Martin Steffen
Gianluigi Zavattaro (Eds.)

Formal Methods
for Open Object-Based
Distributed Systems

7th IFIP WG 6.1 International Conference, FMOODS 2005
Athens, Greece, June 2005
i Proceedings

LNCS 3535

]]
D oo

@ Springer

“Martin Steffen Gianluigi Zavattaro (Eds.)

Formal Methods
for Open Object-Based
Distributed Systems

7th IFIP WG 6.1 International Conference, FMOODS 2005
Athens, Greece, June 15-17, 2005
Proceedings

E200501604

@ Springer

Volume Editors

Martin Steffen

Christian-Albrechts-Universitit zu Kiel

Institut fiir Informatik und Praktische Mathematik
Hermann-Rodewald-Str. 3, 24118 Kiel, Germany
E-mail: ms @informatik.uni-kiel.de

Gianluigi Zavattaro

Dipartimento di Scienze dell’ Informazione
Universita degli Studi di Bologna

Mura A. Zamboni, 7, 40127 Bologna, Italy
E-mail: zavattar @cs.unibo.it

Library of Congress Control Number: 2005926702

CR Subject Classification (1998): C.2.4, D.1.3,D.2, D.3,F3,D4

ISSN 0302-9743
ISBN-10 3-540-26181-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-26181-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© IFIP International Federation for Information Processing, Hofstrasse 3, A-2361 Laxenburg, Austria 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11494881 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3535

Lecture Notes in Computer Science

For information about Vols. 1-3424

please contact your bookseller or Springer

Vol. 3535: M. Steffen, G. Zavattaro (Eds.), Formal Meth-
ods for Open Object-Based Distributed Systems. X, 323
pages. 2005.

Vol. 3532: A. G6mez-Pérez, J. Euzenat (Eds.), The Se-
mantic Web: Research and Applications. XV, 728 pages.
2005.

Vol. 3526: S.B. Cooper, B. Lowe, L. Torenvliet (Eds.),
New Computational Paradigms. XVII, 574 pages. 2005.

Vol. 3525: A.E. Abdallah, C.B. Jones, J.W. Sanders (Eds.),
Communicating Sequential Processes. XIV, 321 pages.
2005.

Vol. 3524: R. Bartdk, M. Milano (Eds.), Integration of
Al and OR Techniques in Constraint Programming for
Combinatorial Problems. XI, 320 pages. 2005.

Vol. 3523: J.S. Marques, N.P. de la Blanca, P. Pina (Eds.),
Pattern Recognition and Image Analysis, Part II. XX VI,
733 pages. 2005.

Vol. 3522: J.S. Marques, N.P. de la Blanca, P. Pina (Eds.),
. Pattern Recognition and Image Analysis, Part I. XX VI,
703 pages. 2005.

Vol. 3520: O. Pastor, J. Falcdo e Cunha (Eds.), Advanced
Information Systems Engineering. X VI, 584 pages. 2005.

Vol. 3518: T.B. Ho, D. Cheung, H. Li (Eds.), Advances in
Knowledge Discovery and Data Mining. XXI, 864 pages.
2005. (Subseries LNAI).

Vol. 3517: H.S. Baird, D.P. Lopresti (Eds.), Human Inter-
active Proofs. IX, 143 pages. 2005.

Vol. 3516: V.S. Sunderam, G.D. van Albada, PM.A. Sloot,
J.J. Dongarra (Eds.), Computational Science —ICCS 2005,
Part III. LXIII, 1143 pages. 2005.

< Vol.3515: V.S. Sunderam, G.D. van Albada, PM.A. Sloot,
J.J. Dongarra (Eds.), Computational Science —ICCS 2005,
Part II. LXIII, 1101 pages. 2005.

Vol. 3514: V.S. Sunderam, G.D. van Albada, PM.A. Sloot,
J.J. Dongarra (Eds.), Computational Science —ICCS 2005,
Part I. LXIII, 1089 pages. 2005.

Vol. 3513: A. Montoyo, R. Mu\"noz, E. Métais (Eds.),
Natural Language Processing and Information Systems.
XII, 408 pages. 2005.

Vol. 3510: T. Braun, G. Carle, Y. Koucheryavy, V. Tsaous-
sidis (Eds.), Wired/Wireless Internet Communications.
XIV, 366 pages. 2005.

Vol. 3509: M. Jiinger, V. Kaibel (Eds.), Integer Program-
ming and Combinatorial Optimization. XI, 484 pages.
2005.

