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ABSTRACT

We study generalized Dyson series and their representation by
generalized Feynman diagrams as well as the closely related topic of
Feynman's time-ordered operational calculus for noncommuting operators.
These perturbation series are obtained by replacing ordinary Lebesgue
measure in the time integration involved in the Feynman-Kac functional by
an arbitrary Lebesgue-Stieltjes measure; we then calculate the Wiener
and Feynman path integrals of the corresponding functional. Our Dyson
series provide a means of carrying out the "disentangling" which is a
crucial element of Feynman's operational calculus. We are also able to
treat far more general functionals than the traditional exponential func-
tional; in fact, the class of functionals dealt with forms a rather large
commutative Banach algebra.

An intriguing aspect of the present theory is that it builds bridges
between several areas of mathematical physics, operator theory and path
integration. Combinatorial considerations permeate all facets of this

work.

1980 Mathematics Subject €lassifieation. Primary 05A99, 28C20,
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0. INTRODUCTION AND PRELIMINARIES

0.1. Introduction.

Let C = C[0,t] denote the space of continuous functions on [0,t] with
values in Ep. In the study of the Feynman-Kac formula and of the Feynman
integral, a particular class of functionals on C[0,t] has been of para-

mount importance:

(0.1) F(y) :=exp { 7/ 8(s,y(s))ds},
(0,t)

where the '"potential" 6 is a complex-valued function on [0,t] ijy. In

this paper, we consider analytic functions f(z) of the functional

(0.2) Fi(y) := s 8(s,y(s))dn(s),
(0,t)

’

where n belongs to M = M(0,t), the space of complex Borel measures on
(0,t) [3, Chap. 4; 42, pp. 19-23]. We calculate the associated Wiener
integral and, after analytic continuation, obtain the corresponding
Feynman integral. In carrying out the Wiener path integral, it is
advantageous to use the unique decomposition of the measure n, n = u + v,
into its continuous part u and its discrete part v [3, p. 12; 42, p. 22].
Thie decomposition, with appropriate care taken with the time-ordering
and the combinatorics involved, leads to a ''generalized Dyson series'.

If f(z) = exp(z) and n = u =: &, where & is ordinary Lebesgue measure

on (0,t), the perturbation series, in ''real time'", is just the classical
Dyson series [8; 45, Chap. 11.f].

The additional flexibility provided by the use of Lebesgue-Stieltjes
measures in this context has many implications, allowing us to broaden
and unify known concepts and to introduce new ones having an interest in
their own right. When n = p is a continuous measure, the generalized
Dyson series has the same formal appearance as in the classical case.
However, even when u is absolutely continuous, very different interpre-

tations are suggested; for example, all the mass could be concentrated

Received by the editors October 10, 1985,



2 G.W. JOHNSON and M.L. LAPIDUS

near a single instant t. Moreover, u could have a nontrivial singular
part.

When n has a nonzero discrete part, the form of the generalized Dyson
series changes markedly and genuinely new phenomena occur. The combi-
natorial structure of the series is much more complicated even when v
is finitely supported. For instance, additional summations appear as
well as powers of the potential 6 evaluated at fixed times. Indeed, some
of the combinatorial complications and nearly all of the analytic
difficulties are found in the simple case n = p + wé_, where 8. is the
Dirac measure at t. Accordingly, we discuss this prototypical example
in detail in Section 1 and elsewhere in the paper and use it as a con-
ceptual aid to the general development.

Another particular case of interest is obtained when n = v is a
purely discrete measure with finite support:

h

(0.3) v= I

wpdT , with 0 < Ty <. <
p=1 P

Th € E.

By considering the exponential functional [i.e., by letting f(z) =
exp(z)] and further specializing, we will see in Example 3.3 that the
series reduces to a single term, the familiar h-th Trotter product.

Now approximating Lebesgue measure & by discrete measures of the form
(0.3) and applying a stability theorem with respect to the measures
(Theorem 4.3), we establish connections with the Trotter product formula
[2,28,40,48;::.]1:

One can also use the stability theorem to see the relationship
between the relatively simple perturbation series corresponding to
continuous n and more complex Dyson series. We make this explicit in
Example 4.2 where 8. is approximated by absolutely continuous measures

whose densities are given by a §-sequence.

