

SOFTWARE
ENGINEERING
AND MANAGEMENT

KENNETH D. SHERE

Avtec Systems, Inc.

PRENTICE HALL, Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging-in-Publication Data

SHeErk. KENNETH D, (date)
Software engineering and management.
Bibliography.
Includes index.
1. Computer software—Development. 2. Software
maintenance. [Title.
QA76.76.D47549 1988 005 87-3578
ISBN 0-13-822081-6

Editorial/production supervision

and interior design: Joan McCulley
Manufacturing buyer: Gordon Osbourne and Paula Benevento
Cover design: Karen Stephens

© 1988 by Prentice Hall
A Division of Simon & Schuster, Inc.
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be reproduced,
in any form or by any means,
without permission in writing from the publisher.

The Publisher offers discounts on this book when ordered in bulk
quantities. For more information write:

Special Sales/College Marketing

Prentice-Hall

College Technical and Reference Division

Englewood Cliffs, New Jersey 07632

The author and publisher of this book have used their best efforts in preparing
this book. These efforts include the development, research, and testing of the
theories and programs to determine their effectiveness. The author and
publisher make no warranty of any kind, expressed or implied, with regard to
these programs or the documentation contained in this book. The author and
publisher shall not be liable in any event for incidental or consequential
damages in connection with, or arising out of, the furnishing, performance, or
use of these programs.

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

ISBN 0-13-8220681-k B25

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S. A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Prentice Hall Advanced Reference Series

Computer Science

DuBES AND JAIN Algorithms for Clustering Data
SHERE Software Engineering and Management

Engineering

FERRY, AKERS, AND GREENEICH Ultra Large Scale Integrated
Microelectronics

JOHNSON Lectures on Adaptive Parameter Estimation

MiLuTiNovIic Microprocessor System Design GaAs Technology

WALRAND Introduction to Queueing Networks

Science

BINKLEY The Pineal: Endocrine and Nonendocrine Function

Carozzi Carbonate Depositional Systems

EiseN Mathematical Methods for Biology, Bioengineering,
and Medicine

FrASErR Event Stratigraphy

WARREN Evaporite Sedimentology

Preface

This book is intended for the computer professional who needs to gain a system-level
perspective of software development. This person may have a B.S. degree in computer
science, work experience in a special area (such as data bases or operating systems), or
responsibility for managing software-related products. The approach taken is very prag-
matic.

There are a few unique features of this book. These include a new concept for a
software development and maintenance environment and a new method for applying the
concepts of expert systems to conventional data bases. Most importantly, this book offers
guidance not generally included as part of on-the-job training or in university curricula.

After reading and studying this book, technical staff will have a better understand-
ing of how their technical tasks fit into the larger scheme of software development and
maintenance. Managers and task leaders will be better able to control their software proj-
ects. Insights into technical and management risk, cost estimation, the utilization of a
system’s legacy, and other aspects of the development process are provided.

The first seven chapters are intended to provide an understanding of the system de-
velopment life cycle. After studying these seven chapters, you should be able to think at
the system level. On the surface, this seems simple, but it isn’t. If you have been working
in the details of one (or a few) specific areas, it is very difficult to suddenly be able to step
back and view the entire system. Planning the activities needed to develop or integrate an
entire system is not an obvious process.

Recent college graduates may know a great deal about languages and may have built
compilers in a class, but performing a requirements analysis, estimating costs, and deter-
mining risks are beyond the information presented in undergraduate curricula. A substan-
tial amount of time is wasted because even experienced professionals frequently do not

Xi

Xii Preface

know what they are expected to produce. When you understand the life cycle, you also
have a reasonable understanding of what products need to be produced and when they
need to be produced. This understanding helps to eliminate floundering time at the begin-
ning of many tasks

Chapter 8 is a case study. It serves as an introduction to the structured design tech-
niques and data-basc design, the subjects of Chapters 9 and 10, respectively. Because of
the system-level ori¢ntation of this book, techniques related to quality assurance (which
includes configuration management and testing), capacity planning, and reliability are
discussed in Chapters 11 and 12. Having devoted most of this book to processes associa-
ted with software development, a case study of a systems engineering and integration job
is presented in Chapter 13.

This sudden change in orientation emphasizes that:

* The project management procedures discussed in this book apply to all systems
jobs.

» Taking existing software into account is becoming standard operating procedures; in
the years to come, this case study will become the typical way of building systems.

* Once you have begun thinking at the system level, you really are a systems (or soft-
ware) engineer.