Vol. 3508: P. Bresciani, P. Giorgini, B. Henderson-Sellers,
G. Low, M. Winikoff (Eds.), Agent-Oriented Information
Systems IL. X, 227 pages. 2005. (Subseries LNAI).

Vol. 3507: F. Crestani, I. Ruthven (Eds.), Information Con-
text: Nature, Impact, and Role. XIII, 253 pages. 2005.

Vol. 3505: V. Gorodetsky, J. Liu, V. A. Skormin (Eds.), Au-
tonomous Intelligent Systems: Agents and Data Mining.
XIII, 303 pages. 2005. (Subseries LNAI).

Vol. 3503: S.E. Nikoletseas (Ed.), Experimental and Effi-
cient Algorithms. XV, 624 pages. 2005.

Vol. 3502: F. Khendek, R. Dssouli (Eds.), Testing of Com-
municating Systems. X, 381 pages. 2005.

Vol. 3501: B. Kégl, G. Lapalme (Eds.), Advances in Artifi-
cial Intelligence. XV, 458 pages. 2005. (Subseries LNAI).

Vol. 3500: S. Miyano, J. Mesirov, S. Kasif, S. Istrail, P.
Pevzner, M. Waterman (Eds.), Research in Computational
Molecular Biology. XVII, 632 pages. 2005. (Subseries
LNBI).

Vol. 3499: A. Pelc, M. Raynal (Eds.), Structural Informa-
tion and Communication Complexity. X, 323 pages. 2005.

Vol. 3498: J. Wang, X. Liao, Z. Yi (Eds.), Advances in
Neural Networks — ISNN 2005, Part III. L, 1077 pages.
2005.

Vol. 3497: J. Wang, X. Liao, Z. Yi (Eds.), Advances in
Neural Networks — ISNN 2005, Part II. L, 947 pages.
2005.

Vol. 3496: J. Wang, X. Liao, Z. Yi (Eds.), Advances in
Neural Networks — ISNN 2005, Part II. L, 1055 pages.
2005.

Vol. 3495: P. Kantor, G. Muresan, F. Roberts, D.D. Zeng,
F.-Y. Wang, H. Chen, R.C. Merkle (Eds.), Intelligence and
Security Informatics. XVIII, 674 pages. 2005.

Vol. 3494: R. Cramer (Ed.), Advances in Cryptology —
EUROCRYPT 2005. XIV, 576 pages. 2005.

Vol. 3493: N. Fuhr, M. Lalmas, S. Malik, Z. Szlavik (Eds.),
Advances in XML Information Retrieval. XI, 438 pages.
2005.

Vol. 3492: P. Blache, E. Stabler, J. Busquets, R. Moot
(Eds.), Logical Aspects of Computational Linguistics. X,
363 pages. 2005. (Subseries LNAI).

Vol. 3489: G.T. Heineman, I. Crnkovic, H.W. Schmidt,
J.A. Stafford, C. Szyperski, K. Wallnau (Eds.),
Component-Based Software Engineering. XI, 358 pages.
2005.

Vol. 3488: M.-S. Hacid, N.V. Murray, Z.W. Ras, S.
Tsumoto (Eds.), Foundations of Intelligent Systems. XIII,
700 pages. 2005. (Subseries LNAI).

Vol. 3486: T. Helleseth, D. Sarwate, H.-Y. Song, K. Yang
(Eds.), Sequences and Their Applications - SETA 2004.
XII, 451 pages. 2005.

Vol. 3483: O. Gervasi, M.L. Gavrilova, V. Kumar, A. La-
gana, H.P. Lee, Y. Mun, D. Taniar, C.J.K. Tan (Eds.), Com-
putational Science and Its Applications — ICCSA 2005,
Part IV. XXVII, 1362 pages. 2005.

Vol. 3482: O. Gervasi, M.L. Gavrilova, V. Kumar, A. La-
gana, H.P. Lee, Y. Mun, D. Taniar, C.J.K. Tan (Eds.), Com-
putational Science and Its Applications — ICCSA 2005,
Part I1I. LXVI, 1340 pages. 2005.

«Vol. 3481: O. Gervasi, M.L. Gavrilova, V. Kumar, A. La-
gand, H.P. Lee, Y. Mun, D. Tapiar, C.J.K. Tan (Eds.), Com-
putational Science and Its Applications — ICCSA 2005,
Part II. LXIV, 1316 pages. 2005.

* Vol. 3480: O. Gervasi, M.L. Gavrilova, V. Kumar, A. La-
gana, H.P. Lee, Y. Mun, D. Taniar, C.J.K. Tan (Eds.), Com-
putational Science and Its Applications — ICCSA 2005,
Part 1. LXYV, 1234 pages. 2005.