Our generalized Dyson series can be represented graphically by
generalized Feynman diagrams. The n-th term of the classical Dyson
series corresponds to a single connected Feynman graph. Here, however,
the n-th term of the generalized Dyson series gives rise to many dis-

connected components, one for each summand. The complex combinatorial

structure of the generalized Dyson series is accurately reflected in the
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generalized Feynman graphs, and the reader may find it helpful, after a
brief look at Section 5, to draw such graphs while following the proofs
and examples in Sections 1-4.

Different situations may lead to generalized Dyson series and Feynman
graphs with diverse combinatorial structures as is illustrated in Section
3 where we present miscellaneous examples. We remark that, up to this
point, we have discussed only cases involving a single measure n and a
single potential 6. However, we can, for example, treat functionals formed
by composing an analytic function of several complex variables with func-
tions of the form (0.2). We mention in particular Example 3.6 which we
use to make explicit some of the ties with Feynman's operational calculus.

Feynman's time-ordered operational calculus, introduced in [11l], is
based on the interesting observation that noncommuting operators A and B
can be'treated as though they commuted; a time index is attached to them
to indicate the order of operation. More specifically, Feynman suggests
writing

BA if 81 < 8y
(0.4) A(sl)B(sz) = AB if Sy < 8y

undefined if 81 = Sy.

One then performs the desired calculations just as if A and B were com-
muting. Eventually one wants to restore the conventional ordering of the
operators; Feynman refers to this as ''disentangling''. He says [11, p.1101:
"The process is not always easy to perform and, in fact, is the central
problem of this operator calculus',

Our generalized Dyson series provide a means of carrying out thig
disentangling process for a rather large class of operators. It is the
use of path integration that enables us to accomplish this. Some possible
relations with path integration were already suggested in Feynman's
paper [11l, p. 108 and Appendices A-C, pp. 124-127] and in the book of
Feynman and Hibbs [12, pp. 355-3561].

We note that we will, for example, be integrating expressions similar
to the left-hand side of (0.4) over a square (0,t) x (0,t), and, when this

is done with respect to measures with nonzero discrete part, one cannot
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ignore the diagonal of the square. We point out that Feynman's convention
(0.4) is suited for Lebesgue measure &, a continuous measure, so that the
diagonal s1 = 8y of the square is a set of measure zero. In this sense,
our theory is broader than parts of Feynman's operational calculus.

We are using the expression '"Feynman's operational calculus'" as though
it has a precise meaning. However, a key problem is to give a precise de-
finition and interpretation of this calculus and to demonstrate how to use
it effectively in particular in carrying out the disentangling process and
in developing a functional calculus. The reader might be interested and
surprised to read Feynman's own comments [1ll, p. 108] on the difficulty of
putting his methods on a rigorous basis and on the need for further mathe-
matical development.

The class of functionals on Wiener space that we are able to treat is
quite large. In fact, under pointwise mulitplication and equipped with a
natural norm, it forms a commutative Banach algebra A consisting of cer-
tain series of products of functionals of the form (0.2). With the help
of the basic results of Section 2, we show in Section 6 that each func-
tional in A possesses operator-valued Wiener and Feynman integrals, en-
larging in the process the class of functionals for which the operator-
valued Feynman integral is known to exist. Further, each of these
operators can be disentangled in the form of a generalized Dyson series.

Related but much smaller Banach algebras of functionals were studied
by Johnson and Skoug in [18 and 191; [19, pp. 121-1231] is especially
relevant. The functionals in [19] are generated by functionals of the
form (0.2) with 6 varying but with n fixed as Lebesgue measure. The
resulting Dyson series are much simpler. The emphasis in [19] was some=-
what different, and, in particular, no attempt was made to relate the
results to Feynman's operational calculus.

Feynman's paper [1l], in conjunction with the present work and that
of Lapidus in [33,34], suggests additional questions which we anticipate
investigating in a subsequent paper that will further develop Feynman's

operational calculus for noncommuting operators.

