BASIC

PROGRAMMING

O
=

£
©

J
>

Kemeny

- and Thomas E. Kurtz

1
: = S e e
L]
— -~
i e
OO TAMERINTESENY.  ATrTnw gy sl PR AN WA T ST N Ll Bt

X % s R
< S
¥ A
.
)
o, >t
{
| 155 % i
.
&
{
|
e ————
» !
. = re e
|
i
|
&
— s
S




PRy v

W

BASIC Programming
SECOND EDITION
AN

E9460561

JOHN G. KEMENY
Albert Bradley Third Century Professor
Dartmouth College

THOMAS E. KURTZ
Director, Computation Center
Professor of Mathematics
Dartmouth College

ONG KONG POLYTECHNIC |
L IBRARY :

JOHN WILEY & SONS, INC., New York - London - Sydney . Toronto

e T



Copyright © 1967, 1971 by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond that
permitted by Sections 107 or 108 of the 1976 United States Copy-
right Act without the permission of the copyright owner is unlaw-
ful. Requests for permission or further information should be
addressed to the Permissions Department, John Wiley & Sons, Inc.

Library of Congress Catalogue Card Number: 70-138911
ISBN 0-471-46830-4
Printed in the United States of America

18 17 16 15 14 13






Preface

Basic Programming is a comprehensive introduction
to the art of computer programming. It will be useful
as a text in secondary schools, in colleges, and in
professional training programs, as well as for self-study.
Programming techniques are illustrated through a wide
variety of applications, many of them of a “nonmathe-
matical” nature.

Programming must be carried out in a computer
language, and we have chosen BASIC. This language
is rapidly gaining acceptance as a general-purpose
computer language, particularly in modern time-
sharing systems. The language is so simple and natural
that the reader can spend a minimum of time in mas-
tering it and can concentrate on learning programming
techniques.

Most texts on programming fall into one of two
categories: (1) a discussion of a particular program-
ming language with only a few contrived examples of
its application; and (2) a discussion of a narrow area
of application, which is of interest to specialists. In
Basic Programming, the reader is introduced to the
language at an elementary level and can then study
applications to a variety of problems, many of them
being of significant practical interest.

The core of the text consists of Chapters 0 to 7, which
have been extensively revised in this second edition.
After a brief general introduction in Chapter 0, the
reader is shown two complete programs in Chapter 1.
These introduce him to the basic ideas of programming
by using commonplace examples, a technique we be-
lieve to be superior for the majority of students.

Chapter 2 discusses the relation of BASIC to time-
sharing, where the user can actively interact with his
program. Notice that the use of BASIC does not require
a time-sharing system, but the full power of the lan-
guage will not be realized without such a discussion.
(Only a few examples in the text require on-line inter-

action between the user and his program—the examples
in Chapter 11 are the most important exceptions.)
Chapters 3 to 6 continue to introduce further state-
ments of the language BASIC and discuss the most
common elementary programming techniques, again,
by example. Chapter 6 (a new chapter in this second
edition) introduces the student to strings. Strings of
alphabetic characters are as important as numbers in
today’s computer applications.

Chapter 7 discusses some ideas on debugging or
finding errors. The use of test cases, tracing, and the
provision of adequate documentation is stressed.

Part II consists of applications to more than ten areas
widely different in nature. The chapters in this part
(except for Chapters 13 and 14) are independent of each
other, so that the instructor or reader may select the
applications that are of greatest interest to him. Chap-
ters 8 to 12 and Chapter 18 may be mastered with a
background of three years of high school mathematics.
Chapter 8 is specifically designed to illustrate the
usefulness of computers in the secondary mathematics
curriculum. Chapter 9 consists of examples from ele-
mentary number theory—a topic of equal fascination
to the expert and the novice. Chapters 10 and 11
(simulation and games) are of particular interest. They
illustrate powerful uses of computing that do not
depend on a high level of mathematical competence.
Chapter 12 consists of applications to business prob-
lems. For example, this chapter contains a single pro-
gram that can solve a wide variety of problems that
are normally dealt with in a mathematics of finance
course. Chapter 18 (the last chapter) discusses several
topics in order to acquaint the reader with some un-
orthodox uses of computers, including the use of a
simple plotting device.

