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Preface

The present book is based on the lecture notes of a graduate course Design
Theory which was given at the Center for Combinatorics of Nankai Unver-
sity in spring of 2001. The lecture notes were scattered over the experts
and students, modified year by year following some of their suggestions,
and finally came to the present form.

The course consists of mainly the basic classical subjects of design the-
ory, namely, balanced incomplete block designs, latin squares, t-designs
and partially balanced incomplete block designs, and ends with association
schemes.

The fundamental concepts of balanced incomplete block designs are
given in Chapter 1 and various classical constructions appear in Chap-
ters 2 and 3. Orthogonal latin squares are studied in Chapter 4. The
construction of some families of balanced incomplete block designs, like
Steiner triple systems and Kirkman triple systems, appears in Chapter 6,
and as a preparation pairwise balanced designs and group divisible designs
are introduced in Chapter 5. t-designs and partially balanced incomplete
block designs, as generalizations of balanced incomplete block designs, are
studied in Chapters 7, 8 and Chapter 9, respectively.

The author is mostly grateful to Professor Rodney Roberts of Florida
State University, Professor Shenglin Zhou of South China University of
Technology and Professor Lie Zhu of Soochow University, who read the
manuscript carefully, pointed out many typos and give valuable sugges-
tions. Professor Zhou also prepared the bibliography and exercises for the
book. Finally, the author is also indebted to the graduate students Jun-
Wei Guo, Yan-Ping Mu, Yun Qin, Yi-Dong Sun, Chao Wang, De-Heng Xu,
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Li-Bo Yang and Li-Ming Yang of the Center for Combinatorics of Nankai
University who typed the book except the last Chapter.

Zhe-Xian Wan
2009 Beijing
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Chapter 1

BIBDs

1.1 Definition and Fundamental Properties of BIBDs

Definition 1.1 Let v,k and A be integers such that v >k > 2 and A > 1.
Let X be a finite set of elements, called points, and let B be a finite col-
lection of subsets of X, called blocks. The pair (X, B) is called a (v,k,\)
balanced incomplete block design or, simply, a (v,k,A)-BIBD, if the fol-
lowing conditions hold:

(i) |X|=w.

(ii) |B| =k for all B € B.

(iii) Every pair of distinct points is contained in ezactly A blocks.
The set {v,k, A} is called the set of parameters of the BIBD (X,B). We
also use the notation D = (X, B).

Remark 1.1 A BIBD may contain repeated blocks if A > 1, which is
why we refer to B as a collection of subsets rather than a set of subsets.

Remark 1.2 If £ = 1, then we must have A = 0; this case is excluded by
the assumption A > 1. Therefore for a (v, k,A)-BIBD we always assume
k > 2 in Definition 1.1. If v = k, then every block is equal to X and (X, B)
is called a complete block design; this is the trivial case. A (v, k,A\)-BIBD
with v > k > 2 is said to be nondegenerate. In most cases we consider only
nondegenerate BIBDs.

Example 1.1 A (7,3,1)-BIBD.

X = {1,2,3,4,5,6,7},
B = {{11273},{1741 5}y{1:61 7}3 {27437}7{21 576}7{37 476}3{3v577}}

In Section 2.3 we will see that (X, B) is a projective plane of order 2.
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Example 1.2 A (9,3,1)-BIBD.
X ={1,2,3,4,5,6,7,8,9},
B = {{1,2,3},{4,5,6},{7,8,9},{1,4,7},{2, 5,8}, {3,6,9},
{1,5,9},{2,6,7},{3,4,8},{1,6,8}, {2,4,9},{3,5, 7} }.

In Section 3.2 we will see that this (9,3,1)-BIBD is an affine plane of
order 3.

Example 1.3 A (16,6,2)-BIBD.
Let X = Zy6 = {0,1,2,...,15} and arrange the 16 points in the follow-
ing 4 X 4 array

011123
41516 |7
819 ]|10|11
121131415

For each i € Zyg, let B; be the subset of Z,6 consisting of the siz elements
which are situated in the same row or the same column of i and are distinct
from i. For ezample, By = {1,2,3,4,8,12}, Bs = {1,4,6,7,9,13}, etc. Let
B ={B;:1 € Zyg}. Clearly |B;| =6 for all i € Z15 and any pair of points
is contained in ezactly two blocks. For example, {5,10} C Bg, Bg. Hence
(X,B) is a (16,6,2)-BIBD.