We mention the works of Nelson [41] and Maslov [36] which are also

related to Feynman's operational calculus. They have little in common,
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and both are very different in spirit from the present paper. In partic-
ular, the connections with path integration as well as the complicated
combinatorics associated with the disentanglement that leads to our gen-
eralized Dyson series do not appear in either of [41] or [36].

It is reasonable to refer to the functional

(0.5) F(x) := exp (( S 6(s,x(s))dn(s))

as the Feynman-Kac functional with Lebesgue-Stieltjes measure n. It is
natural to ask if the corresponding operator, considered as a function of
time, satisfies a differential equation analogous to the heat or Schro-
dinger equations. This is the case, as is shown by Lapidus in [33, 34]
where a "Feynman-Kac formula with a Lebesgue-Stieltjes measure' is
established and related results are given. (See Kac's papers [23; 24,
pp. 62-651 for the classical Feynman-Kac formula.) For an exponential
functional of the type (0.5), for instance, the study conducted in [33,
34] reveals the distinct roles played by the continuous part and the dis-
crete part of n. It also makes explicit connections with the theory of
the product integral ([5].

We now describe briefly the organization of this paper. In the
remainder of the present section, we introduce notation and give two
preliminary lemmas.

In Section 1, we discuss the prototypical example n = u + w6 men-
tioned above; our most detailed analytic proofs are given in this case.

Generalized Dyson series for the full class of fumetionals treated
in this paper are obtained in Section 2. Some readers might wish to con-
sult this section only briefly on a first reading.

Section 3 may be particularly helpful to the reader as it deals with
a variety of concrete examples of perturbation expansions. The emphasis
in Sections 2 and 3 is largely on the combinatorics.

In Section 4, we give theorems insuring stability with respect to the
potentials and with respect to the measures. We also give some applica-
tions of the stability theorems for measures .

We present, in Section 5, a graphical representation of our gen-

eralized Dyson series in terms of generalized Feynman diagrams.
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In Section 6, we show that the general class of functionals treated
in Section 2 forms a commutative Banach algebra, and we discuss the
related functional calculus. We finish with a discussion of some
connections with Feynman's operational calculus.

Possible physical interpretations are provided in various places
throughout the paper.

A great variety of Feynman diagrams and perturbation expansions
appear in the physics literature. We should make it clear that we do
not claim here to be generalizing all of those.

Parts of the present paper were announced in [17].

0.2. Notation and Preliminaries,

In A through I below, we recall some facts and introduce most of the
notation which we will require. With the possible exception of G and I,
we suggest that the reader go over the material quickly and then return
to it if and when it is necessary.

First we mention some general references: For the theory of the
Wiener process and applications of path integration, the reader may wish
to consult [13,14,24,25,46,50]. For semigroup theory, we mention [6,
Chap. 8; 15; 26]; for the theory of the Bochner integral, we refer to the
treatise of Hille and Phillips [15, Chap. III]. Finally, the basic faects
of measure theory used in this paper can be found in [42, §§1.3 and 1.4,

pp. 12-26] and [3,43,49].

4 These denote, respectively, the complex numbers, the

A. C, C+, C
complex numbers with positive real part, and the nonzero complex numbers
with nonnegative real part.

B. LZ(B»N): The space of Borel measurable, C-valued functions v on
N |2

R such that |y is integrable with respect to Lebesgue measure on RN

(8 Lw(RN): The space of Borel measurable, C-valued functions on
R~ which are essentially bounded.

More formally, the elements of LZ(RN) and Lm(RN) are equivalence
classes of functions, with 121 and 123 said to be equivalent if they are

equal almost everywhere (a.e.) with respect to Lebesgue measure.
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D. d(LZ(RN)): The space of bounded linear operators from LZ(RN)
into itself.
The notation || +|| will be used both for the norm of vectors and for

the norm of operators; the meaning will be clear from the context.