Chapters 15 to 17 consider three mathematical areas
that are normally taught at the college level. The

v



vi PREFACE

chapter on calculus (Chapter 17) has proved useful in
helping to bridge the gap between theory and appli-
cation in the most universally important branch of
college mathematics. Chapter 15 illustrates the uses of
computer programs for the solution of problems in
elementary statistics—an area in which computers,
today, are indispensable. Chapter 16 considers the
applications of vectors and matrices—a field of ever-
increasing importance in the social sciences. Particu-
larly in this area, the power and convenience of BASIC
(as compared with other computer languages) becomes
apparent.

Two new chapters (in this second edition) introduce
the student to two extremely important areas of modern
computing—files and text processing. Chapter 13 dis-
cusses files and how to use them in BASIC and presents
several applications to business and information proc-
essing. Chapter 14 discusses several applications of text
processing, for instance, constructing an index and

translating a coded message. Chapter 14 requires a
knowledge of Chapter 13.

Each chapter concludes with programming exercises,
and the chapters in Part II also contain suggestions for
major projects.

We express our deep appreciation to the secretaries
of the Mathematics Department at Dartmouth for the
preparation of the manuscript, to Ronald Fagin, Kinley
Larntz, and Jennifer Kemeny for their valuable proof-
reading assistance, to William Cogswell for testing a
preliminary version of the text in a course, and to
Sidney Marshall for his musical assistance.

For assistance in preparing the second edition, we
also thank James Willis. Finally, we thank the Dart
mouth time-sharing computing system for prepariny
our index.

John G. Kemeny
Thomas E. Kurtz



hoj

Contents'

PART ONE 1
Programming

0.

Introduction 3

0.1
0.2
0.3
0.4

What is a Computer? 3
What is a Program? 3
What is BASIC? 4

How a Computer is Used 4

Elementary BASIC 5

1.1
1.2
1.3
1.4
1.5

Introduction 5

A Very Simple Example 5
Another Example 6
Some Additional Facts 8
Summary 9

Exercises 9

Time Sharing 11

2.1
2.2
2.3
2.4
2.5

What is Time Sharing? 11
Commands in Time Sharing 12
Interaction in BASIC 12
Editing and Correcting 13
Summary 14

Exercises 14

Loops 16

3.1
3.2
3.3
3.4
3.5
3.6

A Simple Example 16
Permutations and Combinations
Variable Step 18

Double Loops 18

Negative Step 19

Summary 20

Exercises 20

Lists and Tables 21

4.1
4.2
4.3
4.4
4.5

Lists 21
Tallying 22
Ordering 23
Tables 23
Summary 24
Exercises 25

17

Functions and Subroutines 26
5.1 Standard Functions 26
5.2 Defined Functions 27

5.3 Multiple-Line Definitions 29

5.4 Subroutines 30
5.5 Summary 31
Exercises 32
Alphabetic Information 33
6.1 String Variables 32
6.2 Computer Drill 33
6.3 Eternal Calendar 36
6.4 Summary 37
Exercises 37
Debugging 39
7.1 Introduction 39
7.2 The Use of Test Cases 39
7.3 Tracing 40
7.4 An Example of Tracing 41
7.5 Hand Simulation 42
7.6 Some General Hints 42
Exercises 43

PART TWO 45
Applications

8.

Problems from Elementary Mathematics 47

8.1 Trigonometry 47
8.2 Roots of Equations 50
8.3 Curve Plotting 53
Exercises 56
Projects 56
Number Theory 57
9.1 Factoring 57
9.2 Modular Arithmetic 58
9.3 A Counting Problem 59

vii



viii

10.
11.
12.
4

14.

CONTENTS

9.4 Prime Numbers 60
Exercises 63
Project 64
Simulation 65
10.1 Random Numbers 65
10.2 Dealing a Bridge Hand 67
10.3 The Buffon Needle Problem 68
10.4 Baseball 69
10.5 Knight’s Tour 71
Exercises 74
Projects 75
Games 76
11.1 Introduction 76
11.2 Battle of Numbers 77
11.3 The Game of NIM 78
114 Ticktacktoe—A Simple Solution 81
11.5 Ticktacktoe—A Heuristic Approach 82
Exercises 87
Projects 87
Business Problems 88
12.1 Compound Interest 88
12.2  Tax Depreciation 90
12.3 Decision Trees 91
12.4  Critical Path Analysis 94
Exercises 96
Project 97

Files 98

13.1 Introduction 98
13.2 Teletype Files 99
13.3 Numeric Files 100
134 String Files 102
13.5 More About Files 103
‘Exercises 105
Projects 105
Text Processing 106
14.1 Line Editing 106

15.