In Section 2.1 we will see that this (16, 6,2)-BIBD is a symmetric de-
sign.

Example 1.4 Let X be a set of v points and B consist of all subsets of X

of size k. Then any two points are contained in (}_2) blocks. Thus (X, B)
is a (v, k, (}-2))-BIBD.
Definition 1.2 Let (X,B) be a (v,k,\)-BIBD. Suppose that |B| = b.
Define a v x b 0-1 matriz

M = (mij)1<i<v,1<5<6)

whose rows are indered by the points py,p2,...,py and columns are indexed
by the blocks By, Ba, ..., By, by

Mes = 1, ifp,'GBj,
"7 71 0, otherwise.



1.1. Definition and Fundamental Properties of BIBDs 3

Then M is called the incidence matriz of the BIBD (X, B).

Clearly, the incidence matrix of a BIBD depends on the ordering of
the points and the ordering of the blocks. For another ordering of points
1,92, - --,qy and another ordering of blocks C;,Cy,...,Cs, the incidence
matrix M’ of the design takes the form

M' = PMQ,

where P = (pij)i1<i,j<v I8 a v X v permutation matrix defined by

pij = 17 lle':pJ’
o 0, otherwise,

and Q = (gij)1<i,j<b 1S a b X b permutation matrix defined by

[, B =0,
% = 0, otherwise.

Two incidence matrices of the same BIBD with respect to different
orderings of points and blocks are said to be equivalent.

Example 1.5 In the (7,3,1)-BIBD of Ezample 1.1, let

p1=’1) p2=21 P3=3, p4=4a p5=5a p6=65 p7=7
and

By ={1,2,3}, B,={1,4,5}, Bs={1,6,7}, Bys={2,4,7},
Bs = {2,5,6}, Bs={3,4,6}, B;={3,5,7}.

Then the (7,3,1)-BIBD has incidence matriz

(1 000

)

QO == OO =
L e i = T e T e I

O = = O O = O
- = O = O O

OO OO - -
-0 O O -
O = O = = O

If we let

QI=1v Q2=2) q3=31 ¢14=4, (I5=57 qﬁ=7y Q7=6,
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then with respect to the ordering of points qi,q2,qs3,4d4,95,96,97 and the
ordering of blocks as before the (7,3,1)-BIBD has incidence matriz

(1110000)
1001100
1000011
0101010 |, (1.1)
0100101
0011001
\0010110

which is a symmetric matriz.

Example 1.6 The incidence matriz of the (9,3,1)-BIBD of Example 1.2
s the 9 x 12 0-1 matriz

/100100100100
100010010010
100001001001
010100001010

A= 010010100001
010001010100
001100010001
001010001100
\001001100010)/

Now we give some basic properties of a (v, k,A)-BIBD.

Theorem 1.1 In a (v,k,\)-BIBD, every point occurs in ezactly
_AMv-—1)
r=—7 (1.2)

blocks.

Proof. By rearranging the points and the blocks, we can assume any given
point to be the first point which appears in the first r blocks. Then the
incidence matrix takes the form

1...1 0...0
M= ( My M, ) ’
where M; is a (v—1) X r matrix and M3 is a (v—1) x (b—r) matrix. Count
the number of 1’s in M; in two different ways. On the one hand, M; has r
columns and each column has £k — 1 1’s. On the other hand, M; has v — 1

rows and each row has A 1’s. Therefore, r(k — 1) = A(v — 1), which implies

(1.2). N
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By Theorem 1.1 the number of blocks containing any given point in
a (v,k,\)-BIBD is a constant, which is denoted by r and is called the
replication number of the BIBD.

Theorem 1.2 A (v,k,\)-BIBD has ezactly

po U _ M —v)

k~— k2—k (1.8)

blocks.

Proof. Let M be the incidence matrix of the (v,k,A)-BIBD. Count the
number of 1’s in M in two different ways. Firstly, M has b columns and
each column has k 1’s. Secondly, M has v rows and by Theorem 1.1, each

v

row has r 1’s. Thus bk = vr, which implies b = $-. Substituting (1.2) into

it, we obtain b = i%’:__—%’l [ |
A (v,k, \)-BIBD is also called a (v, b, 7, k, \)-BIBD, where r = 2{=1

and b= %, and {v,b,r,k, A} is also called the set of its parameters.