Vol. 3479: T. Strang, C. Linnhoff-Popien (Eds.), Location-
and Context-Awareness. XII, 378 pages. 2005.

“Vol. 3478: C. Jermann, A. Neumaier, D. Sam (Eds.),
Global Optimization and Constraint Satisfaction. XIII,
193 pages. 2005.

Vol. 3477: P. Herrmann, V. Issarny, S. Shiu (Eds.), Trust
Management. XII, 426 pages. 2005.

Vol. 3475: N. Guelfi (Ed.), Rapid Integration of Software
Engineering Techniques. X, 145 pages. 2005.

Vol. 3468: H.W. Gellersen, R. Want, A. Schmidt (Eds.),
Pervasive Computing. XIII, 347 pages. 2005.

Vol. 3467: J. Giesl (Ed.), Term Rewriting and Applica-
tions. XIII, 517 pages. 2005.

Vol. 3465: M. Bernardo, A. Bogliolo (Eds.), Formal Meth-
ods for Mobile Computing. VII, 271 pages. 2005.

. Vol. 3464: S.A. Brueckner, G.D.M. Serugendo, A. Kara-
georgos, R. Nagpal (Eds.), Engineering Self-Organising
Systems. XIII, 299 pages. 2005. (Subseries LNAI).

Vol. 3463: M. Dal Cin, M. Kaaniche, A. Pataricza (Eds.),
Dependable Computing - EDCC 2005. XVI, 472 pages.
2005.

Vol. 3462: R. Boutaba, K.C. Almeroth, R. Puigjaner, S.
Shen, J.P. Black (Eds.), NETWORKING 2005. XXX,
1483 pages. 2005.

Vol. 3461: P. Urzyczyn (Ed.), Typed Lambda Calculi and
" Applications. XI, 433 pages. 2005.

Vol. 3460: O. Babaoglu, M. Jelasity, A. Montresor, C. Fet-

. zer, S. Leonardi, A. van Moorsel, M. van Steen (Eds.),
Self-star Properties in Complex Information Systems. IX,
447 pages. 2005.

Vol. 3459: R. Kimmel, N.A. Sochen, J. Weickert (Eds.),
Scale Space and PDE Methods in Computer Vision. XI,
634 pages. 2005.

Vol. 3458: P. Herrero, M.S. Pérez, V. Robles (Eds.), Scien-
tific Applications of Grid Computing. X, 208 pages. 2005.

Vol. 3456: H. Rust, Operational Semantics for Timed Sys-
tems. XII, 223 pages. 2005.

Vol. 3455: H. Treharne, S. King, M. Henson, S. Schneider
(Eds.), ZB 2005: Formal Specification and Development
in Z and B. XV, 493 pages. 2005.

Vol. 3454: J.-M. Jacquet, G.P. Picco (Eds.), Coordination
Models and Languages. X, 299 pages. 2005.

Vol. 3453: L. Zhou, B.C. Ooi, X. Meng (Eds.), Database
Systems for Advanced Applications. XXVII, 929 pages.
2005.

Vol. 3452: F. Baader, A. Voronkov (Eds.), Logic for Pro-
gramming, Artificial Intelligence, and Reasoning. XI, 562
pages. 2005. (Subseries LNAI).

Vol. 3450: D. Hutter, M. Ullmann (Eds.), Security in Per-
vasive Computing. XI, 239 pages. 2005.

Vol. 3449: F. Rothlauf, J. Branke, S. Cagnoni, D.W. Corne,
R. Drechsler, Y. Jin, P. Machado, E. Marchiori, J. Romero,
G.D. Smith, G. Squillero (Eds.), Applications of Evolu-
tionary Computing. XX, 631 pages. 2005.

Vol. 3448: G.R. Raidl, J. Gottlieb (Eds.), Evolutionary
Computation in Combinatorial Optimization. X1, 271
pages. 2005.

Vol. 3447: M. Keijzer, A. Tettamanzi, P. Collet, J.v.
Hemert, M. Tomassini (Eds.), Genetic Programming.
XII1, 382 pages. 2005.

Vol. 3444: M. Sagiv (Ed.), Programming Languages and
Systems. XIII, 439 pages. 2005.

Vol. 3443: R. Bodik (Ed.), Compiler Construction. XI, 305
pages. 2005.

Vol. 3442: M. Cerioli (Ed.), Fundamental Approaches to
Software Engineering. XIII, 373 pages. 2005.

Vol. 3441: V. Sassone (Ed.), Foundations of Software Sci-
ence and Computational Structures. XVIII, 521 pages.
2005.