16.

17.

18.

14.2 Character Handling 107
14.3 Constructing an Index 109
144 Codes 110
Exercises 112
Projects 112
Statistics 113
15.1 Statistics for Single Sets of Data 113
15.2 Linear Regression 114
15.3 Contingency Tables 115
15.4 A Ranking Procedure 117
Exercises 118
Project 119
Vectors and Matrices 120
16.1 The “MAT” Instructions 120
16.2 Electrical Networks 124
16.3 Markov Chains 126
Exercises 128
Project 129
Calculus 130
17.1 Polynomials 130
17.2 Integration 131
17.3 Taylor’s Approximation 133
17.4 Differential Equations 134
Exercises 135
Project 136
Special Topics 137
18.1 Marriage Rules in Primitive Societies
18.2 A Model from Ecology 139
18.3 Harmony in Music 141
Exercises 145
Projects 145

Index of Programs 147
Subject Index 149



« X, Prog s,

e

Fadatd ]

L
W o

PO )

.-""l"-.-‘ TR T

BASIC Programming






Introduction

0.1 What is a Computer?

In simplest terms, a cmnputér is a “machine”
that carries out calculations and logical opera-
tions upon command. With this definition even
a person operating a desk calculator can be con-
sidered a computer. But we usually apply the
term to those large and complex configurations
of electronic and electromechanical machinery,
sometimes costing several millions of dollars, or
to pygmy versions of the same thing, that carry
out numerical and logical calculations at rates of
from many thousands to several millions per
second.

Actually, a computer, be it small or very com-
plex, must be able to perform two other functions
in addition to that of calculation: it must be able
to contain or store the data on which it is per-
forming the calculations, and it must be able to
communicate with the external world, first to
receive the data of the problem and later to yield
the answers or results. The former function is
performed by “memories” consisting primarily of
magnetic core storage and usually supplemented
by more capacious devices such as magnetic
drums, disks, and tapes, and more recently by
photographic or laser devices that have vast
capacities. The latter function is often referred
to as “input-output” and is carried out by such
devices as card readers and punches, magnetic
tapes, printers, paper tape mechanisms, and vari-
ous personal terminals.

0.2 What is a Program?

_The extreme speed of a computer requires that
it be given in advance a plan for carrying out

the calculations. In addition, the computer must
carry out, also according to plan, the vast number
of simple decisions that must be made. For in-
stance, calculating payroll checks on the com-
puter requires that the computer decide whether
or not social security deductions shall be made
in each of many thousands of cases. It is therefore
necessary to supply the computer in advance with
a complete set of instructions as to what calcula-
tions are to be performed and what logical deci-
sions must be made. Such a set of instructions is
called a program. Put another way, a program is
a plan or “recipe” for going from the data of the
problem to the required answers.

One important characteristic of a program is
that it must be prepared in a language that the
computer mechanism can “understand.” The
rules of grammar that are required by such lan-

" guages are usually very detailed and must be

followed exactly. The task of preparing,' in precise
form, programs for carrying out tasks on the
computer is called programming and the practi-
tioners of this skill are called programmers. The
most successful programmers are those that can
make sensible judgements about alternate ap-
proaches to a particular problem and select
methods that are efficient in terms of both the
persons that will be using the program and the
utilization of the computer resources.

Because programming in machine language is
so highly specialized, persons more familiar with
other fields have previously found it difficult to

_translate their problems for solution on the com-

puter. For this reason, various problem-oriented
languages such as FORTRAN, ALGOL, and
COBOL have been developed, ones whose rules
of grammar are more readily learned and applied
than those of a machine language.



