TEACH YOURSELF

Computer
Graphics

John Lansdown

COMPUTER
GRAPHICS

John Lansdown

TEACH YOURSELF BOOKS
Hodder and Stoughton

First published 1987

Copyright © 1987
Group Interface Ltd

No part of this publication may be reproduced
or transmitted in any form or by any means,
electronically or mechanically, including
photocopying, recording or any information
storage or retrieval system, without either
the prior permission in writing from the publisher
or a licence, permitting restricted copying,
issued by the Copyright Licensing Agency,
33-34 Alfred Place, London WC1E 7DP.

British Library Cataloguing in Publication Data

Lansdown, John
Computer graphics. (Teach Yourself Books).
1. Computer graphics 2. Microcomputers—
Programming
I. Title
006.6'86 T385

ISBN 0340 408197

Printed in Great Britain for
Hodder and Stoughton Educational,

a division of Hodder and Stoughton Ltd,
Mill Road, Dunton Green, Sevenoaks, Kent,
by Richard Clay Ltd, Bungay, Suffolk.
Photoset by Rowland Phototypesetting Ltd,
Bury St Edmunds, Suffolk

COMPUTER
GRAPHICS

John Lansdown s an internationally recognised comput-
ing expert who has specialised in computer graphics
since the 1960s. He has created the graphics effects for
three feature films and over 100 TV advertisements and
documentaries, and has held lecturing posts at the Royal
College of Art and St Martins School of Art, London.
He is currently Chairman of System Simulation Ltd in
London.

TEACH YOURSELF BOOKS

Contents

Introduction

Graphics Systems

Input Tasks and Devices

Output Tasks and Devices
Computer Graphics Programming
Modelling: Coordinates

Modelling: 2-D Rectilinear Objects
Modelling: 2-D Curved Objects
2-D Transformations

10 2-D Clipping and Window to Viewport Mapping
11 Display

12 Interaction

13 Modelling: 3-D Rectilinear Objects
14 3-D Transformations

15 Putting It All Together

RO NE NN -

Further Reading

Appendix 1: Vector and Matrix Algebra
Appendix 2: Using the Subroutines
Index

15
28
53
56
67
77
107
117
138
161
175
190
208

211
213
219
228

1

Introduction

The importance of computer graphics

Probably the most striking and unexpected development in in-
formation technology in recent years is the use of computers to
create pictures of all sorts. Many feature films now include com-
puter graphics and computer animation as a matter of course, and
hardly a day goes by without some new computer-produced imagery
appearing on our television screens. Often these pictures are of such
quality and realism that we are unaware of the part that computers
playedin their making. A whole new industry of designers, program-
mers, research workers and manufacturers has grown up to feed the
demand, and some of the most powerful computers in the world are
now being used in the process.

But drawings are not being created just for their own sakes. In
business, computer graphics is being used to help clarify trends, to
illustrate statistics (Figure 1.1), and to aid executives in their
decision-making. In architecture and engineering, drawings have
always played a significant part in conveying design ideas to those
who have to build structures and other artifacts. It is not surprising,
therefore, that computer-aided design (CAD) systems having im-
pressive graphics facilities (Figure 1.2) are in widespread use. In
science and medicine, computer graphics is being used more and
more to assist in the understanding of complex phenomena. Even in
home computing, graphics —some of it of excellent quality — plays a
vital part in games and teaching programs of all types. All in all,
then, there is now virtually no area of human endeavour that is
untouched by the impact of computer graphics.

2 Computer Graphics

500 I~

400 [~ Type 1
. widgets
3
g 300
3
=

200 I~

Type 2
100 widgets
1 1 1 1 1

Quarter

Figure 1.1 Statistical graphics

Drawings, diagrams and pictures help increase our understand-
ing of all sorts of information. Often, ideas can be made clearer and
more convincing if we can see them in graphic form — but not
everyone has the necessary physical skills to prepare good drawings.
Computer graphics helps us to bypass the need for these skills and
allows us to concentrate on communicating information.

" v
~>

L7

AN
N\

227

4

%
2
2
7

%777/

Figure 1.2 CAD example

NI\

The aim of this book

The aim of this book is to introduce those already experienced in
general computing to some of the equipment and software tech-
niques that are being used for making drawings by computer. After
reading the text, coding the subroutines listed, and working through

Introduction 3
the exercises, you should have a good grounding in the basics of the
subject. Depending on the hardware you have available, you will be
able to use the techniques outlined here to make drawings of some
interest and complexity. But the subject of computer graphics is
developing rapidly. To keep up to date with the latest thinking and
to increase your graphics programming skills you will need to read
journal articles and other books. You will be better able to under-
stand these more advanced texts if you work carefully through this
volume.