Vol. 3440: N. Halbwachs, L.D. Zuck (Eds.), Tools and

Algorithms for the Construction and Analysis of Systems.
XVII, 588 pages. 2005.

Vol. 3439: R.H. Deng, F. Bao, H. Pang, J. Zhou (Eds.),
Information Security Practice and Experience. XII, 424
pages. 2005.

Vol. 3438: H. Christiansen, P.R. Skadhauge, J. Villadsen
(Eds.), Constraint Solving and Language Processing. VIII,
205 pages. 2005. (Subseries LNAI).

Vol. 3437: T. Gschwind, C. Mascolo (Eds.), Software En-
gineering and Middleware. X, 245 pages. 2005.

Vol. 3436: B. Bouyssounouse, J. Sifakis (Eds.), Embedded
Systems Design. XV, 492 pages. 2005.

Vol. 3434: L. Brun, M. Vento (Eds.), Graph-Based Repre-
sentations in Pattern Recognition. XII, 384 pages. 2005.

Vol. 3433: S. Bhalla (Ed.), Databases in Networked Infor-
mation Systems. VII, 319 pages. 2005.

Vol. 3432: M. Beigl, P. Lukowicz (Eds.), Systems Aspects
in Organic and Pervasive Computing * ARCS 2005. X,
265 pages. 2005.

Vol. 3431: C. Dovrolis (Ed.), Passive and Active Network
Measurement. XI1, 374 pages. 2005.

Vol. 3430: S. Tsumoto, T. Yamaguchi, M. Numao, H. Mo-
toda (Eds.), Active Mining. XII, 349 pages. 2005. (Sub-
series LNAI).

Vol. 3429: E. Andres, G. Damiand, P. Lienhardt (Eds.),
Discrete Geometry for Computer Imagery. X, 428 pages.
2005.

Vol. 3428:Y.-J. Kwon, A. Bouju, C. Claramunt (Eds.), Web
and Wireless Geographical Information Systems. XII, 255
pages. 2005.

Vol. 3427: G. Kotsis, O. Spaniol (Eds.), Wireless Systems

and Mobility in Next Generation Internet. VIII, 249 pages.
2005.

JbH- D

Preface

This volume contains the proceedings of FMOODS 2005, the 7th IFIP WG 6.1
International Conference on Formal Methods for Open Object-Based Distributed
Systems. The conference was held in Athens, Greece on June 15-17, 2005. The
event was the seventh meeting of this conference series, which is held roughly ev-
ery year and a half, with the earlier events held respectively in Paris, Canterbury,
Florence, Stanford, Twente, and Paris.

The goal of the FMOODS series of conferences is to bring together researchers
whose work encompasses three important and related fields:

— formal methods;
— distributed systems;
— object-based technology.

Such a convergence is representative of recent advances in the field of distributed
systems, and provides links between several scientific and technological commu-
nities, as represented by the conferences FORTE, CONCUR, and ECOOP.

The objective of FMOODS is to provide an integrated forum for the presen-
tation of research in the above-mentioned fields, and the exchange of ideas and
experiences in the topics concerned with the formal methods support for open
object-based distributed systems. For the call for papers, aspects of interest in-
cluded, but were not limited to: formal models; formal techniques for specifica-
tion, design, or analysis; verification, testing, and validation; component-based
design; formal aspects of service-oriented computing; semantics and type sys-
tems for programming, coordination, or modelling languages; behavioral typing;
multiple viewpoint modelling and consistency between different models; trans-
formations of models; integration of quality-of-service requirements into formal
models; formal models for security; formal approaches to distributed component
frameworks; and applications and experience, carefully described. Work on these
aspects of (official and de facto) standard notation and languages for service ori-
ented design, e.g. web services orchestration languages, was explicitly welcome.

In total 49 abstracts and 42 papers were submitted to this year’s conference,
covering the full range of topics listed above. Out of the submissions, 19 research
papers were selected by the Program Committee for presentation. We would like
to express our deepest appreciation to the authors of all submitted papers and to
the Program Committee members and external reviewers who did an outstanding
job in selecting the best papers for presentation.

For the second time, the FMOODS conference was held as a joint event, this
time.in federation with the 5th IFIP WG 6.1 International Conference on Dis-
tributed Applications and Interoperable Systems (DAIS 2005). The co-location of
the FMOODS and DAIS conferences provided an excellent opportunity to the
participants for a wide and comprehensive exchange of ideas within the domain
of distributed systems and applications. Both FMOODS and DAIS address this

VI Preface

domain, the former with its emphasis on formal approaches the latter on practi-
cal solutions. Their combination in a single event ensured that both theoretical
foundations and practical issues were presented and discussed.