4 INTRODUCTION

A program prepared in one of these languages is first
“translated” into the machine’s language by a process
called compiling, which is very similar to the translation
of natural languages. After compilation, the translated
version of the program is then acted on directly by the
computer. It should be noted that the translation proc-
ess is itself carried out by a complicated program called
a compiler. The use of these languages, which are more
oriented to the users of computers, have advanced
enormously the application of computers and computer
technology to many areas of business, engineering, and
scholarly research.

0.3 What is BASIC?

While the advent of user-oriented and prob-
lem-oriented languages has been a great boon to the
use of computers, most of these languages were de-
signed either for the special use of certain groups of
experts or at a time when relatively little was known
about their translation. Hence, most of these languages
are somewhat difficult to learn and then are somewhat
difficult to apply. Recognizing that a great many po-
tential computer users might find even the common
user-oriented languages a barrier to intelligent use of
computers, it was decided that a new simple language
was needed. It must have very simple grammatical rules
and must be capable of being learned in a very short
time. The language BASIC thus came into being. It is
very easy to learn, and can be applied to most com-
puting problems (nonnumerical as well as numerical)
quickly and easily. The purpose of this text is to provide
a simple introduction to computer programming using
the BASIC language, and then, in Part II, to develop
a wide variety of applications involving relatively
modest BASIC programs.

0.4 How a Computer is Used

As was previously stated, a computer must be sup-
plied with a program and a set of data. In more specific
terms, the program is supplied to the computer on some
medium readable by the computer. Examples of such
media are punched cards and punched paper tape.
Another method of supplying the program is through
a personal terminal device such as a Teletypewriter
(TM). (Both Teletypewriter and Teletype are trade-

marks of the Teletype Corporation, but it is common
to use the term “teletype” to refer to any type-
writer-like terminal device.)

Computer systems differ not only in the way they
receive the program, but also in the way they process
the program and manage the use of their resources.
Two common ways in which computer systems are
organized are “batch processing” and “time sharing.”
Batch processing usually involves submitting the pro-
gram to the computer in punched card or similar form,
having the computer carry out the program when it
comes its turn, and then printing the answers; these can
be picked up later, usually at least several hours later.
Time sharing involves submitting the program by typ-
ing it on a typewriter-like console, having the computer
system “share” its resources by giving each program
a small amount of attention when it needs it, and then
providing the answers almost immediately on the same
typewriter-like console. Time sharing also often pro-
vides for “storing” the program for the user; the next
time it is needed it will be instantly available and not
have to be retyped.

This distinction between batch processing and time
sharing is necessarily oversimplified, as most computer
systems today operate in a mode that has a combination
of the properties of the two processes. Furthermore,
certain types of applications are well handled in one
type of computer environment, and poorly handled in
the other. One type of application that time sharing
does well is the training of inexperienced users. This
is because the results of a student’s program come back
to him almost immediately—if his program works, he
is “rewarded” immediately; if there are errors, he is
told at once and can correct them before he forgets
what he is doing.

Most of BASIC is as much at home in batch proc-
essing environments as it is in time sharing. However,
BASIC does have the capability to be used in inter-
active programs, that is, programs that require the
user’s participation in order to achieve the desired
results. For instance, playing a game of chess against
the computer requires an interactive program. Inter-
active use of the computer can take place only in time
sharing, which enables a program to communicate with
a user instantly through a typewriter-like device con-
nected directly to the computer system, perhaps
through a telephone line. Many of the examples in this
text can be used in either type of computer environ-
ment, but a few very important ones can be used only
in a time-sharing environment.



Elementary

ASIC

1.1 Introduction

The purpose of this chapter is to introduce the
BASIC language. In many respects BASIC re-
sembles other computer programming languages,
but it is specifically designed to be simpler and
easier to use. BASIC is also designed to facilitate
communication between man and machine in a
time-sharing system.

In most languages there is only a small amount
of difference between what we must know in
order to write simple programs and the additional
details needed to organize complicated programs
efficiently. That is, with most languages one must
learn most of the details before writing even
simple programs. In BASIC it is possible to write
a tremendous variety of simple programs with
very few different types of BASIC statements. In
other words, BASIC facilitates the writing of
simple programs. Surprisingly, as is shown in Part
I, many quite substantial applications of the
computer can be implemented through simple
BASIC programs. BASIC also provides the power
necessary even for the most sophisticated appli-
cations. We shall first introduce, by means of a
very simple example, five of the most basic state-
ments of BASIC.