The subroutine listings

One of the first things you will notice as you go through the text from
Chapter 7 onwards is that the listings of subroutines shown in the
tables are not in a programming language known to you. They are,
in fact, written in what is called a pseudo-code. A pseudo-code is
something like a computer language, but one which cannot runon a
computer in the form given. We use a pseudo-code in order to write
procedures that people can understand and, with a little effort, can
convert into the computer language of their choice. We sometimes
sacrifice efficiency and speed of running in order to help make things
more understandable, and you should take this into account when
you do your coding. Appendix 2 shows how this inefficiency has
been dealt with in examples from various languages. You should
consult this Appendix before embarking on any programming.

Again in an attempt to communicate methods more clearly, we
take a special liberty with the concept of equality. Computers do not
store real numbers in an exact form, so testing two reals to see if they
are equal can sometimes give misleading results. In coding the
subroutines you should note this, and you will usually find it safer to
change statements of the form:

IfA=B Then. ..
to
If Abs(A—B)<E Then. ..

where E is some small real number such as 0.0001.
Our pseudo-code resembles a structured BASIC and is some-
thing like Pascal, Comal or Algol. It ought to be readily understand-

4 Computer Graphics

able by those with even limited experience in programming in these
languages. If you are going to program the subroutines in a struc-
tured language supporting If-Then-Else statements, dummy par-
ameters in subroutine calls, and long variable names, you should
have little difficulty. However, standard BASIC does not support
these things, so extra care must be taken if you are going to work in
that language.

Perhaps the biggest difficulty with standard BASIC (though it is
often a useful facility for some purposes) is that all variables are
global and, if set to a number in a subroutine, take those values in
the rest of the program. This makes it difficult to incorporate
pre-written subroutines into your programs, because they may have
variable names which clash with ones you have already used. Two
possible ways of minimising this problem (and some others) are
given in Appendix 2.

The structure of this book

The text divides logically into two sections: Chapters 1 to 5 deal with
general principles and hardware considerations; the remaining
chapters deal with graphics programming. In the first section, there
are only a few exercises. In the second, however, exercises abound
and you should make special effort to do these. When you work
alone you can monitor your performance, both in understanding
and programming, only by self-testing. Fortunately, with computer
graphics, you can usually see directly whether you are right or
wrong but, in order to arrive at a position where drawings are
possible, considerable preliminary work has to be done. The exer-
cises (and examples) will help in this. Persevere with your efforts.
You will be rewarded.

2

Graphics Systems

Like a general purpose computer system, a graphics system has
three fundamental parts:

1
2

3

hardware: the equipment itself.

software: the instructions used to govern the workings of the
hardware.

documentation: the descriptive information on the hardware
and software given to enable us to exploit the capabilities of the
system to the full.

Although it is possible to create some form of drawing with any
computer, in a graphics system the three fundamental parts are
interrelated and arranged in a way which allows the easy production
of pictures of all sorts.

The basic hardware

A graphics system employs four types of equipment (Figure 2.1):

1

A processing unit which carries out the computation,; it is this
item that we usually call the ‘computer’ and, in personal com-
puters and an increasing percentage of professional machines,
the unit is a microprocessor.

Storage in which programs and data are stored until required;
this is sometimes known as secondary or external storage.
Input equipment which we need in order to present graphical
information to the computer; a keyboard is the most usual input

6 Computer Graphics

Input
Equipment

Storage Processing
Equipment Unit (PU)

Output
Equipment

Figure 2.1 Basic configuration

device to be found in any system but a wide variety of other
devices is also available.

4 Output equipment which the computer needs in order to present
information to us; a visual display unit (VDU) capable of
displaying some form of line drawing is the most widespread
output device.

In some personal computers and many desk-top systems, the pro-
cessor, storage (either tape or disc units), keyboard and VDU are
supplied by the manufacturer as one single unit; in others, they are
separate items which are connected by external cables — allowing
purchasers to assemble a system which is tailor-made to their
particular needs. In almost all cases where serious graphic work is to
be carried out, more than one item of input and output equipment
will form part of the system. You must be warned, however, that it is
not always a simple matter to interconnect hardware from different
manufacturers.

