

8062929

PROGRAMMING
LANGUAGE
STRUCTURES

ELLIOTT I. ORGANICK
ALEXANDRA I. FORSYTHE
ROBERT P. PLUMMER

| mmim’ﬂ
11

E8052929

ACADEMIC PRESS

New York

San Francisco

London

A Subsidiary of Harcourt Brace Jovanovich, Publishers

Cover sculpture by Miriam Brofsky
Cover photo by Terry Lennon

Several exercises, a few pages of text, and some

figures were reprinted or adapted, by permission,

from COMPUTER SCIENCE: A FIRST COURSE

(2nd edition), A. I. Forsythe, T. A. Keenan, E. 1.

Organick, and W. Stenberg. Copyright © 1975 by
John Wiley and Sons, Inc.

COPYRIGHT © 1978, by ACADEMIC PRESS, INC.
ALL RIGHTS RESERVED
No Part of This Publication May be Reproduced or
Transmitted in Any Form or by Any Means, Electronic
or Mechanical, Including Photocopy, Recording, or Any
Information Storage and Retrieval System, Without
Permission in Writing from the Publisher

ACADEMIC PRESS, INC.
111 Fifth Avenue, New York, New York 10003

United Kingdom Edition published by
ACADEMIC PRESS, INC. (LONDON) LTD.
24/28 Oval Road, London NW1

ISBN: 0-12-528260-5
Library of Congress Catalog Card Number: 78-51655

PRINTED IN THE UNITED STATES OF AMERICA

PROGRAMMING
LANGUAGE
STRUCTURES

To
BETTY BLANCHARD ORGANICK

for typing (and retyping) so much of our

manuscript with accuracy and enthusiasm,

and for her patience and cordiality during
the six-year-long pursuit of our goals.

PREFACE

In their initial contact with computer programming, many students have been
exposed to only one programming language. This book is designed to take such
students further into the subject of programming by emphasizing the structures
of programming languages. The book introduces the reader to five important
programming languages, Algol, Fortran, Lisp, Snobol, and Pascal, and develops
an appreciation of fundamental similarities and differences among these lan-
guages. A unifying framework is constructed that can be used to study the struc-
ture of other languages, such as Cobol, PL/I, and APL.

The book also has other objectives. For instance, it illustrates several of the
tools and methodologies needed to construct large programs. Because similar
interpreter structures and methods of data structuring and accessing are used
to model not only programming languages but also computers, the book in-
directly prepares the student to study computer organization. Working program-
mers whose everyday jobs confine them to a single language can use this book
for self-study and gain a better perspective on the tools they now use.

By emphasizing semantics over syntax, this book differs significantly from
conventional programming language texts. The semantics or meaning of a pro-
gram can be studied by means of a snapshot sequence produced by an abstract
machine-interpreter that executes the program. The semantics of a program-
ming language can be understood (informally) by studying the semantics of a
representative set of case study programs. A snapshot is a data and control struc-
ture that displays the state of a computation. The snapshots, or contour diagrams,
of this book are drawn in a uniform style, clearly delineating the distinctive
control structures and data structures of each language. Other diagramming
conventions such as call trees and flowcharts are used in the exposition of
semantics.

The first three chapters develop the state transition semantic framework
and diagramming principles that define an abstract model of a computer. In
later chapters the model is applied to describe five specific programming
languages. All of these, Algol, Fortran, Lisp, Snobol, and Pascal, were developed
between 1955 and 1975.

X1v

PREFACE

The same 20-year period saw the development of other important languages
such as Cobol, APL, Basic, and PL/I, although space considerations prevent
their inclusion in this book. The principles and techniques required to describe
those languages, however, are similar to the ones used here for Algol, Fortran,
and Lisp. Any serious reader should be able to apply the methods to study other
languages and teach them to students. Thus, if an instructor wants to teach the
elements of Cobol semantics using the approach of this book, he can use Fortran
(Chapter 6) as a guide, since the control structures of Cobol closely match those
of Fortran. In the same way, APL semantics can be explained using Lisp (Chap-
ter 7) as a guide, since APL control structures and scoping rules are similar to
those of Lisp.