1.2 A Very Simple Example

As our introduction to BASIC we select an
example so simple that the calculational part can
be immediately understood by all. (In fact, it is
so simple that one may wonder why it is even
a legitimate computer program.) The problem is
to divide two numbers, say 147 and 69. A com-

plete BASIC program for performing this task is
the program DIVIDE, which is given below:
LIST
DIVIDE 30 AUG 78 2@:54
186 READ N, D

200 LET Q@ = N/D
308 PRINT N, D, Q

400 DATA 147, 69
5080 END
READY

Before explaining this program, we show an
actual computer run of it, which shows that the
quotient of 147 and 69 is approximately 2.13043.

RUN
DIVIDE 30 AUG 70 28:55
147 69 2.13043

TIME: 2.850 SEC.
READY

We now give an explanation of the five state-
ments in this program. In line 100 is a READ
statement. This causes two numbers to be taken
or “read” from the data of the program (which
appear in the DATA statement of line 400) and
be assigned to variables whose names are N and
D, respectively. That is, the first number read
will be interpreted as the numerator and the
second number will be the denominator. (Actu-
ally, BASIC does not care what names we pick
for the variables in the program, but it is wise
to choose names that can remind us what they
stand for. Hence, we use N for numerator and
D for denominator.J

Now that we have the numerator and denom-
inator, we carry out the division in line 200,
which is a LET statement. The result of the di-

5



6 ELEMENYARY BASIC

vision is assigned to the variable Q, the quotient. The
diagonal slash is the symbol for division, since the
built-up fraction is difficult to type on a typewriter.
The LET statement may be interpreted “LET the var-
iable Q be equal to the value obtained by evaluating
the expression or formula to the right of the ‘=" sign.”

In line 300 the program instructs the computer to
print three numbers, namely, the values of the numer-
ator, the denominator, and the quotient. BASIC will
print these numbers across the page on the same line.
We elected to print not only the quotient Q but also
the data to remind the user what his problem was.

Line 400 is a DATA statement, which supplies data
to the READ statements in the program. Thus, to find
the quotient of a different pair of numbers, all we
must do is change the DATA statement and rerun the
program. An END statement in line 500 merely serves
to notify BASIC that the end of the program has been
reached.

In summary, we observe that the BASIC program
is made up of statements, each of which consists of a
line number followed by an English word which gives
the type of the statément. Most statements have other
constituents such as arithmetic formulas, but a few, like
END, are self-contained. Although the program DI-
VIDE is extremely simple, it embodies most of the
ingredients that are common to all programs. The
READ statement serves to supply the program with
its data, which comes from the DATA statement. The
LET statement causes calculations to be carried out.
The PRINT statement causes the answer to be made
known to the user. The END statement serves to in-
dicate the end of the program.

1.3 Another Example

The conversion of distances from the metric system
to the English system is an important problem, not-
withstanding the expected shift to the metric system
in England. Suppose that distances are given in meters
and centimeters, and that we wish to convert them to
feet and inches. One possible program for converting
from meters and centimeters to feet and inches might
be as follows:

1. Obtain the data in meters and centimeters.

2. Convert meters and centimeters to meters alone.

3. Convert meters to inches by multiplying by 39.37.

4. Determine the number of whole feet and the
number of inches left over.

5. Print the answers. -

6. Go back to step 1 for the next problem.

This program is perfectly adequate for a human com-

puter with a little imagination. But, as we have seen,
it must be more precisely stated in a computer language
before the computer can be applied to the problem.
The expression of this program in BASIC is given below
under the name CONVRT.