E. The semigroup exp(-zHo): We give some facts which we will use

frequently concerning the holomorphic semigroup {exp(-zHO)} generated

N ,2,,.2 2, N zeCy
by the '"free Hamiltonian" HO = -(1/2)Eu=1a /axa in L°(R"). (See [26,
Chap. IX, §1.8, pp. 495-497]1.) We use notation convenient for our pur-
poses. The operators (exp[-s(Ho/A)]: s >0, X ¢ C;} are all in JXLZ(RN))

and satisfy:
(0.6) | [expl-s(Hy/M) 1| < 1.

In fact, when X ¢ C; is purely imaginary, exp[-s(HO/A)] is a unfg?;yll)
operator. As a function of 1, exp[-s(HO/A)], also denoted by e 0
in this paper, is analytic in C, and continuous in the strong operator
topology (or strongly continuous) in C;. (Recall that for operator-
valued (or for vector-valued) functions, all the natural notions of
analyticity coincide. See [15, §3.10, esp. Theorem 3.10.1, p. 93].)

Next, we state a familiar explicit formula for the operator exp[-s(HO/A)].

Given v ¢ LZ(RY),

2
(0.7) (expl-s(Hy/) 1w (8) = (=7 1 wew expr=HElljqu.
N
R

The integral in (0.7) exists as an ordinary Lebesgue integral for

A € Cy, but, when A is purely imaginary and v is not integrable, the
integral should be interpreted in the mean just as in the theory of the
Fourier-Plancherel transform.

As is well known, the (negative) normalized Laplacian HO is the
generator of the Brownian motion on Igﬂ it follows, in particular, that
the semigroup {exp(—sHO)}S >0 is intimately connected with Wiener
measure m defined in I below. (See [13, Chap. 3; 14, Chap. 3; and esp.
46, Chap. II].)

F. M(,t): Let t > 0 be fixed. M(0,t) will denote the space of

complex Borel measures n on the open interval (0,t). For information on
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such spaces of measures, see, for example, [3, Chap. 4]. Given a Borel
subset B of (0,t), the total variation measure |n| is defined by

[n] (B) = sup {£?=1|n(Bj)[}, where the supremum is taken over all finite
partitions of B by Borel sets (see [3, p. 126]). M(0,t) is a Banach

space under the natural operations and the norm
(0.8) In|] := |n](0,t).

A measure p in M(0,t) is said to be continuous if u({t}) = 0 for every =
in (0,t). In contrast, v in M(0,t) is discrete (or is a '"'pure point
measure' in the terminology of Reed and Simon [42]) if and only if there
is an at most countable subset {rp} of (0,t) and a summable sequence

(mp} from C such that

(0.9) v= 12
p=1

)

§
w
P Tp

where GT is the Dirac measure with total mass one concentrated at TP
P
[3, p. 12]. Every measure n ¢ M(0,t) has a unique decomposition,

n=u+ v, into a continuous part p and a discrete part v [42, Theorem
I.13, p. 22]. We will make frequent use of such decompositions.

We work with the space M(0,t) throughout, but M[O,t] could be treated
without any essential complications. However, allowing n to have non-
zero mass at 0 introduces additional alternatives which we have chosen
to avoid.

G. Lw1~n: Let n € M(0,t). A C-valued, Borel measurable function

N

6 on (0,t) x R' 1is said to belong to L1 if

3N

(0.10) ol 5o heds, )l dlnl(s) < + =.

wl;n 1)
Note that if 6 « Lml;n’ then 6(s,-) must be in Lw(RN) for n-a.e. s in
(0,t). If one makes the usual identification of functions which are

equal n x Lebesgue-a.e., the mixed norm space Lwl;n’ equipped with the

norm ”'l|w1~n’ becomes a Banach space. Note that all bounded, every-

where defined, Borel measurable functions on (0,t) x RN are in Lw1~n

for every n in M(0,t).



GENERALIZED DYSON SERIES AND FEYNMAN'S OPERATIONAL CALCULUS 9

The reader will see further on that the norm (0.10) appears in our
estimates in a natural way.