The particular languages in this book were selected for comparative
linguistic study because each uses a different set of rules to define the scopes of
variables and procedures, and different means to treat procedure parameters.
Such rules define the control structure of a language. Other language concepts
and features such as pattern matching, concurrent tasks and coroutine struc-
tures, data typing, and data structure management are discussed in terms of
particular languages or language extensions. These features imply variants of
the abstract model of language semantics. The view is taken that one can best
comprehend the semantics of a programming language, at least informally, by
understanding the abstract model that enforces the control structure of the
language.

More recently, other programming languages have come on the scene, such
as SIMULA 67, CONCURRENT PascaL, and Modula, and experimental versions
of Alphard and CLU. Not only do these languages allow the programmer to
define data types (as Snobol and Pascal do), but they also allow abstract data
types. This facility makes possible greater clarity and modularity in programs.
The snapshot diagramming techniques described in this book will, in all prob-
ability, prove as useful in explaining the semantics of the newer languages as
they have been in explaining the languages in this book. Another edition or a
companion volume may be required later to do justice to this claim.

A Simplifying Theme

“Computations are characterized in terms of the data structures to which they
give rise during execution. . . . Programming languages may be syntactically
described in terms of the data structures required for their representation and
may be semantically described in terms of the data structures which they gener-
ate during execution” [Peter Wegner (1971)].

Ten years ago the proliferation of programming languages caused many
people to foresee the development of a computer-age Babel where, in total
ignorance of every other language, each programmer would learn only his own
chosen language. That unhappy situation has not occurred for several reasons.
First, effective efforts have been made to standardize particular languages such
as Fortran and Cobol. It should be pointed out that pragmatic rather than
scientific considerations motivated this standardization movement. However,

PREFACE

the second reason that Babel has been averted is that computer scientists have
begun to apply the scientific method to organize the classification, comparison,
and appreciation of various programming languages.

Due to the efforts of McCarthy (1962), Landin (1964), Strachey (1966),
Wegner (1968), and others who provided insight into operational models of
computation, we can now evaluate programming languages in terms of a unify-
ing view of computation structures. Semantics and the expressive power result-
ing from modularity can now be studied in terms of the data structures and the
accessing paths to them established during the execution of the control state-
ments of the language.

Statements that invoke procedure entry, function entry, coroutine resump-
tion, and block entry are intended to produce a shift of context, that is, to
redefine the data structures accessible to the processor. On the other hand,
procedure return, function return, and block exit are steps specifying the restora-
tion of an earlier context. The declaration of a variable, a procedure, or a new
data type is essentially a rule to allocate or restructure the workspace. These rules
are clearly language-dependent, and so is the time at which such allocation and
restructuring takes place. Allocation steps cause establishment of access paths
and these paths may result in the sharing of data. Another kind of declaration is
the specification of a parameter. This, too, can be interpreted as a space alloca-
tion rule and may result in the establishment of a new access path for the
processor.

In this book we have concentrated on explaining the structures of program-
ming languages in terms of data structures and accessibility concepts. What was
previously regarded as a difficult and complex subject is now, we think, becom-
ing a set of simple unifying ideas, concepts, and principles. The pedagogy and
display methods used here derive from the pioneering work of John B. Johnston,
designer of the Contour Model (1971), and others like Daniel Berry (1971)
and Peter Wegner (1971), who were among the first to suggest how to apply the
Contour Model to explain the semantics of a variety of programming languages.
This book builds on the contributions of these individuals.

The Book in More Detail

The book may be thought of as divided into three parts. Part one, the first four
chapters, introduces the basic concepts and models for understanding syntax
and semantics. Part one would be a good review if the text were used in an
upper division or first-year graduate course for students who come to computer
science from other disciplines. Part two (next four chapters) provides the heart of
the book, the intimate understanding of the comparative semantics, and
secondarily the comparative syntax, of the four “mutually orthogonal” language
types: Algol, Fortran, Lisp, and Snobol. Part three, the last two chapters, is
intended to illustrate some of the more recent directions in language design—not
a complete overview but more of a teaser to convince the student there is much
more to learn. Multisequence control structures typified by asynchronous tasks

PREFACE

and coroutines are dealt with in Chapter 9. Data structure and data manage-
ment issues are introduced in Chapter 10.

