated atomically outside a data
structure, but whose definition may be used within the data structure, thus
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supporting reasoning about modules, ADT's and classes. In these approaches the
heap is split afresh in each verification step; there is no hierarchy in that the
heap is just split into two parts. The approaches are very flexible, but do not
yet handle issues around the dependency of objects’ properties and breaking/re-
establishing of objects’ invariants.

Using a simpler methodology, rather than attempt full-fledged verification,
[14] describes read-write effects of methods in terms of the ownership contexts,
and uses these to determine when method calls are independent, i.e., their ex-
ecution does affect each other. In [31] the approach is extended to describe
read-effects of predicates, and to infer when some execution does not affect the
validity of some predicate.

1.2 Applications of Hierarchic Shapes

Hierarchic shapes have successfully been applied in concurrent programming,
garbage collection, and in deployment time checks of architectural invariants.

Guava [3] introduces additional type rules to Java which control synchro-
nization by distinguishing between objects which can be shared across threads,
and those which cannot. The former are monitors, and the latter are either
thread-local, or encapsulated within a monitor.

In [11] race-free programs are obtained though an extension of ownership
types, where an object may be owned not only by another object (as in the
classical system) but also by the object itself, or by a thread (to express objects
local to threads). By acquiring the lock at the root of an ownership tree, a thread
acquires exclusive access to all the members of that tree. In [9] the approach is
extended to prevent deadlocks, by requiring a partial order among all locks, and
statically checking that threads holding more than one lock acquire them in
descending order.

In real-time Java, timely reclamation of memory is achieved through scoped
types [32,12]. Scopes correspond to ownership contexts, in that they contain ob-
jects, are hierarchically organized into a tree, and outer scopes may not hold
references to objects within more deeply nested inner scopes. When a thread
working in scope S; enters scope Sa, then S; becomes the owner of Sy. When
a thread enters a scope it is dynamically checked that it originated in its owner
scope, thus guaranteeing nesting of scopes into a tree hierarchy. Scopes are re-
leased upon thread exit.

In [16] the architectural integrity constraints of the Enterprise Java Beans
architecture, which require beans to be confined within their wrappers, are en-
forced through a lightweight confinement model and a deployment checker.

1.3 Inference of Hierarchic Shapes

The various systems for hierarchic shapes impose an extra burden of annotation
to programmers, as they require each appearance of a class in a type description
to be annotated by ownership parameters or restrictions such as rep.
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Kacheck/J [18] is a tool which infers which classes are confined within a
package in the sense of [8]. Applied on a corpus of 46,000 classes, it could deduce
that around 25% of package scoped classes are confined.

In [2] an algorithm to infer ownership types is developed and successfully
applied to 408 classes of the Java standard library. However, inferred types often
contain too many ownership parameters, so precision needs to be improved.

2 Conclusions

Hierarchic shapes have successfully been used for program visualization and ver-
ification, in concurrent programming, garbage collection, and for architectural
integrity constraints. Hierarchic shapes come in different flavours, and differ
in whether they support change of owner, whether ownership implies restric-
tions on aliasing (through deep or shallow ownership) or dependence of proper-
ties, whether the ownership contexts correspond to objects, classes or packages,
whether the number of ownership contexts is statically or dynamically known,
whether ownership is checked statically or dynamically, how many annotations
are required, and whether inference is supported.

Further work is required to combine the different uses of the shapes, to de-
velop more lightweight yet powerful systems, to develop better inference tools to
alleviate the process of annotating programs, to combine shape types with new
trends in program development (most notably with aspect oriented program-
ming), and finally to combine the ease of use offered by types with the flexibility
offered by full-fledged verification as in separation logic.
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