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Preface

Deformation theory has the reputation of being a difficult subject, for which
no good literature is available. The main obstacle to understanding most of
the existing texts is their level of generality. But many of the problems one
has to confront already occur in the well established theories of deforma-
tions of compact complex manifolds (Kodaira—Spencer theory) and of uni-
versal unfoldings of function germs (Thom-Mather theory). When writing
my Habilitationsschrift in Hamburg, of which these notes are an outgrowth,
I decided to start with some introductory chapters on deformation theory.
The warning to prospective authors of popular books on science, that each
mathematical formula will cut down the readership by half, applies mutatis
mutandis to the use of cofibred categories. They seem abstract nonsense, but
in fact versality has its most natural formulation in these terms. There is a
certain discongruity between general theory and practical computations (of
which I have been doing quite a lot during the last years). One point I want to
make, is that both can be understood as the problem of solving a deformation
equation.

Having one’s papers (since 1989) on file tempts one to ‘recycle’ old work.
But I do hope that the slow process of revising, which led to the present text,
has at least removed some of the mistakes.

It is a pleasure to thank all those who contributed in one form or another
to the existence of these notes. Especially I want to thank Kurt Behnke for
the many discussions during our joint time in Hamburg. For conversations,
which among other things helped me shape my ideas, I am grateful to Duco
van Straten, Ragnar Buchweitz, Jan Christophersen, Theo de Jong, Miles
Reid and Jonny Wahl (this is a non-exhaustive list). I thank Oswald Riemen-
schneider and the participants of his ‘Seminar iiber Komplexe Analysis’ in
Hamburg. I thank the former European Singularity Project and its successor
for the environment it created, and its organisers for their efforts. I especially
thank Gert-Martin Greuel, Dirk Siersma, and Terry Wall. Thanks to Klaus
Altman for finding mistakes in the originally submitted Habilitationsschrift.

I could not have computed so many examples without computer use, more
specifically the computer program Macaulay [BS]. Therefore thanks to Dave
Bayer and Mike Stillman, and David Eisenbud for his scripts. I managed to
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enlighten the text with some real pictures thanks to the program surf by
Stephan Endrafl [En].

Goéteborg, August 2002.
Jan Stevens.
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Introduction

t

Deformation theory has its origins in the theory of moduli; ‘[eine Theorie ],
die fiir uns, als wir begannen, lange Zeit mit einem Schleier umhiillt war.
Riemann sagt, dafl bei beliebiger birationaler Transformation des Gebildes
nicht nur die Zahl p ungeéndert bleibt, sondern (fiir p > 1) auch noch 3p —3
Konstanten, die er ,Moduln“ des Gebildes nennt. Diese Moduln sind einfach
die absoluten Invarianten, welche die Normalkurve Cy,_, gegeniiber linearer
Transformationen ihrer homogenen Koordinaten aufweist! ... Es ist doch
die lineare Invariantentheorie, die die Probleme beherrscht, aber nur, wenn
man sie richtig in Ansatz bringt!” [Kle, p. 310]. The situation for Riemann
surfaces is the following: for the topological classification one discrete invari-
ant suffices, the geometric genus p,, but the analytical structure depends
on continuous parameters, called moduli, which one would like to consider
as coordinates on a reasonably nice space, whose points are in one-to-one
correspondence with the isomorphism classes of Riemann surfaces. KLEIN in-
dicates a way to construct the moduli space as orbit space: it is the quotient
of the finite dimensional space parametrising canonically embedded curves
(this almost works; to include the hyperelliptic curves one has to use the tri-
canonical embedding instead). For other classification problems one can try
to do the same.

The fundamental discovery of KODAIRA and SPENCER is that already for
surfaces moduli spaces in general do not exist [KS]. Instead one has to settle
for ‘local moduli’, as it is sometimes called; in the terminology of these notes,
it is the semi-universal deformation of a given object. We start out with a
given surface and deform the analytical structure. Now we want a space which
not only parametrises all isomorphism classes of nearby structures, but also
all germs of continuous families, which contain the given surface as special
element. Such a space exists and the ‘number of moduli’ for the given surface
can be defined as the dimension of its tangent space. Nearby surfaces can
depend on less moduli. This forces the ‘moduli space’ to be non-Hausdorff,
which means that it cannot exist, at least as the reasonably nice space we
wanted. Such exceptional behaviour is the rule in the Thom—Mather theory
of unfoldings of functions (cf. [AGV]). Here finite determinacy allows the
reduction of the classification problem to a finite dimensional one: the Lie
group of k-jets of coordinate transformations acts on k-jets of functions, and
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the semi-universal unfolding of a function is obtained from a transversal slice
to the orbit of its jet under this action. For many deformation problems the
picture is in principle the same (cf. [Bi2]), but one has to work with infinite
dimensional spaces, which lead to enormous analytical problems.

