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PREFACE

This book deals with the essentials of theoretical plasma mechanics
and magnetohydrodynamics (MHD). It has evolved from lectures I
delivered to the senior students of the mathematics department of Jadavpur
University. When the course was first introduced, in 1967, I was given
the responsibility of framing the curriculum and teaching it right from
the very outset. I found to my chagrin that the available textbooks were
of such an advanced level that they far exceeded the students ability to
understand the subject. As such, I had to make copious notes from
various available sources for my lectures, keeping the students difficulties
in mind. During the past ten years much new material has been added
and the notes have been revised and rewritten, resulting in this book.

The first five chapters of this book more or less cover the needs of an
introductory course. The remaining seven chapters are additions of a
somewhat advanced level. Their inclusion, T hope. will increase the
utility of the book, as, together with the first five chapters, they can be
used as a complete advanced level course of theoretical plasma physics,
leadizg to a research programme on the subject.

In addition to the twelve chapters, the book has some appendices.
A few of these appear at the end of the book and some, of a mathe-
matical nature, appear at the end of chapters where they become necessary
for clarifying mathematical concepts.

Contrary to present day convention | have introduced mussian or cgs
units throughout the book. The choice is due not entirely to personal
habit, the available literature is also in gaussian units. The metric units
have yet to make their impact on plasma research. I, therefore, request
my readers to bear with me in the choice of units.

In every chapter, many references, particularly those which have been
consulted, are given. However, no special effort has been made to cite
all the useful and standard references on the subject.

My contact with a number of mathematicians and physicists, especialily
Professors A A. Vlasov, J. N. Kapur, P.C. Jain, P. K. Ghosh, N.R. Sen,
B.B. Sen, B.S. Ray, M. Dutta, H. Bremmer, L .Jj.F. Broer, F. W. Sluijter
and L. Stenfle has greatly influenced my undersianding of mathematics
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and physics. I take this opportunity to express my indebtedness to them.

My inexpressible gratitude, however, remains for Shankar Brahmachari
—the Guru—who inspired me to work on this book.

I gratefully acknowledge and remember the kind services of the staff
of the libraries of Jadavpur University, Calcutta, Indian Association for
the Cultivation of Science, Calcuita, Physics Faculty of Moscow State
University, University of Technology of Eindhoven and Umea University.

I also wish te thank the National Book Trust, India, for subsidizing
publication of the book and the University Grants Commission for
previding financial help to prepare the manuscript. The authorities of
Jadavpur University have always been very helpful to me during my work
on the book. Professors Rajat Kumar Chakravarty and Debiprasad
Chattopadhyaya have greatly assisted me in the publication of this book.
[ express my sincere thanks to them.

It is a pleasure for me to express my gratitude to my family, more
especially to my wife, Manju, who cooperated in every way during my
work on the book.

If this book could serve as an incentive to some readers for a deeper
study of sonie plasma problems my expectation would largely be fulfilled.

Calcutta BISHWANATH CHAKRABORTY
October 3, 1978
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Chapter Ore

BASIC ELECTRICITY
AND MAGNETISM

1. Introduction

The fundamental laws of classical electricity and magnetism are
formulated by experimentally studying the behaviour of its basic elements,
that is, the electric charges and magnetic dipoles. Based on these laws, the
basic equations of electrodynamics, known as Maxwell equations, can be
deduced. Moreover, based on laboratory expcriments, the expression for
the force exerted by these elements among themselves. called the 1 orent.
force, is determined.

Considering only electrical properties all bodies can be regarded as
dielectrics or conductors. A dielectric material is composed of aggregates
of charges which are normally bound to positions of equilibrium by
internal forces. An electric dipole is defined as two equal but opposite
charges which are a very small distance apart and which are bound together
by the action of the internal melecular forces. So in dielectrics a volume
distribution of dipoles is formed. *

A conductor, by definition, is a substance in which charges are free to
move under the action of an applied electric field through distances which
‘are large compared to atomic dimensions. This movement occurs even
when the electric fields are very small, and give rise to the concept of
electrical conductivity of matter. The current density and s kicctric field
intensity are usually found to be proportional in conductors.

If, in a volume T, there are N charées at N positions, and if the position
vector of the ith charge e; at the time 7 ber () (i=1, 2,..., N), then the
charge density p and the current density j are defined as

1 N
P—"-‘-; Z F,&(l’—l’;(!)), (]l)
=)
] X ,
=22 awd{T—r() (1.2)
i=1

where u, is the velocity of the ith particle at the position r = g, 8 is the
delta function of Dirac (see Appendix 4) and a dot upon a quantity means
its derivative with respect to time.