Special thanks to Lazaros Merakos, for acting as the General Chair of the
joint conferences DAIS and FMOODS 2005; his support made this event happen.
We would also like to thank Gordon Blair, Rocco de Nicola, and Andreas Reuter
for agreeing to present invited talks at the conference.

We thank Costas Polychronopoulos, for acting as Local Arrangements Chair,
and John Derrick for his work as Publicity Chair. We would also like to thank
the FMOODS Steering Committee (John Derrick, Roberto Gorrieri, Guy Leduc,
and Elie Najm) for their advice. Thanks also to Roberto Lucchi for his valuable
help in managing the submission server.

June 2005 Martin Steffen
Gianluigi Zavattaro

Organization

General Chair Lazaros Merakos (University of Athens, Greece)
Program Chairs Martin Steffen (University of Kiel, Germany)
Gianluigi Zavattaro (University of Bologna, Italy)
Local Arrangements Costas Polychronopoulos
(University of Athens, Greece)
Publicity Chair John Derrick (University of Kent, UK)

Steering Committee

John Derrick
Roberto Gorrieri
Guy Leduc

Elie Najm

Program Committee

Wil van der Aalst (Netherlands)
Lynne Blair (UK)

Frank van Breugel (Canada)
Michele Bugliesi (Italy)

John Derrick (UK)

Sophia Drossopoulou (UK)
Alessandro Fantechi (Italy)
Kokichi Futatsugi (Japan)
Andy Gordon (UK)

Roberto Gorrieri (Italy)

Jan Jiirjens (Germany)

Cosimo Laneve (Italy)

Luigi Logrippo (Canada)

Elie Najm (France)

Uwe Nestmann (Switzerland)
Ernesto Pimentel (Spain)

Erik Poll (Netherlands)
Andreas Prinz (Norway)

Arend Rensink (Netherlands)
Bernhard Rumpe (Germany)
Martin Steffen (Germany)
Perdita Stevens (UK)

Carolyn Talcott (USA)

Vasco Thudichum Vasconcelos (Portugal)
Nalini Venkatasubramanian (USA)
Heike Wehrheim (Germany)
Gianluigi Zavattaro (Italy)

VIII Organization

Referees

Kamel Adi
Andreas Bauer
Johannes Borgstrom
Alex Buckley

Luis Caires

Ugo Dal Lago
Ferruccio Damiani
Grit Denker

Susan Eisenbach
Harald Fecher
Rachele Fuzzati
Borislav Gajanovic
Vladimir Gapeyev
Simon Gay

Sebastian Gutierrez-Nolasco

William Heaven
Marcel Kyas

Roberto Lucchi
Francisco Martins
Franco Mazzanti
Masaki Nakamura
Kazuhiro Ogata
Martijn Oostdijk
Liviu Pene

G. Michele Pinna
Andreas Schifer
Takahiro Seino
Peter Sewell
Matthew Smith
Christoph Sprenger
Emilio Tuosto
Bjorn Victor
Martijn Warnier
Lucian Wischik

Table of Contents

Invited Talk

Pattern Matching over a Dynamic Network of Tuple Spaces 1
Rocco De Nicola, Daniele Gorla, and Rosario Pugliese

Models and Calculi

A Dynamic Class Construct for Asynchronous Concurrent Objects 15
FEinar Broch Johnsen, Olaf Owe, and Isabelle Simplot-Ryl

An Abstract Machine for the Kell Calculus.............. 31

Philippe Bidinger, Alan Schmitt, and Jean-Bernard Stefani

XPi: A Typed Process Calculus for XML Messaging 47
Lucia Acciai and Michele Boreale

UML

Checking the Validity of Scenarios in UML Models 67

Holger Rasch and Heike Wehrheim

An Extended Type System
for OCL Supporting Templates and Transformations 83
Marcel Kyas

A Semantics for UML-RT Active Classes via Mapping into Circus........ 99
Rodrigo Ramos, Augusto Sampaio, and Alexandre Mota

Security

Towards an Integrated Formal Analysis for Security and Trust 115

Fabio Martinells

A Formal Security Analysis of an OSA/Parlay Authentication Interface ... 131
Ricardo Corin, Gaetano Di Caprio, Sandro Etalle,
Stefania Gnesi, Gabriele Lenzini, and Corrado Moiso