A second source of deformation-like problems in algebraic geometry is
the theory of (linear) systems of curves on surfaces and its generalisations,
see [Mu2]. The Zariski tangent space to the family is H°(C, N¢), where N¢
is the normal bundle, and obstructions lie in H!(C, N¢); the question, if the
family in question is smooth of dimension h%(C, N¢), is classically known as
the problem of the completeness of the characteristic linear system. The func-
torial language to treat such problems has been developed by GROTHENDIECK
(Gro]. He also realised that his formalism is the correct one for deformation
theory in general and that of compact complex manifolds in particular.

The first half of these notes treats the general theory of deformations and
of deformations of singularities in particular. As illustration some quite spe-
cific computations are given. The remaining chapters consider more specific
problems, specially on curves and surfaces.

Deformations of singularities (i.e., germs of analytic spaces) can be de-
scribed in terms of deformations of the local ring, in the sense of [Ge]. The un-
derlying vector space is not changed, but the multiplication map is perturbed.
That the deformed multiplication is again associative is a highly non-trivial
condition. Since the work of SCHLESSINGER (cf. [Art3, Schl2]) and TYURINA
[Ty] we have a direct definition in terms of defining equations, see Chap. 1.
The existence of versal deformations for isolated singularities has been shown
by GRAUERT in a much cited (but not read?) paper [Gra]. Using a power se-
ries Ansatz, computations are possible. This is all what can be said in this
generality; starting with a system of equations (fi(z), ..., fx()), describing
the singularity, one finds a more complicated system (Fi(z,t), ..., Fi(z,t))
(where F;(z,0) = fi(z)), and in general also equations g;(t) between the
deformation parameters.

‘Grauert 16ste die zentralen Probleme der Deformationstheorie mit so
schlagender Gewalt, daf der ganzen Theorie dariiber fast der Atem ausging.’
[Remmert, Laudatio at the presentation of the von Staudt price to Grauert,
see DMV-Mitteilungen 1/93]. The existence of versal deformations should
really be the beginning of the theory. The situation however is that the ex-
istence of a formally versal, formal object is often easy, and the result states
that an analytically versal, analytic object exists. Hard analysis is needed for
the difficult proof, but it sheds no further light on the objects, and in partic-
ular it gives no practical way to compute. We give in Chap. 6 BUCHWEITZ’
example of a smooth affine (elliptic) curve, which is formally rigid, but has
non-trivial analytic deformations. In some sense, this is a trivial example,
and it would be interesting to have a similar example with a deformation
problem ‘in real life’; of course, in a ‘nice world’ it does not exist.
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It is useful to formulate a deformation problem in terms of a more or less
explicit deformation equation; for compact complex manifolds this is achieved
by the integrability condition for almost complex structures, see e.g. [Kul:

09+ §[v,9] = 0.

The most practical way to obtain concrete solutions, is to use a power series
Ansatz. As one wants an answer in finite time, one really looks for polynomial
solutions. The equation can also be used to obtain existence results, say
by using some form of the implicit function theorem. For deformations of
singularities one can get the same type of deformation equation from the
general theory of the cotangent complex. In concrete computations it boils
down to the formalism of lifting relations.

Knowing the existence of versal deformations of singularities we can go on
and ask questions about the structure of the base space (is it reduced, what
is the number of components?), or ask if for some ty the fibre (F(z,to),
..oy Fr(z,tp)) is smooth. In general these question cannot be answered, be-
cause the equations are just one enormous mess. However, for specific, well-
chosen examples things look better; in most cases the distinguishing factor
is some extra symmetry on the equations, which extend through the whole
computation. In hand calculations the symmetry can be used to organise
them; on a machine the symmetry enters mostly indirectly, in that only cer-
tain monomials can occur in an expression, which is therefore smaller and
easier to understand.

A striking example of the importance of visible symmetry, is the contrast
between the ease, with which in Chap. 3 the versal deformation of L} (the
curve, consisting of the coordinate axes in C*) is computed, and long com-
putations in Chap. 11 for the isomorphic curve in determinantal form (only
for n = 4; these computations are a prelude to those for the monomial curve
(t*,¢°,t5,¢7), which is in a natural way determinantal).

It is desirable to have a systematic way to write down equations. For the
famous example of the cone over the rational normal curve of degree four,
there are two determinantal representations, and in fact they lead to the
two components of the base space. More examples are given in Chap. 12 on
formats. Presumably, there is no general statement, and we are spoilt by the
simple examples that are found first.