Since in dielectrics a negative charge is associated with a positive

1(45-117/1976)
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charge to form a dipole, an applied electric field brings about a redistri-
bution of the average charge density g;, without changing the total number

of charges. So
II pidt=0

T

where 7 is the volume of the dielectric. Since this [integral equation is
valid for a body of arbitrary shape, p; can be written as the divergence of
a vector: thus

p,-=-divP,”Ip,dr=0=—m div P (1.3)

P is called dielectric polarization vector, or simply, the polarization and
the body in such cases is said to be polarized by the electric field.
Applying Green’s theorem (see Appendix 5) on the right hand side we

get
0—— ” Py dS
z
where Py is the component of P along the normal to the surface 2 of
volume . Since this relation is, in general, true, Py = 0 at every point

of . For finding the physical significance of P the dipole moment density
rg is integrated over the whole volume . The result is

I”rp.-(&:—”[r Gy Bl == _”,(p.dz)+ I” P

T T 3 T

Since Py is zero at every point of £ we can write

IIIrp,dr::j][Pdr

Hence the polarization vector P is the dipole moment per unit volume.
If, in addition, charges not belonging to a dielectric are brought from
outside T and their density is o. then the total charge density ¢ = p, 4 ¢i.

A volume of plasma (to be defined and discussed in detail in
Chapter 3) can be regarded as a cloud of mobile positive and negative
charges and so has both electrical conductivity and dielectric permittivity.
Charges in a plasma being free to a certain extent, mutual exchange of
momentum, through collisions, imparting a finite amount of electrical
conductivity (or resistance) to the medium is possible. On the other hand,
charges being bound together to an extent, characteristic small amplitude
oscillations of them are possible if the medium is disturbed in such a
manner that a high degree of charge neutrality 1. maintained.
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In this chapter, the fundamental laws will be briefly described and the
basic cquations deduced from them. Some aspects of electrodynamics,
which are relevant to plasmas, will also be disdussed.

2. Static and dynamic laws

1. We first consider an electric charge e p:aced at the point 0. Let P
be a point in space on the surface element dX where the unit charge is kept
to study the effects of the charge ¢ at O.

7

e
0

Figure 2.1 The field across the surface eloment 72 a0 /5
to the charge e at O.

Let i(= OP/OP) be the unit vector along OP and j be the unit
vector normal to dZ at P in such a sense that j coincides with the outward |
drawn normal to a closed surface which contains dX. The electric field
at P is E = ie/r? such that

(E-dz) =

e dScos @
r.’

Q2.1

where 0 is the angle between i and j. If dQ is the solid angle subtended
at O by dZ, then (E-dZ) = e dQ, because r*dQ == d¥ cos 0.
The point O can be inside, on or outside £.  Hence we can write

II (E-dZ)=¢ J.I dQ =4d=e, if O lics inside X
z z

=2ne, if O lies on =
=0, if O lies outside *

To avoid a discussion not relevant to our purpose, the cace of the point
O on X will be ignored.

When several charges are held fixed at known positions, let O, be the
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position of the ith charge ¢ and OP=r,. Then the force E on an

unit charge at P = 3" er;/r; and so
i

e (ri-dZ)

[[®a =[]z,
z ; ’
If 8, is the angle between r; and dZ, then
i 0, d
[f @m= g [[£52E - 5 [ g,
r "3 e
where d€ is the solid angle suhtended by 4Z at 0;. Using, in the

summation, the index p for charges inside £ and the index g for charges
outside Z, we can write -

[ =sefd,+ 5 el
3 = T 3

Since O,, the seat of the charge e, is outside 3, j j g, = 0.
’ b 4

If, similarly, O, is the seat of e,,

”dﬂ,nt‘mandso ”(E-dz)-h ¥ %
b3 3 s

In a volume distribution, if p is the charge density at the pointv O and
dx is a volume element surrounding O,. then

[ [

b A T

where t is that part of the charged volume which is inside £. This is the
integral form of Gauss’ law of normal flux. By Green’s theorem

”(1!:«12) - _mdiv'l-: dr, and so ”j (div E = 4np) dv = 0.
z T T

The above equation holds good for any arbitrary volume, large or
small. So the integrand must vanish at each point, and therefore,

div E = 4p.

~ This is the differential form of Gauss’s law.

The charge density p consists of the sum p, -}-'p;, where p, is the
. density of charges which are brought from outside and ¢ is that due
to a redistribution of charges inside Z due to the electric field. Hence,
rortting gy = — div P, we get div E = 4np, — 4x div P and so
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div D = 4=p, 2.2

where ' D = E + 4=P _ 2.3)
- Dropping the subscript e we get for Gauss’s law of normal flux

' - div D = 4xp. (2.4

2. Since separation or isolation of magnetic monopoles is not
permitted by nature, only equal number of north and south poles occur
together in any volume, small or large. Hence,

”(H-d2)=0, H (B-dZ) =0 (2.42)
Xz z '

where H is the magnetic field and B= H+41:M,. where M is called
magnetization vector -and is defined in the mannmer of P. Applying
Green'’s theorem on the above integral we get

divH =0,divB=0, divM =0 (2.5)

The vectors M, B and H being divergence free are called solenoidal
© wectors. ,

Relations (2.4a) and (2.5) express the divergence law of normal flux
for t' e magnetic field.