Theorem 1.3 Let M be a v X b 0-1 matriz. Then M 1is the incidence
matriz of a (v, k,\)-BIBD if and only if both

MM = \J, + (r = NI, (1.4)
and
1,M =kl (1.5)

hold, where *M denotes the transpose of M, r = A(v—1)/(k—1), J, and I,
are the v X v all 1’s matriz and the identity matriz, respectively, and 1,, and
1, are the v-dimensional and b-dimensional all 1 row vectors, respectively.

Proof. First, let M be the incidence matrix of a (v, k, A\)-BIBD (X, B) and
let X ={p1, ..., py} and B = {By,...,By}. Then the (i, j)-entry of M *M
is

b e
Zm'm~ = T lfl:]’
e A, ifd# g
k=1
Hence every entry on the main diagonal of M *M is equal to r and every
off-diagonal entry is equal to A\, so M*M = AJ, + (r — A\)I,.
Moreover, the i-th entry of 1,M is equal to the number of 1’s in the

i-th column of M, which is equal to the size of the i-th block, and hence,
is equal to k. Therefore 1,M = k1,.
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Conversely, suppose M is a v x b 0-1 matrix which satisfies (1.4) and
(1.5). Let X = {p1,...,pv} and

M = (mij)1<i<v,1<5<b-
Define
Bij={pie X:mij=1}, j=12,...,b

and B = {B1, Bs,...,Bp}. By (1.5), there are k 1’s in every column of
M, so |B;| =k foralli =1,2,...,b. From (1.4) it follows that every pair
of distinct points is contained in exactly A blocks. Therefore (X, B) is a
(v, k,A\)-BIBD with M as its incidence matrix. |

Example 1.7 Let A be the incidence matriz of the (9,3,1)-BIBD of
Ezample 1.2, viz., A is the matriz given in Example 1.6. Let

111111111
e 111000000
“looo111000}

000000111
111111000000

C=|1111000111000 ],

111000000111
D=J-C,

where J is the 3 x 12 all 1 matriz. Then it can be verified directly that

tA tA 'C tD
M_(B J-B 0 0)

is the incidence matriz of a (16,6,3)-BIBD.

Theorem 1.4 (Fisher’s Inequality) In any nondegenerate (v,b,7,k, \)-
BIBD, b > v.

Proof. Let M be the incidence matrix of the BIBD. By Theorem 1.3
MM =\, + (r — N\)I,.
Let us calculate det(M *M).
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det(M *M)
[T A A oA
AT oA A
= det AT A
\A A A
(r+)\(v—1) r+Av—1) r+A(v—-1) ... 7+ A(v—-1)
A r A A
= det A A T A
A A A r
(1 11 1
AT e A
= (r+Av—1))det AAr oA

(1 0 0 0
Ar—Xx 0 0

=(r+A(v—1))det

>
o
S
-
>
=}

A0 0 ... 7T—A

=(r+Av—=1)(r -1
Since v # 1, we have r + A(v — 1) # 0. Since the BIBD is nondegenerate,
we have v > k and by Theorem 1.1 7 > A. Therefore det(M tM) # 0, which
implies b > v. [ |

Theorems 1.1, 1.2 and 1.4 are necessary conditions for the existence of
a (v,k,\)-BIBD. We can use them to exclude some parameter sets to be
the parameter sets of BIBDs as the following examples show.

Example 1.8 There does not exist an (8,3,1)-BIBD, for

_AMv=1) 7
T="k-1 %%
Example 1.9 There does not ezist a (19,4,1)-BIBD, for

_Aw—=1) _vr _19-3
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Example 1.10 There does not ezist a (16,6,1)-BIBD, for
=’\(,€L_'11—)=3, butb= = =8 <v=16.

One of the main goals of combinatorial design theory is to determine
necessary and sufficient conditions of the parameter set {v,k, A} for the
existence of a (v,k,A)-BIBD. This is a very difficult problem in general,
and there are many parameter sets in which the answers are not yet known.
For example, it is currently unknown if there exists a (22,8,4)-BIBD (such
a BIBD would have 7 = 12 and b = 33). On the other hand, there are
many known constructions for infinite classes of BIBDs, as well as some
other necessary conditions, which will be discussed a bit later.

