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Preface

With their introduction in 1995, Support Vector Machines (SVMs) marked the
beginning of a new era in the learning from examples paradigm. Rooted in the
Statistical Learning Theory developed by Vladimir Vapnik at AT&T, SVMs
quickly gained attention from the pattern recognition community due to a num-
ber of theoretical and computational merits. These include, for example, the
simple geometrical interpretation of the margin, uniqueness of the solution, sta-
tistical robustness of the loss function, modularity of the kernel function, and
overfit control through the choice of a single regularization parameter.

Like all really good and far reaching ideas, SVMs raised a number of in-
teresting problems for both theoreticians and practitioners. New approaches to
Statistical Learning Theory are under development and new and more efficient
methods for computing SVM with a large number of examples are being studied.
Being interested in the development of trainable systems ourselves, we decided
to organize an international workshop as a satellite event of the 16th Interna-
tional Conference on Pattern Recognition emphasizing the practical impact and
relevance of SVMs for pattern recognition.

By March 2002, a total of 57 full papers had been submitted from 21 coun-
tries. To ensure the high quality of workshop and proceedings, the program com-
mittee selected and accepted 30 of them after a thorough review process. Of these
papers 16 were presented in 4 oral sessions and 14 in a poster session. The papers
span a variety of topics in pattern recognition with SVMs from computational
theories to their implementations. In addition to these excellent presentations,
there were two invited papers by Sayan Mukherjee, MIT and Yoshua Bengio,
University of Montreal.

SVM 2002 was organized by the Center for Artificial Vision Research at Korea
University and by the Department of Computer and Information Science at
the University of Genova. We wish to thank all the members of the Program
Committee and the additional reviewers who managed to review the papers in
a very short time. We are also grateful to Sang-Woong Lee for developing and
maintaining the wonderful web-based paper submission/review system. Finally
we thank our sponsors, the Center for Biological and Computational Learning
at MIT, the Brain Science Research Center at KAIST, the Statistical Research
Center for Complex Systems at Seoul National University, and WatchVision,
Inc. for their support.

We hope that all presenters and attendees had an enjoyable SVM 2002. There
will have been ample time for discussion inside and outside the workshop hall
and plenty of opportunity to make new acquaintances. Last but not least, we
would like to express our gratitude to all the contributors, reviewers, program
committee members, and sponsors, without whom the workshop would not have
been possible.

May 2002 Seong-Whan Lee
Alessandro Verri
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Predicting Signal Peptides
with Support Vector Machines

Neelanjan Mukherjee!'? and Sayan Mukherjee!?

1 Center for Biological and Computational Learning
Massachusetts Institute of Technology, 45 Carleton St., Cambridge, MA 02139
nmukher jQucsd.edu
sayan@mit.edu
2 Uinversity of California San Diego, Dept. of Biology
3 Center for Genome Research, Whitehead Institute
Massachusetts Institute of Technology

Abstract. We examine using a Support Vector Machine to predict se-
cretory signal peptides. We predict signal peptides for both prokaryotic
and eukaryotic signal organisms. Signalling peptides versus non-signaling
peptides as well as cleavage sites were predicted from a sequence of amino
acids. Two types of kernels (each corresponding to different metrics) were
used: hamming distance, a distance based upon the percent accepted mu-
tation (PAM) score trained on the same signal peptide data.

1 Introduction

For both prokaryotic and eukaryotic cells, proteins are transported from their
cite of synthesis to other cites either inside or outside the cell. A basic step in the
transportation process is to mark proteins for translocation across membranes:
e.g. cell membrane, outer membrane, and endoplasmic recticulum (ER). The
protein destination depends on the sequence of amino acids located at the n-
terminus of the nascent protein chain bound to the ribosome. This sequence or
targeting signal is called a signal peptide (SP).

Discriminating a signal peptide from a non-signal peptide or finding the lo-
cation of the cleavage site between the two is of practical importance because
of the need to find more effective vehicles for protein production in recombinant
systems. It is thought that cells recognize signal peptides with almost 100%
selectivity and specificity [1]. Signal peptides do have particular characteristics
that are consistent for eukaryotic and prokaryotic cells. One characteristic is that
signal peptides can typically be separated into three regions. Other characteris-
tics relate to the frequency of occurrence of particular amino acids at particular
locations along the sequence. However, because the signal peptides do not have
unique consensus sequences these biological characterizations do not provide an
accurate enough classification rule.