LIST

CONVRT 38 AUG 70 28:55
180 READ M, C

118 LET Ml = M+ C/l100
126 LET I = Ml * 39,37
130 LET F.= INT(I/12)

140 LET I =1 - [2%F

145

156 PRINT M, "METERS,", C, "CENTIMETERS"
160 PRINT “CONVERTS TO"
176 IF F = @ THEN 198. ~
180 PRINT F, "FEET",

198 PRINT I, "INCHES"

200 PRINT
218 PRINT
228 PRINT

238 GO TO 108

235

240 DATA 1, @ }
250 DATA @, 2.54, @, 68, 2, 5 |
999 END

READY

A computer equipped to understand BASIC will carry
out the directions of this program, producing printed
output as follows:

RUN
CONVRT 30 AUG 78 2@:56

1 METERS , ] CENTIMETERS
CONVERTS TO

3 FEET 3.37 INCHES

] METERS, 2,54 CENTIMETERS
CONVERTS TO ’

2.999998 INCHES

] METERS, 68 CENTIMETERS
CONVERTS TO

1 FEET 11.622 INCHES

1

2 METERS, 5 CENTIMETERS
CONVERTS TO

6 INCHES

FEET 8.7085

OUT OF DATA IN 188
TIME: 8.122 SEC,

READY

As with the program DIVIDE, the program CONVRT
consists of statements, each one consisting of a line
number, followed by an English word, followed in most
cases by formulas or expressions. A detailed line-by-line
discussion of this program is now given.

The first statement (100) is a READ statement. It
causes the first two data appearing in the DATA state-
ments (lines 240 and 250) to be assigned to the variables
M and C, respectively. In this case, M and C were
chosen to suggest meters and centimeters; X and Y or



3

any other letters could just as well have been used.
Notice that the two variables are separated by a

__comma. _

The LET statement (110) shows the principal way
in which calculations are performed. The formula on
the right-hand side of the equal sign is evaluated using
the current values of the variables that appear. For the
first problem, M and C have the values 1 and 0. After
the LET statement in line .100 has been carried out,
the variable M1 will have been given the value 1, which
is the value of the expression 1 4+ 0/100. For the last
set of data, where M and C are 2 and 5, respectively,
M} will be assigned the value 2.05, calculated from
2 + 5/100. Notice that ‘+’ stands for addition and ‘/
for division, and that the division is performed before
the addition, as in ordinary algebra.

In statement 120 the program converts meters to
inches by multiplying by 39.37. This statement shows
the use of the ‘*’ to indicate multiplication, and also
shows that ordinary decimal notation is used for nu-
merical constants. The variable I is used to stand for
inches.

The whole number of feet, denoted as F, in I inches
is computed in line 130. First, I/12 is performed to
determine the number of [feet/in I inches, including
possibly a fractional part. We next employ a function
to discard the fractional part and give the whole

. number of feet. The function here is named INT, which

suggests its role—take the integer part of the argument.
This function is one of several standard functions that
are available in BASIC. In each case, the argument of
the function is enclosed in parentheses following the
three-letter name of the function.

Next, the number of inches left over is calculated
in line 140. Starting with the original number of inches,
we subtract the number of inches in F feet. The differ-
ence is the number of inches left over. Notice that
before this statement is executed, the value of I is the
total number of inches. It is this original or old value
that is used in evaluating the expression I — 12 * F,
This value is then assigned back to I. Thus, the new
value of I, after statement 140 is performed, is the
number of inches left over. This statement emphasizes
that the LET statement is a command to perform
calculations, and is not a statement of algebraic equal-
ity. The proper interpretation of this statement is
“evaluate the formula on the right, and let this value
be assigned to the variable on the left.” Or, more
specifically, “let I take on a new value found by sub-
tracting 12 times the value of F from the old value
of I.”

At this point all the necessary calculations have been
performed, and most of the rest of the program is
devoted to printing out the answers. It is important that

1.3 ANOTHER EXAMPLE 7

numerical answers be labeled so that the reader can
make the proper interpretation. Statements 150, 160,
180, and 190 show that each number printed out is
labeled, and also that it is important to print out the
original data of the problem.

When the computer comeés to perform statement
150, it will cause the value of M to be printed out in
the first column, the word METERS to be printed in
the second column, the value of C in the third, and
the word CENTIMETERS in the fourth. The commas
in the PRINT statement serve to form the columns,
each of which is 15 characters (that is, letters, digits,
special symbols, and spaces) wide. Any characters in-
cluded between pairs of quotation marks become labels
that are printed out exactly as they appear. Thus, the
comma immediately following METERS lies inside the
quotation marks and will be printed; the other commas
will not be printed, since they serve only to separate
the printed matter into columns.

itatement 160 is an example of a PRINT statement
that contains only labeling information. The label, of
course, will be printed at the beginning of the first
column.

