CONCEPTUAL
PROGRAMMING

(el

.<

Allen Baker
Kathy Hamrick |

CONCEPTUAL
PROGRAMMING
USING BASIC

ALLEN BAKER
KATHY HAMRICK

Augusta College

PRENTICE-HALL, Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging in Publication Data

Baker, Allen,
Conceptual programming using BASIC.

Includes index.

1. Basic (Computer program language) 2. Electronic
digital computers—Programming. 3. Problem solving—Data
processing. I. Hamrick, Kathy. IL. Title. III. Title:
Conceptual programming using B.A.S.I.C.

QA76.73.B3B34 1984 001.64'24 83-9533
ISBN 0-13-166678-9

Editorial/production supervision and

interior design: Service to Publishers, Inc.
Cover design: 20/20 Services Inc. (Mark Berghash)
Manufacturing buyer: Gordon Osbourne

© 1984 by Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book
may be reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-1kbkk78-9

Prentice-Hall International, Inc., London
Prentice-Hall of Australia Pty. Limited, Sydney
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro
Prentice-Hall Canada Inc., Toronto

Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of Southeast Asia Pte. Ltd., Singepore
Whitehall Books Limited, Wellington, New Zealand

CONCEPTUAL
PROGRAMMING
USING BASIC

Dedicated to the memory of
Dr. Jerry Sue Townsend

PREFACE

This text departs from the traditional approach used to teach BASIC.
Its emphasis is on teaching the student a generalized approach to prob-
lem solving with BASIC as an added bonus rather than teaching BASIC
with some problem-solving skills thrown in. We first teach the student
to solve a problem by decomposing it into separately solvable com-
ponents and examining the relationships each component has with the
others. BASIC instructions are introduced after the student has mas-
tered these problem-solving techniques, and even then, they are intro-
duced simply as a means of translating the solution into a language the
computer can understand.

The data flow diagram is the tool for problem decomposition. It
is not a flowchart and should not be viewed as one. It is, rather, a pic-
torial representation of the disjoint components required to solve a
problem and the relationship each component has with the others. Us-
ing this picture as a guide, the student can describe (using a pseudo-
language) the transformations that convert input data flows into the
output data requirement of the problem. The pseudolanguage is me-
chanically translated into BASIC to produce the final BASIC program.

We have observed that students are most comfortable initially with
simple problems that perform a single, nonrepetitive task. Beginning
students appear to think in terms of single-line statement relationships.
As the student gains experience, however, he or she appears to progress
to another level where the thought process involves instruction blocks.
These blocks may contain complex selection or repetitive processes.

xiii

Xiv Preface

Chapters 1 through 7 deal with nonrepetitive problems. Chapter 8 in-
troduces repetition and procedurally related blocks of code. Beginning
with Chapter 8, the student must begin thinking in terms of program
modules and blocks of code. The instructor should provide encourage-
ment during this period.

We have used minimal BASIC throughout the text, not because
we like the standard, but rather because of system compatibility. You
are encouraged, however, to expand the syntax to take advantage of
your particular computer system. Expanded data names, IF/THEN/
ELSE, and CASE statements (if your system supports these) should be
substituted and would provide a welcome improvement.

Acknowledgments

There are many people who have directly or indirectly provided
support to this project. We first wish to thank M. Edward Pettit for his
thorough review of the manuscript and helpful comments. Second, we
wish to thank Beth Bryan and Fred Maynard for their comments and
their help and Bill Bompart for his support. We also wish to thank our
families, Karen, Greg, Richard, and David, and Gayle, Beth, and Ginger,
for putting up with us while we pondered over these words. Finally, we
thank Jerry Sue Townsend, whose encouragement and support made
this project possible.