The first chapter of this text summarizes the relevant concepts and principles
about algorithms, flowcharts, and computation that a student is expected to
know from the first course. But that is by no means all that the first chapter ac-
complishes: it carefully introduces flowchart notation used consistently through-
out the text (but not regarded as critical to the study) and, more importantly,
introduces the abstract machine interpreter and the basic snapshot diagramming
conventions. Thus although Chapter 1 might appear to be unnecessary for stu-
dents whose first course has enabled them to become capable programmers in a
particular language, such as Basic or Fortran, we regard the first chapter as
important, especially for students not accustomed to top-down decomposition,
the design of algorithms with well-documented flowcharts, or the use of an
abstract interpreter for understanding the meaning of an algorithm.

Chapter 2 is an in-depth introduction to the semantics of procedure and
function call, and to argument—parameter matching with various kinds of
parameters. The use of contour diagrams clarifies the subtle distinctions be-
tween procedures and functions, and emphasizes the differences between
globals and parameters as a means of information sharing among procedure
modules.

Recursion was once regarded as a difficult concept in programming
semantics, but through the medium of the contour and the call-tree diagram,
recursion becomes easy to understand and to treat in some depth. In Chapter 3
recursion is looked at as a process closely related to tree traversal. In later
chapters it appears again in terms of the distinctive semantics of Algol, Lisp,
and Snobol. In each case snapshot sequences and call trees are used to trace
what happens at key places in the execution of a recursive procedure.

Chapter 4 introduces the essential ideas of syntax formalism (for context-
free languages). Backus—Naur Form and Syntax Chart representations are used.

Chapter 5 covers ALGOL 60 but the first part of the chapter deals with the
general idea of block structuring. Six case study programs are presented to rein-
force the reader’s understanding of ALGoL 60 semantics of procedure declara-
tion, block and procedure entry and exit, and parameter treatment.

Fortran, as covered in Chapter 6, includes not only the primary syntactic
and semantic structures based on the 1966 ANSI Standard FORTRAN, but also
highlights several of the innovations introduced in the new 1977 Standard.
Three case study programs reinforce understanding of Fortran semantics of
subprograms, parameters, and COMMON blocks. There is also a brief intro-
duction to input-output format. The chapter ends with a general discussion
comparing Fortran with ALGoL 60.

Knowing how to describe recursion effectively turns out to be akey to under-
standing the semantics of an expression-based (functional) language like Lisp.
Lisp recursion presents no high hurdle for a student who has already studied
recursion in Chapter 3 and ALGOL 60 recursion in Chapter 5. To introduce Lisp
in Chapter 7 it is sufficient to emphasize its data structures rather than its control

PREFACE

structures. Thus Lisp is presented as a language to manipulate binary tree data
rather than a language to process lists.

We deemphasize the unfriendly syntax of McCarthy’s LISP 1.5 by first
presenting a functional subset of RLISP, A. C. Hearn’s (1968) version of Lisp
having an Algol-like syntax. (RLISP is available on a variety of computers.) In
our threefold attack on the problem of teaching Lisp, control structures are dis-
played by contour diagrams and call trees; evolving data structures are drawn
as binary trees rather than as S-expressions, and the easy-to-learn syntax of
RLISP is used. Conventional Lisp syntax is also presented.

Chapter 8 is a survey of SNoBoL 4 emphasizing the pattern matching fea-
tures, the data management and procedure semantics, and the capability of defin-
ing and using new data types. J uxtaposing the chapters on Snobol and Lisp offers
the student a good opportunity to compare and contrast the simplicity of Lisp
with the expressive power of Snobol. Even without full understanding, one can
become aware of some of the trade-offs between these factors.

Chapter 9 is an introduction to the concepts of multitasking and coroutine
structures using Burroughs EXTENDED ALGOL as the language vehicle for the case
studies. Contour diagrams are again very useful to clarify the semantics of these
new features.