Sometimes, the input and output devices themselves also contain
processing units. These are used to enable the devices to perform
their tasks more efficiently and quickly by taking over some of the
work of the central processing unit. Such devices give rise to a
configuration shown diagramatically in Figure 2.2 and in these cases
we talk of the input and output devices as intelligent terminals.

In some large-scale professional graphic systems, the processing
and storage is sometimes divided into main and satellite sections as
in Figure 2.3, with the satellite part catering for the purely graphic

Graphics Systems 7

Input
Equipment

—l:lét_‘

Storage Processing
Equipment Unit (PU)

T

Output
Equipment

Figure 2.2 Intelligent terminal configuration

computation, interaction and display, and the main part catering for
the more general work and databases. With this configuration, the
main computer might serve more than one satellite which, in turn,
may have multiple input and output devices.

—{_Output Devices |

Main Storage Device
Store

Satellite
Processor

Input Devices

Figure 2.3 Satellite computer configuration

Main
Processor

The basic software

In addition to these items of hardware, two elements of software are
also fundamental:

1 An operating system.
2 A language system.

The operating system
The operating system is a special program which controls the
operation of the equipment as a whole. It schedules the work and

8 Computer Graphics

ensures that any input, output, computation and storage is carried
out in a correct and orderly fashion. In many personal computers,
the operating system often tends to be a fairly simple item of
software, limited in scope and allowing perhaps only the listing,
saving, recalling and running of programs. In many professional
machines (particularly those that support many users at once), the
operating system is often extremely sophisticated and is sometimes
the largest program the machine has to obey.

The language system

The language system allows us to create programs reasonably
quickly and easily by permitting program writing in a style some-
what closer to human language than the abstract code used by the
computer itself. Many personal computers support only one pro-
gramming language — namely BASIC. Others, especially profess-
ional machines, have systems which can cope with a number of
languages of which Fortran, Pascal and C are probably the most
common for scientific and graphic purposes.

Limitations of standard programming languages

The basic units of hardware and software just described are usually
provided by manufacturers as general-purpose graphics packages;
purchasers are expected to employ these to write application pro-
grams to suit their individual needs. As none of the well-known
computer languages were originally designed for graphics, manu-
facturers often supply versions of the languages enhanced to in-
clude appropriate graphics commands such as DRAW, MOVETO,
CIRCLE and so on. Understandably though, as manufacturers wish
to exploit the special features of their own machines, there is very
little standardisation in these enhancements. As a rule, therefore,
graphics programs written for one type of machine cannot be run on
other types of machine without modification. This lack of stan-
dardisation not only makes program portability difficult to achieve
but also presents problems in books such as this where, in order not
to be too abstract, instructions have inevitably to be orientated
towards particular machines and languages. We have attempted,
however, to make our examples as general as possible. Urgent
moves are afoot in the computer industry to bring about a measure

Graphics Systems 9

of standardisation — at least in the sorts of graphic facilities pro-
vided. However, these efforts are likely to take a little time to
influence the production of machines and programming languages.
We have attempted to anticipate the acceptance of graphics stan-
dards by creating our programming examples roughly within the
framework of current thinking in this area.

It is essential to realise that all the elements in a system are
important and that defects in any one of these will limit the
performance of the whole. The quality and types of drawings
that can be created and the degree of graphical interaction possible
depends on the available hardware and software. The extent to
which you can properly exploit the full potential of the system
depends on the quality and comprehensiveness of the
documentation.

Graphic styles

Different types of system and, particularly, different forms of
output device give rise to three different computer graphic styles:

1 Character or mosaic graphics.
2 Calligraphic or vector graphics.
3 Raster or pixel graphics.

Character or mosaic graphics

Here, as in Figure 2.4, drawings are assembled mosaic-fashion from
a special set of graphics characters either supplied with the machine
or designed by the users themselves. The characters are accessed

| ; |
L
FFr-L-rt
I T
A a1
J] /| L
L - r .
S
|

Figure 2.4 Mosaic type drawing showing four elements used

10 Computer Graphics

from the keyboard as if they were alphanumerics. With careful
design and ingenuity, some interesting pictures can be made in this
way, but drawing with charactersis a very limiting style suitable only
to such things as simple diagrams, videotext and video-game
figures. Some personal computers can draw only in character
graphics.