An extremely important requirement in most com-
puter programs is the need to make decisions based on
results of previous calculations. Usually, the program
directs the computer to take one or the other of two
paths in the program, depending on whether some
relation is true or false. In BASIC the IF-THEN state-
ment satisfies this need. Statement 170 specifies that
if the variable F is, in fact, equal to zero (that is, if
the relation “F = 0” is true), the computer should skip
to statement 190. Otherwise, if F is not equal to zero
(the relation “F = 0” is false), the computer continues
to the next statement in sequence, which is numbered
180 in the example. The reason for using the IF-THEN
statement at this point is to avoid printing ‘0 FEET’
when in fact the number of feet is zero. A similar
modification could also have been made to split up
statement 150 so that ‘0 METERS’ would not be
printed when the number of meters is zero.

Statement 180 is again a PRINT statement, one that
is executed each time the number of feet is greater than
zero. It prints the value of the variable F in column
one and the label “FEET” in column two. Notice the
apparently redundant comma after the closed quote
mark—this comma tells the computer_to_stay on the

_same line and await further printed information. If that

comma were omitted, the next PRINT statement en-

countered would start printing on a new line in column

-one. The final comma permits the information in sev-

eral separate PRINT statements to be printed on the
same line.
Statement 190 prints the number of inches and the



8 ELEMENTARY BASIC

label “INCHES”. If there are zero feet, statement 190
starts printing in column one. If there are one or more
feet, this statement starts printing in column three
(which starts thirty spaces from the left margin), since
columns one and two have been used by statement 180.

Statements 200, 210, and 220 contain a blank PRINT.
The effect is to start a new line for each similar PRINT.
In the example, the total effect is to skip three lines
with the purpose of separating, for easy reading, the
printing pertaining to the separate problems.

Statement 230 tells the computer to go to statement
100 instead of continuing in sequence. In this case,
statement 100 is the start of the program, and another
problem will be attempted.

Statements 240 and 250 are DATA statements.
BASIC takes all the data appearing in all the DATA
statements in the program and forms a (sometimes quite
long) list of numbers. As READ statements are en-
countered, data are used consecutively from this list.
If the data become exhausted, and a READ statement
is then attempted, there will be produced the message
“OUT OF DATA IN xxx,” where xxx is the line num-
ber of the READ statement being attempted. In many
problems, this is a normal way to reach the end; the
computer keeps working problems until it runs out of
data. In some cases, the “OUT OF DATA” message
may mean that the program is wrong, since insufficient
data may have been included.

It is important to realize that the number of data
in each DATA statement is completely immaterial.
Furthermore, a given READ statement can draw data
from more than one DATA statement. Only the order
of the data within the set of all DATA statements is
important. However, it is useful for proofreading pur-
poses to arrange the DATA statements neatly and in
an orderly fashion. '

Finally, every BASIC program must have an END
statement. It must be the last (highest numbered) state-
ment in the progiram; in this case it is statement 260.
This statement marks the end of the program, and it
is also used to stop computation.

The run shows that 1 meter converts to 3 feet, 3.37
inches (39.37 inches), and that 2.54 centimeters is al-
most, but not quite equal to 1 inch. Notice that in the
second and third conversions, ‘0 METERS’ is printed
since the program does not provide for its omission (see
Exercise 4).

The numerical answers printed by CONVRT show
that BASIC prints numbers to no more than six signifi-
cant digits, except for integers which are printed to the
full accuracy of the computer. Less than six digits are
used if possible, and trailing zeros are not printed.
Numbers that happen to be integers appear without

a decimal point. Thus ‘1.’ means that the value was
between .9999995 and 1.000005 and was rounded to
1. A ‘1" without a decimal point means that the com-
puted value was exactly 1.

1.4 Some Additional Facts

We learn much about the BASIC language from
inspecting the two example programs. For complete-
ness, we now present certain facts and details about
the language.

