


Programming Linguistics

David Gelernter and Suresh Jagannathan

The MIT Press
Cambridge, Massachusetts
London, England



©1990 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by
any electronic or mechanical means (including photocopying, recording, or
information storage and retrieval) without permission in writing from the
publisher.

This book was set in Computer Modern.
Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Gelemnter, David Hillel.

Programming linguistics / David Gelernter, Suresh Jagannathan.

. cm.

Includes bibliographical references.

ISBN 0-262-07127-4

1. Programming languages (Electronic computers)
2. Computational linguistics. 1. Jagannathan, Suresh. II. Title.
QA76.7.G44 1990 90-5485
005.1—dc20 Cip ~



For my Jane, eishes chayil:

,]1P N v nwn
NRI PRINT,ATY 191P D



By reflecting on the true nature of things, it is rec-
ognized that even when this world of multiplicity
is percetved, it is only Thy non-dual Self that is
apprehended, just as gold only is seen when orna-
ments are perceived, and clay, when pots are seen.
When knowledge dawns, what happens is that this
fact becomes crystal clear, just as the true nature of
dream objects becomes evident on awakening, and
of the worn-out rope on the dispersal of darkness.
To Thee, O Iirishna, my salutations.

Narayennyam: Canto 98, Verse 7

To my family: Hema, Amma, Appa and Aravind



Preface

This book is intended to serve several purposes. First, it's a text for
courses in the design and evolution of programming languages. The
recipe for turning the book into a course is fairly simple: students should
read the book and all of the “basic” papers listed at the end of each
chapter. Add exercises, stir and serve. To get a beefed-up graduate
student version, read all of the “suggested” as well as the “basic” papers
in the reading lists. None of these are extraneous or strictly for reference;
they all play a significant role in the evolution of the field.

The book is designed also to serve as supplementary reading for courses
in compiler construction. It’s often difficult for a compilers course to
leave students with a comprehensive feel for the breadth and variety of
language models that compilers are called upon to support. Students
sometimes emerge, besides, without a clear understanding of why any-
body would want or need some of the features they’ve learned how to
implement. We hope that this book will be one part of an effective treat-
ment plan aimed at the I-know-how-but-don’t-ask-me-why syndrome that
so often strikes down our young people in the prime of life.

Finally, programming languages are an important topic both for com-
putation practitioners and for researchers. This book may be of use to
anyone who needs more information on a significant and intriguing area.

Beyond its specific goals as a text and an information source, the book
has a more general mission. Computer science seems to be destined for a
permanent identity crisis. This holds particularly for the sub-field called
“Systems” —the part of computer science that deals with the design
and construction of computing environments, encompassing computer
architecture, operating systems, compilers, programming languages and
program-building methods. The Systems area is the center of computer
science, the most specifically “computer-science-ish” part of the field,
and there is an ongoing struggle over its basic character.

A large number of distinguished researchers seem to feel that, if this
field is ever going to find itself, the only place to look is in the mathe-
matics department. The study of programming languages in particular
is imagined in some quarters to be reducible to the study of implemen-
tation techniques on the one hand and to the formal or mathematical
description of language semantics on the other. Both topics, despite the



xviii Preface

obvious importance of implementation and the potential significance of
formal semantics, beg the fundamental questions:

e What do programming languages look like, and what should they
look like?

e Why do they offer the tools and constructs they do, what kind of
programming styles do they suggest, what do they tell us about
some particular vision of software structure?

e What light do they shed on the basic, unanswered question in
Systems—what is a program anyway?

Before students worry about topics like formal semantics, they should be
quite clear about what they are studying the semantics of. They should
aim to understand the language design field in all its richness and depth,
resisting the narrow outlook that is sometimes imposed in the interests
of formal tractability. And they should keep in mind that programming
languages are synthetic creations, and that language design is properly
an engineering study.

We stress this last point on behalf of a larger, more important, often-
neglected consideration: engineering exists at the interface between sci-
ence and art. Aesthetic issues, the design judgments that are captured
in a programming language and underlie some vision of the shape and
form of software machinery, are just as important to this field as the
theorems that define computation. The beauty and power of the best
programming languages are one facet of a larger topic, having to do
with the sweep and intellectual depth of engineering in general. Unfor-
tunately, this broader, topic is simply not on the menu at the typical
fast food-for-thought joint that passes as a modern university (and is
even less likely to be served at the trendiest bistros)--which very likely
contributes to computer science’s difficulties in defining itself.