ALLEN BAKER
KATHY HAMRICK

CONTENTS

Preface xiii
1 DECOMPOSING THE PROBLEM 1
1.1 Problems and the Computer 2
1.2 Problem Decomposition 2
1.3 The Data Flow Diagram 8
1.4 A Final Problem 9
1.5 Exercises 10
2 DATA FLOW REQUIREMENTS 13
2.1 Decomposing the Output Data Flows 13
2.2 Concentrating on the Problem Structure 18
2.3 Problems in the Data Flow Diagram 19
2.4 Exercises 22
3 ARITHMETIC TRANSFORMATIONS 27
3.1 Data Flows and Variables 28

3.2 Numeric and Character Constants 29

vii

viii

Contents

3.3 The Arithmetic Transformations 29
3.4 Describing the Transformations 32
3.5 Summary 34
3.6 Exercises 35
CONDITIONAL TRANSFORMATIONS 36
4.1 Relational Expressions 37

4,1.1 Simple Relational Expressions 37

4.1.2 Compound Relational Expressions 38
4.2 Describing Conditional Transformations 42

4.2.1 The Logical IF Instruction 42

4.2.2 The CASE Instruction 44
4.3 Exercises 47
PROBLEM DYNAMICS 49
5.1 Background 49
5.2 Input and Output Operations 50

5.2.1 Fields and Records 50

5.2.2 READ and WRITE Pseudoinstructions 51

5.2.3 Input and Output in Data Flow Diagrams 52
5.3 Transformation Ordering 54
5.4 A Final Problem 60
5.5 Exercises 62
INTRODUCTION TO BASIC 64
6.1 The BASIC Statement 64
6.2 Variables and Constants in BASIC 65
6.3 The REMARK Statement 66
6.4 Translating the Assignment Instruction 67
6.5 Translating the Logical IF Instruction 68

6.6 Translating the CASE Instruction 72

Contents

6.7 Translating the READ and WRITE Instructions
6.7.1 Translating READ
6.7.2 Translating WRITE
6.7.3 The DATA and READ Statements

6.8 The END Statement

6.9 Exercises

THE COMPLETE PROGRAM
7.1 A Payroll Problem

7.2 A Grading Problem

7.3 A Minimum-Charge Problem

7.4 Exercises

REPETITIVE PROCESSES
8.1 Repetition and the Data Flow Diagram

8.2 Using Repetition

8.2.1 The Pseudolanguage Description of a Repetitive Process

8.2.2 Describing the Repetitive Transformation

8.3 Additional Examples

8.4 Translating the Repetitive Transformation into BASIC

8.5 Exercises

COUNTING, ACCUMULATION, AND SEARCHING
9.1 The Counting Process

9.2 Selective Execution of the Count

9.3 Multiple Counts in the Same Process Block

9.4 The Accumulation Process

9.5 Combining the Count and Accumulation Processes
9.6 The Searching Process

9.7 Combining the Processes

9.8 Exercises

74
74
75
78

78
79

81
82
89
92
97

99
99

100
101
103

104
109
111

112
112
114
115
117
119
122
123
125

10

11

12

13

Contents

REPETITION AND BASIC 127
10.1 Counting, Accumulation, and Searching Translations 127
10.2 BASIC Translation Using the FOR/NEXT Instruction 130
10.3 The Counter Method of Detecting the End of the File 133
10.4 Exercises 136
ARRAYS 138
11.1 The Need for the Set Variable—The Array 138
11.2 The Concept of the Array 139
11.3 Loading the Array 141
11.4 Manipulating Arrays 143
11.4.1 Searching an Array - 143
11.4.2 Counting Values in an Array 144
11.4.3 Searching for the Minimum or Maximum Value
in an Array 145
11.4.4 Accumulating the Elements within an Array 146
11.5 Printing the Elements of an Array 147
11.6 Translating the Array into BASIC 147
11.7 Exercises 151
SORTING 153
12.1 The Sorting Concept 1563
12.2 Sorting Algorithms 154
12.2.1 The Selection Interchange Sort 154
12.2.2 The Adjacent Interchange Sort 157
12.3 Translating the Sort into BASIC 159
12.4 Exercises 161
FUNCTIONS AND SUBROUTINES 162
13.1 Mathematical Functions 162

13.2 User-Defined Functions 164

Contents

13.3 Subroutines

13.4 Exercises

14 STRING PROCESSING
14.1 Review of String Constants and Variables
14.2 String Comparisons
14.3 String Concatenation

14.4 String Functions
14.4.1 The Function VAL
14.4.2 The Function STR$
14.4.3 The Function LEN
14.4.4 The Functions LEFTS$, RIGHTS, and MID$