Pattern recognition algorithms maybe appropriate for this problem since
there exists a large set of examples from which to infer a set of rules which

S.-W. Lee and A. Verri (Eds.): SVM 2002, LNCS 2388, pp. 1-7, 2002.
© Springer-Verlag Berlin Heidelberg 2002



2 Neelanjan Mukherjee and Sayan Mukherjee

discriminate between two patterns, either signal peptides vs. non-signal pep-
tides or cleavage site vs. non-cleavage site. In the past neural networks, Hidden
Markov Models (HMMs), and neural networks coupled with HMMs [2,1,3] were
used for the discrimination. In the paper we explore using SVMs for the discrim-
ination. The reasons for using an SVM are as follows: for a variety of problems
SVMs have performed very well [4], unlike a neural network the SVM might
give some interesting biological feedback upon examining the protein sequences
of the margin SVs (the examples that determine the discrimination boundary),
and an HMM can be embedded in an SVM (5] avoiding ad hoc algorithms used
to couple the neural networks and HMMs.

The paper is organized as follows. Section 2 gives some background about
what is known about signal peptides for prokaryotes and eukaryotes and de-
scribes the data. Section 3 introduces SVMs and the two types of kernels or dis-
tance metrics used. Section 4 describes the results of our prediction algorithms
and compares them to other studies.

2 Signal Peptide Properties and Datasets

In this section we summarize some characteristics of signal peptides for eukary-
otic and prokaryotic cells and the datasets used. In both types of cells the signal
sequence can be separated into three regions: a positively charged n-region fol-
lowed by a hydrophobic h-region and a neutral but polar c-region. The (-3, —1)
rule states that the residues at position —3 and —1, relative to the cleavage site,
must be small and neutral for cleavage to occur. We will look at both eukaryotic
and prokaryotic cells.

The dataset was the same as that used by [1] which was taken from SWISS-
PROT version 29 [6]. The dataset consisted of Gram-positive and Gram-negative
bacteria as examples of prokaryotic cells. For eukaryotic cells we looked at the
entire dataset as well as the human subset of the eukaryotic data.

The sequence of the signal peptide and the first 30 amino acids of the mature
protein from the secretory protein were used to construct positive examples. The
first 70 amino acids of each cytoplasmic and for eukaryotes also nuclear proteins
were used to construct negative examples of signal peptides.

The actual positive and negative samples were constructed by running a
moving window of a particular size (21 amino acids in the case of eukaryotic
cells and 17 amino acids in the case of prokaryotic cells). Each amino acid was
encoded as a real number between 1 — 20.

Table (1) states how many signal peptides and non-secretory proteins were
used in the various datasets. Table (2) states how many positive (signal peptide)
and negative samples (non-secretory proteins) this translates into after process-
ing using the running window.
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Table 1. Datasets used and number of sequences in datasets

Source Signal peptides|Non-secretory proteins
Human (416 251

Eukaryote|1011 820

E. Coli 105 119

Gram- 266 186

Gram+ 141 64

Table 2. The effective number of positive and negative examples after processing

Source Signal peptides|Non-secretory proteins
Human 6293 10793
Eukaryote|14755 43460

Gram- 4541 9858

Gram+ |3380 3392

3 Support Vector Machine Overview and Kernels Used

We are given £ examples (x1,91),-. ., (Xe, ye), with x; € R™ and y; € {—1,1} for
all 2. The problem of learning a function that will generalize well on new exam-
ples is ill-posed. The classical approach to restoring well-posedness to learning is
regularization theory [9]. This leads to the following regularized learning prob-
lem:

1
min 7 2_) V(yi, () + NI F [ (1)

Here, ||f||% is the norm in a Reproducing Kernel Hilbert Space H defined by
a positive definite kernel function K, V' is a loss function indicating the penalty
we pay for guessing f(x;) when the true value is y, and X is a regularization
parameter quantifying our willingness to trade off accuracy of classification for
a function with small norm in the RKHS H.

The classical SVM arises by considering the specific loss function

V(f(x)7 y) = (1 - yf(x))+v (2)
where
(k)+ = max(k,0). (3)
So the problem becomes:
min § i &+ A1l 4)
subject to: y;f(x;)>1-& i=1,...,¢ (5)

& >0 i=1,...,L (6)
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Under quite general conditions it can be shown that the solution f* to the
above regularization problem has the form

¢
frx) =) aK(xx). (7)
i=1
This can be written as the following dual program:
£ R
max Y i —a Qo (8)
subject to: Y _, yic; =0 9)

0<au<C i=1,...,8 (10)

where C = 21W Here, @ is the matrix defined by the relationship

Q =YKY < Qi; = viy; K (i, z;). (11)

A geometric interpretation the RKHS norm

4
”f“%( = Z yiyjaiajK(x1 Xi),

i,7=1

is the margin M where M = 1/2||f||%. For the case where the data can be
perfectly separated (Figure 1) illustrates how minimizing the norm maximizes
the margin.