The book’s structure is heterogeneous. The chapters vary greatly
in length and will (obviously) require varying amounts of time to get
through. The three Classical ‘Languages (Fortran, Algol 60 and Lisp)
are grouped together in one long chapter, in order to accommodate some
historical background and some exercises relating to all three, and in
deference to the fact that together they underlie most subsequent work
in the field. The Pascal chapter has a prologue dealing with Algol 68
and PL/I; the Simula 67 chapter has a postlude that deals with spec-



Preface xix

ification, abstract types and Ada. Through the Pascal chapter, each
language is treated essentially as a whole. Thereafter we assume that
enough groundwork has been laid to justify our focusing mainly on spe-
cific language features—the class in Simula, the package in Ada and so
on. We follgw, in a sense, the development of a single “plot” from the
Classical Languages through Scheme; the plot has to do with the rise
and fall of a virtual structure called the Algol Wall. (Of course there
are a large number of other themes under development at the same
time.) The final two language chapters, on Declarative and Parallel
languages, each represent a digression of sorts after the main story has
drawn to its slightly bittersweet conclusion. Two special-purpose ap-
pendices, following the Pascal and the Declarative Languages chapters,
attempt to place programming language design in a broader intellectual
context. Two appendices, following the second chapter, give a summary
of and formal semantics for the “ideal software machine” model; they’re
included mainly for reference use and may be skipped without loss of
continuity.

Acknowledgments. The first author thanks the Linda group at Yale,
particularly Nick Carriero and Jerry Leichter. I'm grateful to Jerry es-
pecially for introducing me to the remarkable work of Billington. I have
the distinct impression that, although this book deals only glancingly
with the main topic of our collaboration, it could never have been writ-
ten without Nick’s contributions. The Computer Science Department at
Yale was a stimulating place to work. It’s an honor to acknowledge that
extensive and wide-ranging conversations with Alan Perlis contributed
a great deal to my own understanding of programming languages. Mar-
tin Schultz turned the Department into a place where our work could
thrive, and I'm grateful to him for his support. The heart of the ideal
software machine model, and the view of language design that underlies
the book, goes back to my thesis work at Stony Brook, and to conver-
sations there with teachers and fellow students. Of course I thank my
parents, The Sibs and above all my wife—to whom the author hereby
gives notice that, several years of work on this book being now finally
complete, it may conceivably be possible for him to resume mowing the
lawn occasionally.

The second author is grateful to the Laboratory for Computer Science,
Massachusetts Institute of Technology, where the semantics and detailed



% Preface

design of the ideal software machine model were developed. The propo-
sition that this model could serve as a viable basis upon which to unify
superficially diverse concepts in programming languages formed the cen-
terpiece of my doctoral research. Although I am indebted to all my col-
leagues and friends at MIT for the stimulating: environmentgthey helped
to create, I especially would like to thank Rishiyur Nikhil and Bert Hal-
stead for their significant contributions to my understanding of program-
ming languages and systems. I thank David Gelernter for his invitation
to collaborate with him on the writing of this book, and the Computer
Science department at Yale University for providing the superb resources
that allowed us to undertake this endeavor. Most importantly, my con-
tributions to this text were possible only because of the never-ending
encouragement and support given by my family—my wife' Hema, my
parents, and my brother Aravind.



Programming Linguistics



Contents

1.1
1.2

1.3

2:1
2.2
2.3

24

2.5

List of Figures
Preface

Programﬁxing Linguistics: Goals and Methods

Fundamentals

Studying Language Design: The “Programming

Linguistics™ Approach

1.2.1 Moving from the Ideal Model to Real
Languages

1.2.2 The Historical Approach

Conclusion: Setting the Stage with Some Basic
Terms

The Ideal Software Machine

The Basic Idea
The ISM Defined

Program Structure in the ISM Model

2.3.1 Parallelism

2.3.2 Scope and Block Structure
2.3.3 Records

2.3.4 Objects or Data Systems
2.3.5 Modules and Libraries
2.3.6 Templates

2.3.7 Data Structures

Types
2.4.1 Classes

Conclusions

Appendix A: A Micro-Manual for the ISM

Appendix B: Formal Semantics of the ISM

xiii

xvii

10
17

17
19

31

32
36
41
43
44
46
51

58
61
62

63
67



viii

3.2

3.3

3.4

3.5
3.6

4.2

4.3
44

Fortran, Algol 60 and Lisp

Fortran

3.1.1 Fortran Profile
3.1.2 Fortran Analysis
3.1.3 ISM Comparison

Algol 60

3.2.1 Algol 60 Profile
3.2.2 Algol 60 Analysis
3.2.3 ISM Comparison

Lisp
3.3.1 Lisp Profile

3.3.2 Lisp Analysis
3.3.3 ISM Comparison

Fortran, Algol 60 and Lisp Finale: “Without
the Errors”

Readings

Exercises

APL and Cobol

APL

4.1.1 APL Profile
4.1.2 APL Analysis
4.1.3 ISM Comparison

Cobol

4.2.1 Cobol Profile
4.2.2 Cobol Analysis
4.2.3 ISM Comparison

Readings

Exercises

Contenta

85

86

86
93
105

105

106
110
126
126

127
134
147

147
155

156

161

162

163
169
174

174

175
179
183

184
184



Contents

5.1

5.2

5.3
5.4

Pascal, With Notes on Algol 68 and PL/I

The Foreground: PL/I and Algol 68

51.1 Pl/I
51.2 Algol 68

Pascal

5.2.1 Pascal Profile
5.2.2 Pascal Analysis
5.2.3 ISM Comparison

Readings

Exercises

Appendix: The Aesthetics of Simplicity

6

6.1
6.2
6.3

6.4

6.5
6.6

The Class in Simula 67 and Smalltalk, with Notes on
Specification, Abstract Typing and Ada