14.5 Exercises

15 INTERACTIVE PROGRAMS: GAMES AND TUTORIALS
15.1 Main Program Design
15.2 The Guessing-Game Problem
15.3 A Tutorial Program

15.4 Exercises

Appendix 1: PRIMITIVE TRANSFORMATIONS AND TRANSLATIONS
Appendix 2: BASIC INSTRUCTIONS USED IN THIS TEXT

INDEX

xi

166
171

172
172
173
174

174
175
175
175
175

179

180
181
183
186
188

189
200

203

1

DECOMPOSING
THE PROBLEM

If you were asked to examine the computer system shown in Figure 1.1
and to identify the most important component, you would probably
respond, “The computer itself.”” Although the computer is an extremely
important part of any automated system, it is not the most important.
We can identify the important component by removing the computer
from the picture. What remains? The problem to be solved.

I'M A COMPUTER I'M A PROBLEM

[X]
= n(A (A
o [1
l .
~ (A

® o o]
=

Figure 1.1 A COMPUTER SYSTEM

2 Decomposing the Problem Chap. 1

1.1 PROBLEMS AND THE COMPUTER

Not all problems can be solved by a computer. We can calculate utility
bills, evaluate income tax returns, and even regulate the temperature in
office buildings. We cannot, however, evaluate the quality of life, calcu-
late the physical attraction of two people in love, or even regulate the
economy of the United States. The characteristic separating the last
three problems from the first three is that the first three can be pre-
cisely and thoroughly defined. If a solution to a problem can be defined
precisely, then it can be implemented on a computer.

Since the problem and its solution are the most important compo-
nents of any computer system, we should begin our study of computers
by solving problems. Without properly developed problem-solving skills,
the programmer cannot describe the problem and, therefore, cannot
implement it on the computer.

1.2 PROBLEM DECOMPOSITION

A successful problem solver has learned that complex problems are only
a composition of a certain number of simple problems. If he or she can
decompose the complex problem into readily solvable simpler ones, the
battle is won!

There are many ways to approach problem decomposition. You
can divide the problem into components that are logically related, com-
ponents that occur during the same period of time, components that
form a control or procedural unit, or components that have other char-
acteristics in common. The method you choose, however, has a tremen-
dous effect on the complexity of your final solution.

The approach we will use to decompose a problem is based on the
flow of data required to solve it. The data are traced from their input
source, through appropriate transformations, to their output destina-
tion. This approach ignores the procedural aspect of the problem and
concentrates on the flow of data.

The decomposition process starts with a statement of the whole
problem to be solved. You must first determine what is known and
what is required. We think of our known facts as inputs and our require-
ments as outputs in the problem-solving process. You can illustrate this
idea graphically as shown in Figure 1.2.

The arrow into the bubble in Figure 1.2 represents the input data
flow, and the arrow out of the bubble represents the output data flow.
The bubble represents the transformation required to change the input
into the output data flow. The graph is called a data flow diagram.

If the problem is a very simple one, you can describe the process

Sec. 1.2 Problem Decomposition 3

KNOWN
TRANSFORM
INPUTS
INTO
OUTPUTS

REQUIRED
{(OUTPUTS)

Figure 1.2 THE PROBLEM-SOLVING GRAPH

in a single bubble or transformation. Otherwise, you must decompose
the problem into other, simpler transformations. In the remainder
of this chapter, we examine problem decomposition using data flow
diagrams.

Let us begin our study with a simple problem.

Problem 1.1
If Ed makes $3.75 per hour and works for 30 hours, what is Ed’s gross pay?

The first thing you want to do is to make sure that you under-
stand the problem. Your understanding is often enhanced if you list the
inputs in one column and the outputs in another column:

INPUTS OUTPUTS

$3.75 ED'S RATE ? ED’'S GROSS PAY
30 ED’S HOURS WORKED

The solution to the problem reduces to those processes or trans-
formations that take the inputs and create the outputs. We can illustrate
the solution to Problem 1.1 as shown in Figure 1.3.