An important point about using a teletype terminal
is that the letter “oh” must be visibly different from
the numeral zero. Some terminals distinguish by slash-
ing the letter “oh;” some terminals slash the zero
(which is done in this book); some terminals type these
two characters with obviously different shapes, such as
a round circle for “oh” and narrow ellipse for the zero.
Whatever system is used, the user should be aware that
zero and “oh” mean entirely different things to the
computer.

BASIC ignores spaces. Thus, statements 100 and 110
could just as well have been written

100READM,C
1oL E TM 1=M4C/ 1 @ @

These two lines are difficult to read, and one should
use spaces judiciously to promote easy reading. How-
ever, accidental omission or insertion of spaces causes
no trouble. Spaces inside quote marks in PRINT state-
ments, are, of course, not ignored.

BASIC also permits lines that are blank except for
the line number, and examples of their use to separate
parts of programs are shown in CONVRT. Line num-
bers so used remain legal line numbers for use in
GO TO and similar statements.

BASIC allows variable names consisting of a single
letter, or a single letter followed by a single digit. The
variables used in the program DIVIDE are N, D, and
Q, all single letters. In CONVRT we used M, C, M1,
I, and F. Notice the M1 is the letter “em” followed
by the numeral “one.” The letter may be upper or
lower case, for those users having an upper-case/
lower-case terminal. In fact, all the official words of
BASIC may be typed in either upper case or lower case
or a mixture.

BASIC accepts numbers in the usual notation; that
is, a string of digits possibly preceded by a plus or minus
sign and possibly containing a decimal point. In addi-
tion, a given number can be “scaled” or multiplied by
a power of ten by following the number by a letter



“E” followed by the power, which must be an integer
number and may be either positive or negative. Thus,
the following are legal numbers in BASIC:

12345 .12345 —123.45 +000.0005 —.012321 E-4

The last number is —.0000012321 since the E-4 tells
us to multiply by ten-to-the-minus-four, which is .0001.
Observe that E4 is not a legal number, because it is
a legal variable name! Thus, any number containing
the E notation must have at least one digit in front of
the E.

The requirement that every formula must lie on a
single line, with no superscripts, subscripts, or built-up
fractions, calls for an understanding of how certain
formulas are interpreted. In some cases, parentheses
may be needed to clarify the meaning. For example:

Formula BASIC
& g A +B/C
C
A
B+ C A/B + C)
AB B
D (A * B){)(rC * D)
A*B/C/D
A—-—B-C A—-B-C)
or
A—B+C
AB A1TB

Whenever you have several variables multiplied or
divided, BASIC interprets them as if they were grouped
from the left.

Formula BASIC
((AB/C)/D)/E A*B/C/D/E
A very common error is to use (—B + D)/2 * A for
the formula DA [N
(-B+D) 1= /AR
2A

This is wrong, and will be interpreted as
<_B+D)*A=(_B+D)A_
2 2
‘We should use
(=B + D)/(2 * A) or ('}7/5 + D)/2/A.

Most decisions in BASIC are made through the
IF-THEN statement, which bases the decision on the
truth or falsity of some relation such as “F = 0.” Other

9) : ‘/ ’ EXERCISES 9

more general relations may also be used, for example,

IF X + Y < 0 THEN 1000

.would cause the program to jump next to statement

1000 if X + Y were in fact strictly negative at the time
the statement is met. Other relational symbols and their
meanings are:

< less than

<= less than or equal to

= equal to

> greater than

= greater than or equal to

<> not equal to

In general, then, a relation consists of any arithmetic
expression, followed by any relational symbol, followed
by any arithmetic expression.

1.5 Summary

We have seen several types of BASIC statements.
They are:

READ
DATA
LET
PRINT
GO TO
IF-THEN
END

READ and DATA are jointly used to enter numerical
information into the computer. LET is used when
computations must be performed. PRINT serves to
make available the results by printing them. GO TO
permits the program to “change course.” IF-THEN
allows the program to “change course” conditionally,
according to the truth of some relation. END is the
final statement in the program.

EXERCISES

1. Which of the following are legal variable names in
BASIC? If not legal, state why.

A B AB
AA AZ 723
K9 YA TO
7B E2 X1

2. Which of the following numbers are legal in BASIC?
If not legal, state why.

123.456E7 123.68E-3 —0.0001
321E-4 E2 —147
0EO0 1E2.3 12345678765