‘3. From experiments Faraday observed that if a closed circuit moves
#cross a magnetic field, or the magnetic field through the circuit changes
in time, & current flows even though no batteries are present. In either
case current lasts only as long as the circuit moves or the field changes.
It makes no difference whether the magnetic field is caused by a
permanent magnet or an electrical circuit. For a mathematical formul-
ation of the effects, let a circuit C,, bounded by the open surface Z,
be considered. The magnetic flux linking the circuit is given by

= ([ ®@-a2)
z

"The electromotive force £ around the circuit is the line integral

=fmm

where Eis thc dectnc intensity and dl is the line element at P along
the circuit C.- S

Experimental results satisfy the following two laws:

(@) [F® is changed in any way then £ is proportional to d®/d:.

(b) This& sets im such a way as to oppose the change in ®, that is,
it acts so é8 io oamse cwrrents in the coil such that its magnetic effect
can counteract the external change, and so £/(d®[dp) is a megative quantity.
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Mathematically, these laws are contained in the equation

3 i (/"I’
=Ko 2 6)

where A is the constant of proportionality.  This is the integral form
of faraday’s law of electromagnetic induction. If the line integral of
¢ is transformed  into a surface integral by Stoke’s theorem. then (2.6)

becomes

(_11_
)

I[ (curl E-J{2) K 4 Sx (B-d2)
b

where the suiface T over which the integral on the left is taken also
encloses the circuit C,.

When the surface X is fixed with respect to the observer, the time
derivative operation on the right hand side equals the partial derivative
of B with respect to time, and so can be taken within the integral sign.
Also the aircuit Cy and the surface £ are completely arbitrary. Hence

2B
ar
This iy the differental form of the law.

It mugnetic induction B is expressed in electromagnetic units and
clectric intensity E in electrostatic units then such a system is called the
Gaussian or mixed system of units. Experiments have shown that in
this systeri K equals 1/¢ where cis the velocity of light in vacuum, and
se appreximately ¢ = 3 x 10 cm/s.  Hence

c'urIE:—‘lf @ 2.7

curl E= — K

¢ ot

Ancther system of units, also often used in literature, is the MKS system,
or the practical and rationalized or Giorgi units, where M is metre, K
biloeram and S seconds.

4. It is found that the magnetomotive force (= f (H-d)) ) in the
Coe

closed circuit C, is linearly proportional to the volume current / and to
the rate of change in time of the flux of D, that is,

f (Hedl) =2l + 8 d—f” (D-d3)
Co

-
-

where « and B are the constants of proportionality. Experiments have

shown that if I is in statampecres and D is in statvolts/cm, that is, in

electrostatic units, then a = 4xn/c, 3 = 1/c. Hence the integral form of
a mzdium at rest is
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4r 1 c ’
f (Hed)= "1 4 H(d D-dz) @2.8)
Co z

c

Again applying Stoke’s thcorem on the integral in the left hand side and
arguing as carlier. wes get the differential form of the law:

4= . 1 @D

curl H = -4 -+ (2.9)

c o
where [ == ” (j=dZ): j is the current vector crossing unit area of 2
z . . . -

at the point of integration®*. The quantity ¢D/2r has dimensions of current
density. Itwas called displacement current by Maxwell because it was due to
displacement of dipole charges in dielectrics due to the application of an
electric field. The quantity j is called conductiod current because it is
- related to the motion of free charges. In dielectrics the conduction current
is ignored, and in conductors the displacement current.

3. Lorentz force

The force density F, depending on the field of electric charges and
currents in unit volume at the field point P, is called the Lorentz force
and can be obtained experimentally:

—¢E + [} x B] 3.1

where o is the density of total charges, E is the electric field, j is the
current density and B is the magnetic induction at P. This force is the
cause of motion of charges if they are set free in the field of E and B.
Taking v to be the macroscopic velocity of motion of the average charge
density p at P, we have

j=¢v, F=¢E -—%[vx B) (3.2)

When the charges are forced to be at rest, v = 0, and so
F =¢E

*Electric currents are moving electric charges. The current 7 is defined as the
ratc at which a charge is transported through a conductor. Hence J=dg/dt, or,
I=A4ngv where q is the charge. t is the time, 4 is the cross sectional area of the
conducter, n is the number of charges per unit volume and v is the velocity of
their motion. The flow rate of charges per unit area is known as the current
density j. Hence j4=1 andso j=nev. When the current I is distributed uniformly
over the cross section of the conductor the current density j may be treated as a
scalar quantity. But if the current distribution is not uniform over the cross
section, the current density is the average current density over the cross section.
At a point on the plane arca §4, perpendicular to the direction of the flow,
therefore, if the current element vector it is 81, the current density j is defined as
j= lim 31/34.

340