Composition and Verification

Tracing Integration Analysis in Component-Based Formal Specifications .. 147
Martin Lopez-Nores, José J. Pazos-Arias, Jorge Garcia-Duque,
Belén Barragdns-Martinez, Rebeca P. Diaz-Redondo,
Ana Ferndndez-Vilas, Alberto Gil-Solla, and Manuel Ramos-Cabrer

X Table of Contents

CompAr: Ensuring Safe Around Advice Composition 163
Renaud Pawlak, Laurence Duchien, and Lionel Seinturier

Guaranteeing Resource Bounds for Component Software 179
Hoang Truong

Analysis of Java Programs

Specification and Verification of Encapsulation in Java Programs. 195
Andreas Roth

Detecting Errors in Multithreaded Programs
by Generalized Predictive Analysis of Executions 211
Koushik Sen, Grigore Rosu, and Gul Agha

Web Services

Transforming Information in RDF to Rewriting Logic 227
Alberto Verdejo, Narciso Marti-Oliet, Tomds Robles,
Joaquin Salvachia, Luis Llana, and Margarita Bradley

Modeling- and Analysis Techniques
for Web Services and Business Processesoooo. ... 243
Wolfgang Reisig

A Distributed Implementation of Mobile Nets as Mobile Agents.......... 259
Nadia Busi and Luca Padovani

Specification and Verification

On Correctness of Dynamic Protocol Update 275
Pawet T. Wojciechowski and Olivier Riitti

Property-Driven Development of a Coordination Model
for Distributed Simulations........................ 290
Rolf Hennicker and Matthias Ludwig

A Timing Analysis of AODVooiuinin 306
Stbusisiwe Chiyangwa and Marta Kwiatkowska

Author Index 323

Pattern Matching over a Dynamic Network
of Tuple Spaces

Rocco De Nicola!, Daniele Gorla>*, and Rosario Pugliese!

! Dipartimento di Sistemi e Informatica, Universita di Firenze
{denicola,pugliese}@dsi.unifi.it
2 Dipartimento di Informatica, Universita di Roma “La Sapienza”
gorla@di.uniromal.it

Abstract. In this paper, we present recent work carried on uKvraiM, a core cal-
culus that retains most of the features of Kram: explicit process distribution,
remote operations, process mobility and asynchronous communication via dis-
tributed tuple spaces. Communication in #Kram is based on a simple form of
pattern matching that enables withdrawal from shared data spaces of matching
tuples and binds the matched variables within the continuation process. Pattern
matching is orthogonal to the underlying computational paradigm of zKram, but
affects its expressive power. After presenting the basic pattern matching mech-
anism, inherited from Kram, we discuss a number of variants that are easy to
implement and test, by means of simple examples, the expressive power of the
resulting variants of the language.

1 Introduction

In the last decade, programming computational infrastructures available globally for
offering uniform services has become one of the main issues in Computer Science. The
challenges come from the necessity of dealing at once with issues like communication,
co-operation, mobility, resource usage, security, privacy, failures, etc. in a setting where
demands and guarantees can be very different for the many different components. KLam
(Kernel Language for Agents Interaction and Mobility, [5]) is a tentative response to
the call for innovative theories, computational paradigms, linguistic mechanisms and
implementation techniques for the design, realization, deployment and management of
global computational environments and their application.

Kramv is an experimental language specifically designed to program distributed sys-
tems made up of several mobile components interacting through multiple distributed tu-
ple spaces. Its communication model builds over, and extends, LINpA’s notion of gener-
ative communication through a shared tuple space [11]. The Linpa model was originally
proposed for parallel programming on isolated machines; multiple, possibly distributed,
tuple spaces have been advocated later [12] to improve modularity, scalability and per-
formance, and fit well in a global computing scenario.

* Most of the work presented in this paper was carried on while the second author was a PhD
student at the University of Florence.

M. Steffen and G. Zavattaro (Eds.): FMOODS 2005, LNCS 3535, pp. 1-14, 2005.
© IFIP International Federation for Information Processing 2005

2 Rocco De Nicola, Daniele Gorla, and Rosario Pugliese

Table 1. uKramv Syntax

NETS COMPONENTS

N 2= 0| 1:C| NN, | ODN Cu=®|P|alc
TuPLES TEMPLATES

! = u I t, T o= u I I'x | T, T,
ACTIONS

a u= in(M)@u | read(T)@u | out(n@u | eval(P)@u | new(l)
PROCESSES

P ou=mil [aP | PP, | xP

Kram has proved to be suitable for programming a wide range of distributed appli-
cations with agents and code mobility [5, 6] and it has originated an actual programmin g
language, X-Kram [1], that has been implemented by exploiting Java [2].