Most of the chapters (and many of the sections) of this book could easily be ex-
panded into an entire book. Consequently, it has been necessary to blend an overview of
the topic with some depth. I have tried to make this biend appropriate by using practical
examples of how the techniques are applied.

This book is suitable for use as a reference in a training course on software engineer-
ing. A syllabus for a very fast moving three-day training course could cover most of the
material in Chapters 1, 3 to 9, 13, and 14. The target audience for this type of training
course is directors of software, project managers, task leaders, and software users and
developers.

This book is also suitable for use as a textbook for graduate courses on either soft-
ware project management or software engineering. The manuscript for this book was used
to teach software engineering to graduate students at George Mason University. We gen-
crally covered one chapter per week. It was usually impossible to lecture on all the infor-
mation in a chapter in one week. This approach required the students to read each chapter
in advance of the lecture. The lecture then covered the highlights of the chapter and an-
swered students’ questions. This approach is suitable for a class of good engineers who
are generally at the level of a Ph.D. candidate. Most of the students worked full time and
had their own experience on which to draw.

In the case of a software project management course, the pace would have to be
slower. Significant portions of the manuscript for this book were used in a course with that
title at the University of Maryland. The recommended chapters would be the same as the
chapters covered in the training course described previously, plus Chapter 2. The pace
would be slower than the pace for the software engineering course, and the instructor
should cover the chapters more thoroughly. In this case, the instructor needs to emphasize

Preface xiii

the management aspects of these chapters. I would recommend that the instructor of a
project management course digress from this book occasionally to discuss problems in-
volved with managing people.

Exercises are scattered throughout this book. They are designed to evoke thought.
The reader should work the exercises as he or she comes to them. Sometimes the exercises
do not have a unique answer. By skipping the exercises and reading my answer, the reader
may deprive himself or herself of the chance for independent thinking. Some of the exer-
cises may take an excessive amount of time to answer completely. I suggest that time
limits be imposed by the instructor. For those exercises, the final answer is not what
counts, but rather the class discussions they elicit.

Each instructor is left to his own devices to generate examinations. | have assigned
projects based on Chapter 14 as a final exam. During the semester | give two examina-
tions. For the first one, each student is required to go to the library and find an article that
he or she thinks can be applied. After | approve of the article, the student is required to
write a short paper (and give a 10 minute presentation) that demonstrates understanding
and shows how he or she would apply the concepts at work. For the second examination,
the students are required to write a software development plan for the final project.

Many of the ideas in this book were developed while I was at Planning Research
Corporation (PRC). PRC is one of the largest suppliers of software services to the govern-
ment. At PRC, I helped organize their systems engineering organization and managed one
of its two departments. My group developed and implemented that company’s software
engineering methodology.

We produced their software standards and procedures and a software development
plan that could be tailored to any company project. We also developed and taught a train-
ing course on software engineering. The primary contributors to those ideas were W.
Barrie Wilkinson, Neil McDermott, C. Randy Allen, Charles Shartsis, and J. Kendrick
Williams. Many of the ideas on knowledge data bases (in Chapter 10) were due to Charles
Shartsis.

The encouragement and support of my partners at Avtec Systems, Inc., Ron Hirsch,
Steve Mellman, and Jay Schwartz, are also acknowledged. Most of the material on fault
tolerance in Chapter 12 was taken from a report by Jay Schwartz.

I thank my children, Reenie, Elisa, and Jeremy, for giving up so much of the time
that they should have had with me. Their sacrifice is realized in subtle ways, like Jeremy’s
occasional question, ‘‘Daddy, when will you be finished with your story?’” Most of all, 1
need to thank my wife, Madeline Zoberman Shere. Over two decades ago my research
professor said to me, “*I'm glad you married Maddy. She is good for you.”" I keep finding
more reasons why he was correct.