Explaining smoothing components (of rational surface singularities) is the
goal of KOLLAR’s conjectures [Kol]. Originally it was thought that (if true)
they would give a method to find the smoothing components, but apart from
the case of quotient singularities [KSh], it"seems that one has first the com-
ponents, and then the corresponding P-modifications. The pessimistic view
is that one impossible problem is replaced by another. The interest of the
conjectures is the new understanding, to which they lead. In Chap. 14 I
give a number of examples of non rational singularities with P-modifications,
explaining the components, and extend the conjectures to all surface singu-
larities.



4 Introduction

For curve singularities no interpretation of smoothing components is
known. In this case all smoothing components have the same dimension.
Chap. 13 contains the first example of a curve with several smoothing com-
ponents: it is LY,, 14 lines in general position through the origin in C5. 1
originally performed the calculation to decide whether the singularity was
smoothable at all. The case of LY, was left open in my earlier work on
smoothability of certain cones over points [St1].

Cones over curves form the subject of the last two chapters. Powerful
methods exist to compute T for surface singularities, without using explicit
equations. For cones over curves the bundle of principal parts comes in, and
with it WAHL’s Gaussian map (cf. [Wa6]). The computation of T?(—1) is
the most difficult; much of the work on the Gaussian map is connected with
vanishing results for this case. The most complete results on interesting defor-
mations are obtained by Sonny TENDIAN [Tel]. With a trick, which basically
is contained in [Mu3], one sees that for non hyperelliptic curves, embedded
with a non-special line bundle L, the dimension of 7! (—1) of the cone equals
h%(C, Nk ® L"), where Nk is the normal bundle of C in its canonical em-
bedding. For low genus this gives quite precise information, because then the
normal bundle N is easy to describe.

If S is a surface with C' as hyperplane section, then one can degenerate
S to the projective cone over C, or from another point of view, deform the
projective cone over C to S; PINKHAM calls this construction ‘sweeping out
the cone’ [Pinl]. Surfaces with hyperelliptic hyperplane sections were already
clagsified by CASTELNUOVO, and the supernormal surfaces among them have
degree 4g + 4 [Cas]. They are rational ruled surfaces, and such surfaces come
in two deformation types; therefore there are at least two smoothing compo-
nents. A computer computation of the versal deformation in negative degree
with Macaulay [BS] gave for an example with g = 2 the number of 32 smooth-
ing components. I show that cones over hyperelliptic curves of degree 4g + 4
have 229%! smoothing components (the case g = 3 is exceptional).



1 Deformations of singularities

The definition of a deformation involves the notion of flatness, which accounts
for the difficulties in explaining and understanding it. In the mid sixties
MUMFORD wrote: “The concept of flatness is a riddle that comes out of
algebra, but which is technically the answer to many prayers.”[Mul, p. 295].
Intuitively, in a flat family the fibres depend continuously on the points of
the parametrising base space. We assume that the reader is familiar with flat
morphisms [Ha, II1.9], [Fi, 3.11]; the purpose of this section is to show the
relevance for deformation theory. After some examples we eventually define a
deformation of a space (germ) X as a flat map m: X — S with Xp = 7=1(0).
The term deformation is a convenient way of speaking, which emphasises the
special role of Xy; if we consider the general fibre X, s # 0, as primary
object, we speak of a degeneration, or specialisation.

Example. Consider a quartic curve Cy in P® with a double point. To be
specific, let Cp be the image of the map f: P! — IP? given by

(Zo: 21 :T2:23) = (8] — 53 : 8580 : 8785 : 8185) .

The curve Cj is a complete intersection with equations
2 2 2
Ty — 2123, Iy — ToT2 — T3 .

The double point lies in (1:0:0:0).

By perturbing the map f to f; we obtain in general a smooth rational
quartic curve Cy. To see what happens in a neighbourhood of the double
point, we take local coordinates (z,y, z), and equations y = 0, zz = 0. The
curve germ (Cp,0) is the image of the multigerm f:CUC — C3, given by
f(s1) = (51,0,0) and f(s2) = (0,0, s2). Now consider the map F: (CUC) x
C = C® x C, defined as F(s;,t) = (s1,0,0,t) and F(s2,t) = (0,¢,s2,t). For
t # 0 we have two skew lines in C* x {t}; which can be described by four
equations:

yr =0, 2&=10 , yly—1t) =0, 2(y—1t)=0.

If we put ¢ = 0 in these equations, we do not get the equations y = 0, zz =0
of the image of f, but four equations yr = zz = y? = 2y = 0; they describe