The main drawback of Kram is that it is not an actual programming language, nor
a process calculus. The main aim of some our recent works (grouped together in [13])
has been the definition of a process calculus derived from KrLamv that retains all its
distinctive features and expressive power, and develop over it the type theoretic and
semantical foundations of the language. The resulting calculus has been called xKram
and, in [8], we have proved that it can reasonably encode Kram.

In this paper, we first describe uKram (Section 2). Then, in Section 3, we present
some recent enhancements of the basic formalism to deal with some low-level features,
namely inter-node connections and failures. In Section 4, we argue on alternative forms
of pattern matching for retrieving tuples. So far, Kramv and its variants have used Linpa’s
original pattern matching, because of its simplicity. Nevertheless, other variants could
be adopted without compromising language implementability, actually enhancing the
overall expressive power. A novel contribution of this paper is the informal examination
of this topic. Section 5 concludes the paper.

2 The Calculus yKram

2.1 Syntax

The syntax of uKram is reported in Table 1. A countable set Lof namesL,V',.. . u,...,
X,Y,...1s assumed. Names provide the abstract counterpart of the set of communicable
objects and can be used as localities and variables: we do not distinguish between these
kinds of objects. Notationally, we preferletters [, /, . .. when we want to stress the use of
aname as a locality and x, y, ... when we want to stress the use of a name as a variable.
We will use u for basic variables and localities.

Nets are finite collections of nodes where processes and tuple spaces can be allo-
cated. A node is a pair [:: C, where locality / is the address of the node and C is the
parallel component located at 1. Components can be processes or (located) tuples. Lo-
cated tuples, (t), are inactive components representing tuples in a tuple space (TS, for

Pattern Matching over a Dynamic Network of Tuple Spaces 3

Table 2. The Pattern Matching Function

match(l;1) = € match(Ty; 1) = o1 match(Ty; 1) = 02

match(\x; 1) = [Ux] match(T\, Ta; t1, 1) = 01002

short) that have been inserted either in the initial configuration or along a computation
by executing an action out. The TS located at [results from the parallel composition
of all located tuples residing at /. In (v[)N, name [is private to N; the intended effect is
that, if one considers the term N || (v[)N,, then locality [of N cannot be referred from
within V.

Tuples are sequences of names. Templates are patterns used to select tuples in a TS.
They are seéquences of names and formal fields; the latter ones are written ! x and are
used to bind variables to names.

Processes are the uKLAM active computational units. They are built up from the in-
ert process nil and from five basic operations, called actions, by using action prefixing,
parallel composition and replication. The informal semantics of process actions is as
follows. Action in(T)@u looks for a matching tuple (z) in the TS located at u; intu-
itively, a template matches against a tuple if both have the same number of fields and
corresponding fields match, i.e. they are the same name, or one is a formal while the
other one is a name. If (¢) is found, it is removed from the TS, the formal fields of T are
replaced in the continuation process with the corresponding names of ¢ and the opera-
tion terminates. If no matching tuple is found, the operation is suspended until one is
available. Action read(T)@u is similar but it leaves the selected tuple in u’s TS. Action
out(r) @u adds the tuple 7 to the TS located at u. Action eval(P)@u sends process P for
execution at u. Action new(l) creates a new node in the net at the reserved address l.
Notice that new is the only action not indexed with an address because it always acts
locally; all the other actions explicitly indicate the (possibly remote) locality where they
will take place.

Names occurring in terms can be bound by action prefixes or by restriction. More
precisely, in processes in(T)@u.P and read(7)@u.P the prefixes bind the names in
the formal fields of T within P; in process new(l).P, the prefix binds [in P; in (v))N,
the restriction binds [in N. A name that is not bound is called free. The sets bn()
and fn(-) (of bound and free names, resp., of term -) are defined accordingly, and so
is alpha-conversion. In the sequel, we shall assume that bound names in terms are all
distinct and different from the free ones (by possibly applying alpha-conversion, this
requirement can always be satisfied).

2.2 Operational Semantics

uKramv operational semantics is given in terms of a structural congruence and a reduc-
tion relation. The structural congruence, =, identifies nets which intuitively represent
the same net. It is inspired to 7m-calculus’ structural congruence (see, €.g., [16]) and
states that ‘||’ is a monoidal operator with 0 as identity, that nil is the identity for |’, that
alpha-equivalent nets do coincide, and that the order of restrictions in a net is irrelevant.