SOFTWARE
ENGINEERING
AND MANAGEMENT

Contents

Preface

CHAPTER 1 Introduction

1.1

1.2 Is a Formal Methodology Really Applicable to My Project? / 6

1.3

1.4 How Do I Institutionalize a Standardized Approach? / 9

1.5

Do I Need a Formal Software Methodology? / 3
What Is a Complex System? / 7

A Roadmap to This Book / 10

CHAPTER 2 Structured Programming
2.1 Structured Programming Philosophy / 13
2.1.1 Allowable Constructs / 13
2.1.2 Prohibited Constructs / 15
2.1.3 Implementation of Standard Constructs / 15

2.2
2.3
2.4
2.5
2.6
2.7

Software Hierarchy and the Leveling Principle / 22
Top-down versus Bottom-up Programming / 25
Commenting Standards / 27

Software Module Design / 28

Deviations from Programming Standards / 31
Electronic Unit Development Folders / 32

Xi

12

vi

CHAPTER 3 A Life-cycle Approach to Software

Engineering

3.1 What Goals Will This Methodology Help Achieve? / 39
3.2 Software Engineering Life Cycle / 42

3.3 System Design Data Base / 51

3.4 An Ideal Software Support Facility / 55

3.5 Environmental Impact on Maintenance / 60

3.6 Metrics / 63

CHAPTER 4 Risk Management

4.1 How Do You Determine Risk? / 77
4.2 Determining Functional Criticality / 80

CHAPTER 5 Cost Estimation

5.1 Cost of Modifying Existing Code / 86
5.2 Parametric Methods / 94

5.2.1 SLIM / 96
5.2.2 Software Science / 102

5.3 Potential Gains in Productivity / 107

CHAPTER 6 Determining the System Legacy

6.1 Determining Where Automation Pays Off / 111
6.2 Traceability of Current Capabilities / 116

CHAPTER 7 Life-cycle Products

7.1 Planning Documents / 123

7.1.1 System Engineering Management Plan / 125
7.1.2 Software Development Plan / 127

7.1.3 Software Configuration Management Plan / 129
7.1.4 1Software Quality Assurance Plan / 129

7.1.5 Software Maintenance Plan / 131

7.1.6 Software Standards and Procedures / 132

7.1.7 Software Test Plan / 133

Contents

37

75

85

110

122

Contents

7.2 Management Data and Documents / 134
7.3 Software Products / 143

7.3.1 System Planning Phase / 143

1.3.2 Requirements Phase / 144

7.3.3 Design Phase / 152

7.3.4 Code and Checkout Phase / 157

7.3.5 Test, Integration, and Installation / 161

CHAPTER 8 Case Study: Design of a Large,

8.1
8.2
8.3

Complex System

Introduction to Structured Decomposition / 162
Analyzing a Data-flow Diagram / 166
Developing the Logical Data Structure / 172

CHAPTER 9 Overview of Structured Technigques

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

Flow Charts / 176

N2 Charts / 178

Hierarchical-Input-Process-Output Charts / 184
Structured Analysis and Design Technique / 184
DeMarco, Gane and Sanson, Yourdon Approach / 190
Warnier—Orr Approach / 197

Technology for Automated Generation of Systems / 200
Techniques for Real-time Structure Charts / 205

System Requirements Evaluation Method / 208

CHAPTER 10 Data-base Design

10.1

10.2

Data Relationships / 212

10.1.1 Introduction to Data Relationships / 212
10.1.2 Functional Dependencies / 213

10.1.3 Normal Form of the Data Model / 215
10.1.4 Data Models / 218

Data Bases Having Multiple Users / 221

10.2.1 Centralized Data Bases / 221

10.2.2 Distributed Data Bases / 224

vii

162

175

211

viii

10.3 Knowledge Data Base / 228

10.3.1 Introductory Comments on Expert Systems / 228
10.3.2 Representing Relationships / 229

10.3.3 Knowledge Data-base Approach / 233

10.3.4 Using M204 / 236

10.3.5 Data-base and Software Maintenance / 237

CHAPTER 11 Quality Assurance

I1.1 Configuration Management / 241

11.1.1 Bring Software under Control / 242

11.1.2 Forming the Configuration Control Board / 254
11.2 Quality Evaluation / 258
11.3 Checklists for Reviews / 261
11.4 Testing / 263

11.4.1 The Testing Life Cycle / 264
11.4.2 Functional Testing / 266
11.4.3 Acceptance Testing / 268

CHAPTER 12 Some Analytical Techniques

12.1 Capacity Planning / 271
12.2 Reliability / 277
12.3 Fault Tolerance / 281

CHAPTER 13 Case Study: Design of an Office
Automation System

13.1 System Requirements / 290
13.2 Analyses / 292

13.3 Trade-offs / 296

13.4 Architecture / 302

13.5 Management Plans / 308
13.6 Risk Management / 317
13.7 Conclusion / 318

CHAPTER 14 Designing an Integrated Home
Computer: A Challenge to the Reader

Contents

239

270

289

319

Contents

APPENDIX A

APPENDIX B

APPENDIX C

Conceptual Design of Part of the SDDB

Tables for Computing Programming
Time as a Function of Vocabulary

Partial Data Dictionary for Use
in Chapter 8

Bibliography

Index

322

334

341

351

357

CHAPTER 1

INnfroduction

Software engineering is not a single process, instruction manual, or organization. It is the
systematic use of many disciplines, tools, and resources for the practical application of com-
puter hardware. In the 1930s, engineering was defined in Webster’s (1936) as *‘the art and
science of managing engines for practical application.”” If we consider our engines to be
computers, this definition seems especially appropriate to software engineering.