1.2 Isomorphisms and Automorphisms

Definition 1.3 Let (X, B) and (Y,C) be two BIBDs. If there is a bijective
map o : X — Y and a bijective map a : B — C such that for allz € X and
B € B, z € B if and only if a(z) € a(B), then (X,B) and (Y,C) are said
to be isomorphic and o is called an isomorphic map or an isomorphism.
(Note that we use the same symbol a to denote both the map X — Y and
the map B — C.)

If (X, B) and (Y,C) are isomorphic BIBDs, we write (X, B) ~ (Y,C).

Example 1.11 Consider the (4,2,2)-BIBDs (X, B) and (Y,C).
X =1{1,2,3,4},
B = {B, Bz, B3, By, Bs, Bs, B, Bg, Bg, B9, B11, B2},
where
By = By, ={1,2}, B3 =Bsy={3,4}, Bs= Bg=1{1,3},
B; = Bg = {2,4}, By = Byo = {1,4}, Bi1 = Bi2 = {2,3},
and
Y = {a,b,¢,d},
C ={C1,C2,C3,C4,Cs,Cg, Cr,Cg, Cg, Cho, C11, Cr2},
where
Cl = Cz = {a,b}, C3 = C4 = {C, d}, C5 = Cs = {a, C},
C'{ = Cg = {b, d}, Cg = ClO = {a, d}, C11 = Cl2 = {b, C}.
Define a bijection a: X = Y by a(l) =a, a(2) = b, a(3) = ¢, a(4) = d
and a bijection a : B — C by a(By) = Ca, a(B;) = Ci, and a(B;) =
Ci,3 <1< 12. Then « is an isomorphism from (X, B) to (Y,C).
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If (X,B) and (Y,C) are two BIBDs without repeated blocks, we also
adopt the following definition of isomorphism.

Definition 1.4 Let (X,B) and (Y,C) be two BIBDs without repeated
blocks. If there exists a bijection oo : X — Y such that

{{a(z) :z € B}: Be B} =C,

then (X, B) and (Y,C) are said to be isomorphic and « is called an isomor-
phic map or an isomorphism. In other words, if we rename every point
z € X by a(z), then the collection of blocks B is transformed into C.

Clearly, when (X,B) and (Y,C) are two BIBDs without repeated
blocks, Definitions 1.3 and 1.4 are equivalent.

Example 1.12 Here are two (7,3,1)-BIBDs (X, B) and (Y,C):

X ={1,2,3,4,5,6,7},

B =1{{1,2,3},{1,4,5},{1,6,7},{2,4,7},{2,5,6},{3,4,6},{3,5,7}}
and

Y ={a,b,c,d,e, f,g},

C= {{a’ b, d}’ {a,c,e},{a, f,9},{b,c, g}, {bv e, fh{e,d, f},{d, e, g}}.

Define a bijection oo : X — Y by a(1) = a,a(2) = b,a(3) =d,a(4) =
c,a(5) = e,a(6) = f,a(7) = g. Clearly, B is transformed to C by a.. Hence
(X,B) and (Y,C) are isomorphic and o is an isomorphism.

If we define B: X — Y by B(1) = a,B8(2) = 9,8(3) = f,B(4) =¢,B(5) =
e,[(6) =d,B(7) = b. It can also be verified that B is transformed to C by
B. Thus (3 is another isomorphism.

Clearly, isomorphic BI BDs have the same parameter set, and we usu-
ally do not distinguish isomorphic BIBDs. It is left as an exercise (Exercise
1.5) to show that there is only one (7,3,1)-BIBD up to an isomorphism.
In general, it is a difficult computation problem to determine whether two
BIBDs with the same parameter set are isomorphic . There are v! possible
bijections between two sets of cardinality v. To identify that two (v, k, A)-
BIBDs are not isomorphic, we must show that none of the possible v!
bijections is an isomorphism. Since v! grows exponentially quickly as a
function of v, it soon becomes impractical to actually test every possible
bijection. Thus we have to try to find more sophisticated algorithms rather
than testing every possibility exhaustively.

Isomorphism of BIBDs can also be described in terms of incidence
matrices.