4 Rocco De Nicola, Daniele Gorla, and Rosario Pugliese

Table 3. uKram Reduction Relation

(R-Ovur) (R-NEw)

Lzout()@U.P|| I :mil — [P I () l::new(l').P — (VI')(I :: P I :: mil)
(R-REs)

(R-EvAL) N — N

L eval(Pz)@l’.P, ” Uomil — [P, ” i P, (VI)N —_ (VI)N’

(R-IN) (R-PaRr)
match(T;t) = o N, — N;
Lain(T)@U.P| I ::{t) —> [:: Po ||l :: mil Ni || N2 +— Ny || N
(R-READ) (R-StrRUCT)
match(T;t)=0' N = N1 N] — N2 N2 = N’
l:read(T)@U.P|| I ::(t) V> [:: Po ||l :: (1) N — N’

Moreover, the following laws are crucial to our setting:
(CLONE) [2ClCy =1 C||1:Cy
(REPL) l::xP = [P|xP
(RepNIL) [z #nil = [:: nil
(Ex) Ni |l (WDN2 = (VN1 || N2) - if L ¢ fn(Ny)

Law (CLonE) turns a parallel between co-located components into a parallel between
nodes (by relying on this law, commutativity and associativity of ‘|’ follows). Law
(Repr) unfolds a replicated process; however, when the replicated process is nil, the
unfolding is useless (see rule (RePNIL)). Finally, law (Exr) is the standard 7-calculus’
rule for scope extension; it states that the scope of a restricted name can be extended,
provided that no free name is captured.

The reduction relation is given in Table 3. It relies on the pattern matching function
match(_; _) that verifies the compliance of a tuple w.r.t. a template and associates values
to variables bound in the template. Intuitively, a tuple matches a template if they have
the same number of fields, and corresponding fields match. Formally, function match is
defined in Table 2 where we let ‘e’ be the empty substitution and ‘o’ denote substitutions
composition. Here, a substitution o~ is a mapping of names for names; Po- denotes the
(capture avoiding) application of o to P.

The operational rules of uKramm can be briefly motivated as follows. Rule (R-Our)
states that execution of an output sends the tuple argument of the action to the tar-
get node. However, this is possible only if the target node does exist in the net. Rule
(R-Evav) is similar, but deals with process spawning. Rules (R-IN) and (R-REeap) re-
quire existence of a matching datum in the target node. The tuple is then used to replace
the free occurrences of the variables bound by the template in the continuation of the
process performing the actions. With action in the matched datum is consumed while

Pattern Matching over a Dynamic Network of Tuple Spaces S

with action read it is not. Rule (R-NEw) states that action new(/’) creates a new node at
a reserved address /. Rules (R-Par), (R-REs) and (R-Strucr) are standard.

uKram adopts a Linoa-like [11] communication mechanism: data are anonymous
and associatively accessed via pattern matching, and communication is asynchronous.
Indeed, even if there exist action prefixes for placing data to (possibly remote) nodes, no
synchronization takes place between (sending and receiving) processes, because their
interactions are mediated by nodes, that act as data repositories.

2.3 Observational Semantics

We now present a preorder on uKiam nets yielding sensible semantic theories. We
follow the approach put forward in [10] and use may testing equivalence. Intuitively, two
nets are may testing equivalent if they cannot be distinguished by any external observer
taking note of the data offered by the observed net. More precisely, an observer O is a
net containing a node whose address is a reserved locality name test. A computation

reports success if, along its execution, a datum at node test appears; this is written

OK
———

Definition 1 (May Testing Equivalence). May testing, C, is the least equivalence on

0K

uKLAM nets such that, for every N © M, it holds that N || O = if and only if
OK

M || O =, for any observer O.

The problem underneath the definition of may testing we have just presented is the
universal quantification over observers. This makes it hard to prove equivalences in
practice. In [13], we have developed an alternative characterisations of =~ as a trace-
based equivalence and a co-inductive proof technique as a bisimulation-based equiva-
lence. However, these definitions have been omitted from this paper: here, it sufficies to
have a sensible notion of equivalence to equate nets.

3 Node Connections and Failures

In this section we present two enhancements of the basic framework presented so far.
Such enhancements allow us to better model some global computing phenomena.

3.1 Modelling Connections

In [7], we developed the behavioural theory of a language derived from uKram by
introducing explicit inter-node connections and process actions to dynamically change
them. The syntax of the resulting calculus, that is called TKram (fopological KLam),
can be obtained by adding the following productions to those in Table 1:

N == ... | {li — L} a u= I conn(u) | disc(u)

A connection (or link) is a pair of node addresses {/; — I} stating that the nodes at
addresses /; and /, are directly linked. Actions conn(l,) and disc(l;) aim at changing