Calligraphic or vector graphics

Here, drawings are made up from lines (often just in one colour).
This style, which is the one most often used for plotting onto paper,
can produce very accurate and complex drawings and is generally
the one favoured for engineering and drafting applications. It is not
easy to produce areas of solid colour by vector graphics, so this sytle
is not used when shaded drawing or a high degree of realism is
sought. VDU vector systems are expensive to produce hence,
except when plotting on paper, personal computers do not use the
calligraphic style.

Raster or pixel graphics
In this case, drawings are made up of arrays of closely-spaced dots,
called pixels (short for ‘picture elements’), which allow either lines
or areas to be delineated in various colours. Because of the hard-
ware simplification raster graphics makes possible, this style is
rapidly becoming the most widespread, but the dotted nature of the
drawings creates problems of accuracy and resolution which have
to be specially dealt with by software (or, sometimes, hardware)
techniques. The most visible manifestation of these problems is
that diagonal lines have a ‘staircased’ appearance which can be
disturbing. Most personal computer systems use this style of
drawing.

In general, only vector and raster graphics are dealt with in this
book.

Graphic tasks

We use graphic systems in order to facilitate graphical input and
output. For input, we need support for three tasks:

1 Interaction with the system.
2 Setting-up and editing drawings and graphic text.

Graphics Systems 11

3 Converting existing drawings into machine form: a process
known as digitising.

For output, we need support for two tasks:

1 Making drawings.
2 Creating graphical menus or symbols to assist in interaction.

Except in the case of some expensive equipment where special pro-
cessors are incorporated, graphics computers differ from general
purpose ones in respect of their input and output devices and the
way these are supported by the software. For most applications,
input and output are of equal importance, but it is probably true to
say that those who sell graphics systems tend to stress only the
quality of the output facilities of their product. Of course, an
impressive output can only be demonstrated if the system is capable
of providing it so, in that sense, the salespersons are not being
misleading. Users soon find, however, that properly designed input
facilities which are well-supported by comprehensive software are
just as important if the graphics potential of the system is to be
exploited to the full.

Graphics primitives

In order to allow us to carry out graphics tasks, systems come
equipped with their own particular sets of drawing instructions, or
primitives as they are sometimes called. Some systems, especially
the more expensive ones, have comprehensive sets consisting of
dozens of primitives to draw such things as lines, polygons, circles,
arcs and other figures; to change line styles; to fill-in areas with solid
colours or hatching; to erase or display portions of a drawing; to
rotate, move or reflect figures, and so on —all with single commands.
Other systems have much more limited sets of primitives, perhaps
allowing the display only of single lines in one style and colour.
Systems differ not only on the output tasks they facilitate but on the
input tasks too; some will have no special input primitives, others
will cater for input from all sorts of sources.

To assist us in dealing with these differing capabilities, we will
assume that the system we use has only six primitives: one to tell the
system that we want to use graphics, four for output and one for

12 Computer Graphics

input. We assume that the (x, y) coordinates given to the primitives
lie within the ranges permitted by our drawing surface (Figure 2.5).
Anything outside these ranges will give rise to an error condition.
Our primitives are:

1

GRAPHICS(n), which clears the screen and puts the system into
graphics mode if n = 1 and out of it (without clearing the screen)
if n=0. Any graphics instructions used when n =0 (or if n is
undefined) are ignored.

MOVE(x, y), which puts the drawing head (electronic beam or
pen) in the position on the drawing surface defined by the
coordinates (x, y) without making any mark or trace.
DRAW(x, y), which moves the drawing head from its present
position, wherever that is, to a new position (x, y) leaving its
own version of a straight line as it goes.

TEXT(x, y, message), which prints the string defined in message
starting at point (X, y).

COLOUR(n), which sets the drawing colour to the hue (n).
When n = 0, the colour is set to the same as that of the back-
ground so that anything drawn is effectively invisible. The object
of having COLOUR(0) is to allow us to erase existing lines by
drawing over them with the background colour.

ACCEPT(flag, x, y), which will take a pair of (x, y) coordinates
from an input device and set the flag parameter to a number
depending on some action performed by the user (such as
pressing a button).

(t N

Max Y

+(X !Y)

o MinY
Min X Max X

Figure2.5 All points must lie within the drawing surface (i.e. in the range

Min X, Max X horizontally and Min Y, Max Y vertically)