This definition of software engineering is very broad; it includes almost everything
except hardware. As we shall see during the discussion of the system development life
cycle, in Chapter 3, many people consider software engineering to be those activities be-
ginning with the analysis of software requirements. The viewpoint of this book is that
software engineering begins with the system concept definition. Concept definition and
system requirements have frequently been determined by hardware personnel with no in-
put from software personnel. People performing these activities should include both
software-oriented people and hardware-oriented people. They should also include ex-
pected system users. This team is needed to avoid imposing unrealistic performance re-
quirements on either the hardware or the software.

To manage these cngines, we have to consider all aspects of the intended applica-
tion. These aspects include operational concepts, requirements, design, development, and
maintenance. An aspect of managing engines that is generally ignored in the computer
industry is developing criteria for determining when a system is no longer useful. That is,
when should the system be replaced, and how do we retire the existing system?

Usually we consider this aspect of software engineering (and system engincering)
only when developing a plan for transition from the existing system or procedures to the
system we are going to develop. We don’t plan for the death of the new system. Some
people claim that systems don’t die—they evolve. If that is the case, then why is it neces-

2 Chap. 1 Introduction

sary to spend billions of dollars to replace existing systems? In the case of the FAA Air
Traffic Control System, the Government has committed an expenditure in excess of $1
billion dollars during a very tight budget period to redesign the system and to replace the
hardware and software. This project was expected to cover an cight-year period from its
inception in 1983.

This book is not a book on either structured programming or structured analysis.
There are other books devoted to those subjects. Some of those books are cited in the
bibliography. The subject of this book is software engineering. Software enginecring is a
superset of structured programming and structured analysis. For example. structured anal-
ysis techniques exclude from their scope cost analyses, simulations, legacy assessments,
and a host of other analyses necessary for the design and development of a software sys-
tem. This book describes what you need to do to plan, manage, and develop software
systems and discusses some techniques for how to do it. The intent is to provide the rcader
with a system-level view of systems.

The system development life cycle is discussed in detail. Products associated with
cach phase of the life cycle are described. These descriptions are important because know-
ing the phase of the life cycle in which your task occurs and the products of that phase
enables you to determine what you need to produce; your task becomes bounded. You
may still need to determine how you will obtain the products, but you have eliminated the
floundering time—time spent trying to figure out what to do.

In other engineering disciplines, there are handbooks, standards, and professional
engineer examinations. The handbooks help us define our problems and serve as a refer-
ence for how to solve problems. The standards provide professional judgment on proce-
dures. The professional engineer examination is used to certify that engineers are familiar
with these handbooks and standards. Unfortunately, the software engineering discipline is
just emerging. These handbooks, standards. and certification procedures do not yet exist
for our industry, although some progress has been accomplished.

The greatest progress has been in the area of standards. The lead in developing and ¢s-
tablishing standards has been the Department of Defense. There are extensive military
standards related to software development. Many other agencies and many companies use
these standards as the basis for their internal software standards and procedures. There are
computer programmer examinations, but these are generally ignored. There is also a lack of
conviction in the industry that these examinations reflect ability in software engineering.

Some companies have taken it upon themselves to develop their own standards and
to “‘certify’” their engineers by providing training courses. Significant portions of this
book are based on the software methodology developed by and under the direction of the
author for Planning Research Corporation (PRC), one of the largest suppliers of software
services to the government.

In this introduction we discuss the need for a formal approach to software engineer-
ing, the applicability of a formal approach, and the institutionalization of a standard meth-
odology. The reader who is working on small projects, who is a student, or who is not in a
position to change the way his or her company does business should not jump to the con-
clusion that this introduction does not apply. This conclusion would be false. Company

3

Sec. 1.1 Do | Need a Formal Software Methodology? 3

operating committees may pontificate and pronounce policy, but it is the project mana-
gers, task leaders, and people who work for them that implement things.

A formal approach is presented to establish an attitude, a plan of attack, a way of
thinking. That is what software engineering is all about.