Notice that bubble 1 in Figure 1.3 has not been defined. All we
know is that if the problem can be solved (and in this case, it can),
some transformation of the input items must occur to produce the
output item. If we can describe that process, we can solve the problem,
and we are done. Otherwise, we must decompose the process into
simpler steps.

Let us look at the transformation as a kind of black box. The con-
cept of a black box should be familiar to you even if you have never

ED'S RATE

ED’'S GROSS

ED'S HOURS
WORKED 30

Figure 1.3 THE PROBLEM-SOLVING PROCESS

4 Decomposing the Problem Chap. 1

been exposed to the term. A television or an automobile can be con-
sidered a black box. You do not need to understand the workings of
the inner components of either to use them. You simply input certain
items (the turn of a knob or key) and experience certain outputs (a
television picture or a running engine).

Using data flow diagrams as a decomposition tool allows you to
defer examining the inside of the bubbles (black boxes) until later. In
fact, we do not assign a name to the bubble until all input and output
data flows have been established and the data flow names written above
the arrows. We then choose a name that describes the transformation
in terms of its input and output data flows. The name is formed by
combining a strong action verb and a single object. From the input and
output data flows shown in Figure 1.3, we could assign the name
CALCULATE ED’S GROSS PAY to bubble 1.

The transformation for Problem 1.1 is a simple multiplication of
rate times hours worked:

$112.50 = $3.75 X 30

where $112.50 represents the gross pay that Ed would receive. The
final data flow diagram showing the result of the transformation is
illustrated in Figure 1.4.

ED’S RATE

ED’S GROSS

1
CALCULATE PAY $112.50
ED’'S
GROSS PAY

ED’S HOURS

WORKED 30
Figure 1.4 FINAL DATA FLOW DIAGRAM

The data flow diagram always represents a steady state of the
problem. We are not concerned with iterations, controls, or simple error
paths. We are concerned only with the flow of data as they move from
the input source to the output. Looking inside the bubble will come
later.

Let us consider a generalization of Problem 1.1. If we can work
one case, we can work others.

Problem 1.2

If the hourly rate and hours worked are known, calculate the gross pay.

Again, let us list our inputs and outputs:
INPUTS OUTPUTS

HOURLY RATE GROSS PAY
HOURS WORKED

Sec. 1.2 Problem Decomposition 5

HOURLY RATE

GROSS PAY

1
CALCULATE
GROSS

PAY

HOURS WORKED

Figure 1.5 CALCULATE GROSS PAY

Our problem-solving process is to transform the inputs, HOURLY
RATE and HOURS WORKED, into GROSS PAY. This process is illus-
trated in Figure 1.5. From our work with Problem 1.1, we know that
GROSS PAY can be determined from HOURLY RATE and HOURS
WORKED.

Suppose that we add a level of complexity to Problem 1.2 by
requiring that net pay and gross pay be determined.

Problem 1.3

If a person’s hourly rate, hours worked, and deductions are known, determine his
or her net pay and gross pay.

Let us make sure that we understand Problem 1.3 by working with
a specific case. Assume that Fred works 40 hours and receives $5.50 per
hour. Assume further that Fred must pay $50 in deductions. Listing
our inputs and outputs, we have:

INPUTS OUTPUTS

$5.50 FRED’'S RATE ? FRED’'S NET PAY
$50 FRED'S DEDUCTIONS ? FRED'S GROSS PAY
40 FRED'S HOURS

Again, our problem is to transform the inputs into the required
outputs. Fred’s gross pay is 40 X $5.50, or $220. We must subtract his
deductions of $50 from $220 to obtain his net pay of $170.

We can diagram Problem 1.3 as illustrated in Figure 1.6.

The transformation, however, cannot be named using an action
verb and a single object. Further decomposition is required. The out-
put, NET PAY, can be determined from the inputs, DEDUCTIONS and

RATE NET PAY

DEDUCTIONS

Figure 1.6 DIAGRAM OF PROBLEM 1.3

