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By reflecting on the true nature of things, it is rec-
ognized that even when this world of multiplicity
is percetved, it is only Thy non-dual Self that is
apprehended, just as gold only is seen when orna-
ments are perceived, and clay, when pots are seen.
When knowledge dawns, what happens is that this
fact becomes crystal clear, just as the true nature of
dream objects becomes evident on awakening, and
of the worn-out rope on the dispersal of darkness.
To Thee, O Iirishna, my salutations.

Narayennyam: Canto 98, Verse 7

To my family: Hema, Amma, Appa and Aravind



Preface

This book is intended to serve several purposes. First, it's a text for
courses in the design and evolution of programming languages. The
recipe for turning the book into a course is fairly simple: students should
read the book and all of the “basic” papers listed at the end of each
chapter. Add exercises, stir and serve. To get a beefed-up graduate
student version, read all of the “suggested” as well as the “basic” papers
in the reading lists. None of these are extraneous or strictly for reference;
they all play a significant role in the evolution of the field.

The book is designed also to serve as supplementary reading for courses
in compiler construction. It’s often difficult for a compilers course to
leave students with a comprehensive feel for the breadth and variety of
language models that compilers are called upon to support. Students
sometimes emerge, besides, without a clear understanding of why any-
body would want or need some of the features they’ve learned how to
implement. We hope that this book will be one part of an effective treat-
ment plan aimed at the I-know-how-but-don’t-ask-me-why syndrome that
so often strikes down our young people in the prime of life.

Finally, programming languages are an important topic both for com-
putation practitioners and for researchers. This book may be of use to
anyone who needs more information on a significant and intriguing area.

Beyond its specific goals as a text and an information source, the book
has a more general mission. Computer science seems to be destined for a
permanent identity crisis. This holds particularly for the sub-field called
“Systems” —the part of computer science that deals with the design
and construction of computing environments, encompassing computer
architecture, operating systems, compilers, programming languages and
program-building methods. The Systems area is the center of computer
science, the most specifically “computer-science-ish” part of the field,
and there is an ongoing struggle over its basic character.

A large number of distinguished researchers seem to feel that, if this
field is ever going to find itself, the only place to look is in the mathe-
matics department. The study of programming languages in particular
is imagined in some quarters to be reducible to the study of implemen-
tation techniques on the one hand and to the formal or mathematical
description of language semantics on the other. Both topics, despite the
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obvious importance of implementation and the potential significance of
formal semantics, beg the fundamental questions:

e What do programming languages look like, and what should they
look like?

e Why do they offer the tools and constructs they do, what kind of
programming styles do they suggest, what do they tell us about
some particular vision of software structure?

e What light do they shed on the basic, unanswered question in
Systems—what is a program anyway?

Before students worry about topics like formal semantics, they should be
quite clear about what they are studying the semantics of. They should
aim to understand the language design field in all its richness and depth,
resisting the narrow outlook that is sometimes imposed in the interests
of formal tractability. And they should keep in mind that programming
languages are synthetic creations, and that language design is properly
an engineering study.

We stress this last point on behalf of a larger, more important, often-
neglected consideration: engineering exists at the interface between sci-
ence and art. Aesthetic issues, the design judgments that are captured
in a programming language and underlie some vision of the shape and
form of software machinery, are just as important to this field as the
theorems that define computation. The beauty and power of the best
programming languages are one facet of a larger topic, having to do
with the sweep and intellectual depth of engineering in general. Unfor-
tunately, this broader, topic is simply not on the menu at the typical
fast food-for-thought joint that passes as a modern university (and is
even less likely to be served at the trendiest bistros)--which very likely
contributes to computer science’s difficulties in defining itself.

The book’s structure is heterogeneous. The chapters vary greatly
in length and will (obviously) require varying amounts of time to get
through. The three Classical ‘Languages (Fortran, Algol 60 and Lisp)
are grouped together in one long chapter, in order to accommodate some
historical background and some exercises relating to all three, and in
deference to the fact that together they underlie most subsequent work
in the field. The Pascal chapter has a prologue dealing with Algol 68
and PL/I; the Simula 67 chapter has a postlude that deals with spec-
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ification, abstract types and Ada. Through the Pascal chapter, each
language is treated essentially as a whole. Thereafter we assume that
enough groundwork has been laid to justify our focusing mainly on spe-
cific language features—the class in Simula, the package in Ada and so
on. We follgw, in a sense, the development of a single “plot” from the
Classical Languages through Scheme; the plot has to do with the rise
and fall of a virtual structure called the Algol Wall. (Of course there
are a large number of other themes under development at the same
time.) The final two language chapters, on Declarative and Parallel
languages, each represent a digression of sorts after the main story has
drawn to its slightly bittersweet conclusion. Two special-purpose ap-
pendices, following the Pascal and the Declarative Languages chapters,
attempt to place programming language design in a broader intellectual
context. Two appendices, following the second chapter, give a summary
of and formal semantics for the “ideal software machine” model; they’re
included mainly for reference use and may be skipped without loss of
continuity.

Acknowledgments. The first author thanks the Linda group at Yale,
particularly Nick Carriero and Jerry Leichter. I'm grateful to Jerry es-
pecially for introducing me to the remarkable work of Billington. I have
the distinct impression that, although this book deals only glancingly
with the main topic of our collaboration, it could never have been writ-
ten without Nick’s contributions. The Computer Science Department at
Yale was a stimulating place to work. It’s an honor to acknowledge that
extensive and wide-ranging conversations with Alan Perlis contributed
a great deal to my own understanding of programming languages. Mar-
tin Schultz turned the Department into a place where our work could
thrive, and I'm grateful to him for his support. The heart of the ideal
software machine model, and the view of language design that underlies
the book, goes back to my thesis work at Stony Brook, and to conver-
sations there with teachers and fellow students. Of course I thank my
parents, The Sibs and above all my wife—to whom the author hereby
gives notice that, several years of work on this book being now finally
complete, it may conceivably be possible for him to resume mowing the
lawn occasionally.
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design of the ideal software machine model were developed. The propo-
sition that this model could serve as a viable basis upon which to unify
superficially diverse concepts in programming languages formed the cen-
terpiece of my doctoral research. Although I am indebted to all my col-
leagues and friends at MIT for the stimulating: environmentgthey helped
to create, I especially would like to thank Rishiyur Nikhil and Bert Hal-
stead for their significant contributions to my understanding of program-
ming languages and systems. I thank David Gelernter for his invitation
to collaborate with him on the writing of this book, and the Computer
Science department at Yale University for providing the superb resources
that allowed us to undertake this endeavor. Most importantly, my con-
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