1.1 DO I NEED A FORMAL SOFTWARE METHODOLOGY?

Why do we need a formal software engineering methodology? Either we can answer this
question to the satisfaction of line management, key marketing personnel, and the vast
majority of the technical staff, or we do not need a formal methodology.

To line management and marketing, the justification must be in terms of the bottom
line, dollars and cents. For example, at PRC Government Information Systems the need
was recognized by executive management. One of that company’s strategic goals has
been to move from a software company, with considerable work in facilities management
and coding, to a systems engineering and integration company. As one step toward ac-
complishing this goal, a systems engineering group was formed. A primary objective of
this group was to develop and implement a software methodology that would enhance the
company’s vitality and performance.

There was no intent for that group (or this book) to present a new structured tech-
nique. Over a half-dozen different techniques are discussed in subsequent sections. These
arc good enough, there is no need for another. The methodology presented here is a prac-
tical approach for managing, designing, building, and maintaining systems. It is based on
things that are known to work because they have been used. Any structured technique can
be used with this methodology.

Being able to use any structured technique is a requirement of methodologies used
by companies performing software engineering for many clients. Some clients have very
strong opinions about structured techniques. Some company field offices have been using
specific structured techniques for many years; it would be foolish to tell them that they can
no longer use these techniques. If you did, you could be assured that your new method
would not be implemented.

Other companies or organizations are in a position to specify a single structured
approach. Depending on the circumstances, it may also be advantageous to use a very
formal, rigid approach. For example, an organization that runs a large software operation
for a single corporation may insist that all documentation be of a specified format. A
single approach to structured diagrams is important. This is also true of small companies
producing business applications that must be tailored to the customer. Each applications
programmer should use a similar approach to lessen confusion when reading another per-
son’s documentation.

As a first step toward developing a corporate methodology, a generic Software De-
velopment Plan (SDP, pronounced ess dee pee) that would be applicable to all software
development should be produced. An SDP tells us what to do from a variety of perspec-
tives. It includes a description of the development organization and schedule and an ex-

4 Chap. 1 Introduction

planation of the company’s or organization’s software development methodology. By na-
ture, an SDP must be project specific to be completely useful. Thus, the generic SDP
should include instructions for tailoring it to specific projects.

Next a generic Software Standards and Procedures (SSP. pronounced ess ess pee)
should be produced. Sometimes the standards and procedures are included as part of the
software development plan. When this is done, the combined document tends to be thick,
so I recommend that these be written as two different documents. Writing the software
standards and procedures could be done concurrently with the development of the SDP.
Whereas the SDP tells us what to do. the SSP tells us how to do it. At PRC, these two
documents have proved to be extraordinarily useful.

We had no trouble convincing top line and marketing management that our ap-
proach should be implemented. We provided internal consulting and temporary staffing
for projects that had had problems. We delivered top-quality products to the delight of the
client and line management. Applying the methodology paid oft.

For marketing, we wrote the technical approach on proposals and provided easy-to-
read documentation. Our approach won or helped win major contracts (valued in excess
of $10 million each). In large companies working on systems development contracts, it is
important to specify the technical approach in proposals. When the proposed work is won,
the company is obligated to use the approach it espoused. This approach is key to
changing the way a mid-sized or large company does business.

Some details of the implementation approach will be discussed later. The pace at
which the software methodology was adopted throughout the company was only limited
by the availability of personnel for training the staff and by the development of some of
the tools needed to implement the methodology.

The line manager needs to be convinced that using the standardized approach in-
creases the likelihood that his or her projects will be completed on schedule and within
cost. Key marketing managers (who may be the same people as the line managers) have to
be convinced that the formal technique will help sell jobs. These sales may be to other
companies, to the government, or to other organizations within the company. Task
leaders, analysts, designers, and programmers all need to be convinced that it is good for
their carcers.

In the training course on Software Engineering mentioned previously, the trainees
were asked to specify what they thought were the pros and cons of a formal methodology.
Their answers are given in Table [-1.

The primary objections were fears that the client would prefer some other design
technique and that the approach might be too rigid. The latter fear was expressed by some-
one who had just taken a five-day course on a particular structured design approach. When
he left the course, he had fourteen thick notebooks and did not have enough shelf space in
his office to store them.

When they were told that the standardized approach given here could accommodate
all the well-known structured techniques, there was enthusiastic endorsement. The rea-
sons soon became clear. Everybody could speak a common language and could describe