The functions 6 will be interpreted physically as potentials. The
condition that 6 be in Lml;n is rather minimal in most respects. No
smoothness is required, and 6 is allowed to be time-dependent and
C-valued. The use of C-valued functions 6 will enable us, in particular,
to treat the diffusion case (or '"imaginary time'" case) as well as the
quantum mechanical case (or ''real time' case). (See Remark 0.3 below.)
The importance of C-valued potentials in the study of decay systems in
quantum mechanics is discussed thoroughly in the recent book of Exner
[9]. Certainly, the most serious restriction in our assumptions is that
8(s,*) be essentially bounded for n-a.e. s. However, even this condition
seems quite reasonable in light of our goal of obtaining rigorously
justified perturbation series valid in the quantum mechanical case.

If 6 ¢ L and if n = p + v is decomposed into its continuous and

1;n
discrete parts, then it is not difficult to show that 6 « Lml~u n L.,

and
_ |
(0.11) 18] g g = N8 igyq * 181 Ly -

H. The multiplication operators 6(s): We remind the reader that the

operator of multiplication by a function in Lm(RN) belongs to
i(LZ(RN)) and has operator norm equal to the essential supremum of the
function. (See, e.g., [26, Example 2.11, p. 146].) For us, the

L”-functions that arise will be of the form 6(s,+), where 8 ¢ L It

wl:n’
will be convenient to let 6(s) denote the operator of multiplication by

6(s,*), acting in LZ(RN). The operator norm || 6(s)|| then satisfies

(0.12) le¢s)ll = lle¢s, <)l

&

I. The operator-valued function space integrals KA(F), A€ C;:

First, let CO = CO[O,t] be the space of RN -valued continuous functions
x on [0,t] such that x(0) = 0. We consider Co as equipped with N-dimen-
sional Wiener measure m which is just the product of N one-dimensional

Wiener measures [14,46,50]; recall that m is a probability measure on
C0 [50, Chap. 7].
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DEFINITION 0.1. Let F be a function from C[0,t] to C. Given A > O,

Vo€ LZ(RN) and ¢ ¢ rY , we consider the expression

=1/2

(0.13) Ry (P9 (@) = 1 FO x+6) v (07 Zx(e)+e) dm(x) .

0

The operator-valued function space integral KX(F) exists for x» > 0 if

(0.13) defines KA(F) as an element gf_d(Lz(RN)) . If, in addition, KA(FL

s a function of A, has an extension (necessarily unique) to an analytic

function on C, and a strongly continuous function on C;, we say that

KA(F) exists for A e C;. When ) is purely imaginary, KA(F) is called the

(analytic) operator-valued Feynman integral of F.

REMARK 0.1. The function F in Definition 0.1 (often referred to as a
"functional" in the physics literature), need not be everywhere defined;

however, in order to have KX(F) defined for all » > 0, it must be the

-1/2

case that, for every x» > 0, F(x x+£) is defined for m x Lebesgue-a.e.

(x,8) € Cy y

Given another function G on C[0,t], we say that F is equivalent to

-1/2 -1/2

G(F~ G) if, for every » > 0, F(1 x+E) = G(A x+£) for m x Lebesgue-

a.e. (x,E) ¢ Co x RN. [Note that if F ~ G and KA(F) exists for

then KA(G) exists and KA(F) = KA(G) for » ¢ C This equiva-

+) +']
lence, which may appear strange to begin with, is necessitated by the

A e C

pathology of Wiener measure under scale change and the fact that infi-
nitely many scale changes (corresponding to all A > 0) are involved here.

See [20] for a discussion of this and related matters.

Interest in the "Feynman integral" stems from Feynman's 1948 paper
[10] which gave a formula for the evolution of a quantum system in terms
of certain heuristically defined path integrals. Making Feynman's ideas
mathematically rigorous in a useful way has proven difficult. There have
been many approaches taken to this problem; that is, many Feynman in-
tegrals. A good introduction to this topic as well as many further
references can be found in the recent book of Exner [9, esp. Chaps. 5
and 6]. For X purely imaginary, KA(F), as above, provides one way to

make Feynman's definition precise.