Simula 67 Profile
Smalltalk Profile

Discussion: Object-oriented programming

6.3.1 Object-Oriented Programming
6.3.2 Name Overloading
6.3.3 Conclusion: Simula the Hero Language

Specification, Abstract Typing and Ada

6.4.1 Parnas’s Specification Technique
6.4.2 Abstract Types '

6.4.3 Ada

6.4.4 The Context

Readings

Exercises

187

189

189
192

198

198
202
212

213
213
216

223

224
239

244

249
251
252

253

253
258
264
268

273
274



7.2
7.3

7.4
7.5

8.2

8.3

8.4
8.5

The Closure in Scheme

Profile: Closures in Scheme

7.1.1 What Can We Do With Closures?

7.1.2 Data Systems

Continuations

Discussion

7.3.1 Efficiency
7.3.2 Scheme the Hero Language

Readings

Exercises

Declarative Languages

Miranda
8.1.1 Miranda Profile
Prolog

8.2.1 The Predicate Calculus
8.2.2 Procedural Semantics
8.2.3 Prolog Profile

Analysis
8.3.1 The Nature of the Model

8.3.2 Specifications vs. Programs
8.3.3 Parallelism

Readings

Exercises

Appendix: Ideology and Engineering

Contents

277

277

285
287

290

293

298
300

301
302



Contents

9.2
9.3

9.4

9.5

9.6

9.7

10

Parallel Languages

The Problem

9.1.1 Coordination
9.1.2 Concurrent Distributed, Parallel
9.1.3 IsThisa Language Design Problem?

9.1.4 The Two Basic Approaches: Programming

Languages vs. Coordination Languages
Occam and Linda

CSP and Occam Profile

9.3.1 CSP
9.3.2 Occam

Linda

941 C
9.4.2 Tuple Spaces

Analysis

9.5.1 What is a Parallel Program? Two Views.

9.5.2 Elegance at What Cost?
Readings

Exercises

Conclusion

Bibliography

Index

xi

349
349
350

352
355

356
359

359
359
365
367

367
368

373
374
384
385
386

389
395

407



List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19

2.20

2.21
2.22
2.23
2.24
2.25
2.26
2.27
2.28
2.29

Evaluation of a space-map.

Space-map with simple expressions.
Space-map with named regions.

Space-map with assignment statements.
Representation for space-maps.

Evaluation of a time-map machine.
Time-map representation.

TestNewton in Pascal.

An ISM version of TestNewton.

Evaluation of the ISM TestNewton program.
A named program in the ISM.

Parallel TestNewton. :

TestNewton with nested scopes.

Parallel TestNewton, nested scopes.

Block structure.

ISM version of a Pascal-style record.
TestNewton linked to an external definition.
Random in Pascal and in the ISM.

Representing a square array directly and with
nested linear maps.

State-transition graph representation of a simple

ISM expression.
Enabling the top-most transition.

Evaluation of an enabled transition.

All enabled places can be evaluated simultaneously.

STG semantics of values.

STG semantics of identifiers.
STG semantics-of *." expressions.
STG semantics of space-maps.

STG semantics of time-maps.

STG representation and transformation of an ISM

expression containing a time-map.

20
21
22
23
24
25
26
28
29
30
33
35
37
38
40
42
45
52

55

68
69
69
70
73
74
75
76
7

78



Xiv

2.30
231
2.32
2.33
2.34

3.1
3.2
3.3
34
3.5

3.6

4.1
4.2

5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

List of Figures

STG semantics of address referencing.
STG semantics of template application.
STG semantics of the return operator.
STG semantics of the conditional operator.

STG semantics of assignment.

Fortran program sketch.

The representation of a Fortran program in the ISM.

Interlocking, recursive structure.
Compound statements and blocks.

Name-to-object binding in Fortran and Algol versus
Lisp.

Expressions and values in Lisp.

APL program layout, ISM version

Cobol program layout, ISM version.

Pascal program and the corresponding ISM version.
A Pascal record template.
The Chartres cathedral.

The evolution of the Chevrolet.

Procedures are templates.

Adding a new region to the top-level space-map.
Time-wise and space-wise factoring. h
Pascal and space-wise factoring.

Inheritance as map-layering.

The pushdown stack.

A simple CLU cluster.

A pushdown stack package in Ada.

An Ada generic package.

Template structures in Ada.»

79
81
82
83
84

91
92
111
113

133
146

169
176

199
207
219
221

226
227
233
235
238
257
261
266
268
271