(@) (b)

Fig.1. Two hyperplanes with different margin. Intuitively, the large margin
hyperplane (b) seems likely to perform better on future examples than the much
smaller margin hyperplane (a)
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We will use two types of kernels. One based upon Hamming distances and one
based upon a similarity matrix, the Percent Accepted Mutation (PAM) Matrix.
The input vectors x; are not in R™ but are in the discrete space {1, sey 20} The
following kernels based upon Hamming distances were used

K (xi,%;5) = h(xi,%;) (12)
K (xi,%;) = (h(xi,%5) +1)%, (13)

where h(x;,x;) is a count of how many elements in each position of the two
sequences are identical.

The PAM matrix can be thought of as the probability that one amino acid
replaces another so the similarity between two amino acids acids for example

Leucine (L) and Serine (S)
K(L,S) = MLs = P(Leucine is replaced by Serine).

We used the PAM250 matrix [7]. Note that this is not a valid kernel and also
not a distance metric. However, we used this kernel anyway.

4 Results

We compare our classification results for the various datasets to results reported
in [1,3] using neural networks, NNs, and Hidden Markov Models, HMMs. The
results reported are 5 fold cross validation results (see tables (3 and (4). The des-
ignations SVM?!, SVM?, and SVM? correspond to SVMs trained with the linear
hamming distance, polynomial hamming distance and linear PAM250 matrix
kernels. For most of the datasets the SVM results are at least as accurate as
those of neural networks and HMMs. For the general eukaryotic our results are
no better than that of the HMM, this is probably do to the fact that this is a
large dataset and any reasonable algorithm will perform accurately. A cleavage
site prediction defined as correct if the cleavage site falls anywhere in the sliding
window. One interesting observation is that SVM?3 which is not using a valid
kernel performs very well.

Table 3. Classification accuracy for SVMs, NNs, and HMMs for signal peptide
versus non-secretory proteins

Algorithm|Eukaryotic|Human|Gram+|Gram-(E. coli
NN 97% 9%6% |96% [88% |89%
HMM 94% - 9%6% [93% |-
SVM' 96% 9%6% [97% [94% [91%
SVM* 97% 97% |97% [94% [91%
SVM*® 98% 9% |97% [95% [92%
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Table 4. Classification accuracy for SVMs, NNs, and HMMs for predicting
cleavage sites

Algorithm|Eukaryotic|Human|Gram+|Gram-|E. coli
NN 70% 68% [68% |79% [84%
HMM 70% - 65% 81% |-
SVM'  |73% 69% [82% [80% [83%
SVM? 75% 2% (84% |719% |[84%

5 Conclusions and Future Work

We are able to predict cleavage sites and also discriminate signal peptides from
non-secretory peptides using a SVM classifiers. Our results at least as accurate
as those using HMMs and NNs on the same task. It would be interesting to
examine the support vectors selected in the training phase and analyze them
as prototype signaling peptides and look at their statistical structure. It would
also be of interest to apply a feature selection algorithm [8] to select which
features/positions in the sequence are most relevant in making the above dis-
criminations. Studying the above might yield some interesting biology. It would
also be of interest to embed the HMMs used in these classification tasks into an
SVM using the Fisher kernel [5]. An interesting note is that the kernel based
upon the PAM250 matrix performed well even though it is not a valid kernel.
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Scaling Large Learning Problems with Hard
Parallel Mixtures
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CP 592, rue du Simplon 4, 1920 Martigny, Switzerland
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Abstract. A challenge for statistical learning is to deal with large data
sets, e.g. in data mining. Popular learning algorithms such as Support
Vector Machines have training time at least gquadratic in the number of
examples: they are hopeless to solve problems with a million examples.
We propose a “hard parallelizable mixture” methodology which yields
significantly reduced training time through modularization and paral-
lelization: the training data is iteratively partitioned by a “gater” model
in such a way that it becomes easy to learn an “expert” model separately
in each region of the partition. A probabilistic extension and the use of
a set of generative models allows representing the gater so that all pieces
of the model are locally trained. For SVMs, time complexity appears
empirically to locally grow linearly with the number of examples, while
generalization performance can be enhanced. For the probabilistic ver-
sion of the algorithm, the iterative algorithm provably goes down in a
cost function that is an upper bound on the negative log-likelihood.

1 Introduction

As organizations collect more and more data, the interest in extracting use-
ful information from these data sets with data mining algorithms is pushing
much research effort toward the challenges that these data sets bring to sta-
tistical learning methods. One of these challenges is the sheer size of the data
sets: many learning algorithms require training time that grows too fast with
respect to the number of training examples. This is for example the case with
Support Vector Machines [11] (SVM) and Gaussian processes [12], both being
non-parametric learning methods that can be applied to classification, regres-
sion, and conditional probability estimation. Both require O(7®) training time
(for T examples) in the worst case or with a poor implementation. Empirical
computation time measurements on state-of-the-art SVM implementations show
that training time grows much closer to O(7?) than O(T3) [2]. It has also been

* Part of this work has been done while Ronan Collobert was at IDIAP, CP 592, rue
du Simplon 4, 1920 Martigny, Switzerland.
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