Both Chapters 9 and 10 assume the reader has already studied ALGoL 60
(Chapter 5). Chapter 10, therefore, introduces Pascal as a departure from Algol,
enabling the reader to quickly encounter Pascal’s important (new) data struc-
ture definition facilities which are the focus of attention here. A major worked
example coded in the dialect SEQUENTIAL PascAL is discussed and displayed
at the end of the chapter.

Place of This Text in the Computer Science and Engineering Curriculum

This text has grown out of our experience in teaching two types of courses at the
University of Utah: (1) the second of a four-quarter undergraduate sequence for
computer science majors; and (2) a senior/ graduate course for nonmajors whose
only previous exposure to computer science is a freshman-level course in pro-
gramming.

The first quarter of the four-quarter sequence emphasizes algorithms, flow-
charts, and top-down problem solving, but also includes elementary concepts of
procedures such as might be covered in a beginning Fortran, Basic, or Cobol pro-
gramming course. An elementary but extendable model of computation is used.
This model is comparable to the one given in Chapter 1 of this book.

The second quarter, represented by this book, provides the informal intro-
duction to the linguistics of programming. Deferred until later quarters are the
formal methods for defining the syntax and semantics of programming languages,
syntax analysis, and semantics of abstract machine interpreters.

At Utah most of this text is covered in ten weeks. In addition, students carry
out computer laboratory exercises and experiments in two or three languages.
We want students to practice with important, unfamiliar languages; at Utah this

PREFACE

means Algol and Lisp. At other schools Chapters 6 through 10 could be used as
guides to help instructors prepare supplemental class notes in other languages or
dialects locally available.

Experience has convinced us that the first set of laboratory exercises should
be designed to provide practice with parameter passing and simple recursion.
Later exercises can confirm an understanding of specific language features or
build more comprehensive programs possibly involving serious use of recursion.
Since students need not be encouraged to become expert programmers in any
one language, they may be able to complete up to six such exercises in ten weeks.

An instructor who uses this text in a full semester course of fifteen weeks has
the pleasant option of treating the subject either in greater depth or greater
breadth. For instance, a comprehensive programming project may be assigned
to give students in-depth acquaintance with one of the languages covered in this
text. Or, one or more other languages may be surveyed. The student may find it
a stimulating challenge to apply the structuring concepts of this book to the un-
derstanding of a rich but unfamiliar language, such as Cobol, APL, Simula, or
Modula.

Acknowledgments

We were unusually fortunate to receive a wide range of valuable and candid criti-
cism from some 15 specialists who read parts or all of our manuscript. Many were
anonymous referees, and we thank them sincerely. Others included experts
whose help we sought directly. In particular, we gratefully acknowledge the
suggestions offered by Allen Ambler, Daniel Berry, Victor Basili, Daniel
Friedman, Narain Gehani, Robert Graham, and David Hanson. Daniel Berry’s
help was invaluable. He offered useful comments on practically every page of
two consecutive “final drafts.”

We did our best to respond to as many major and minor suggestions as pos-
sible. Inevitably, some of the suggestions seemed to us mutually exclusive or im-
plied extending the content of the book or raising its level beyond what we felt
was practical. We sincerely hope all the reviewers are pleased with the final
product.

We also received considerable help from student assistants at the University
of Utah during the years in which the manuscript evolved from crude “handouts”
to almost sensible course notes. These helpful and patient people included
D. Bourek, M. S. Dye, R. A. Frank, and J. W. Thomas. The support of our other
colleagues and students at Utah and the typists, especially Karen Evans and Carol
Brown, is gratefully acknowledged as well. We also thank the editorial and pro-
duction staffs of Academic Press who appreciated our teaching goals and co-
operated with us fully to achieve the graphic styling and clarity we believed
essential.

E. I. Organick
A. I Forsythe
R. P. Plummer

8082923

CONTENTS

PART ONE

1 Basic Concepts 2

1-1 Introduction 2
1-2 Flowcharts for structured programming 7
1-3 A computer model 21
1-4 Procedures and environments 26
Executing procedure calls and returns 27
1-5 Global and local variables 40
1-6 The state of the MC 50
Section summary 54
1-7 References and suggestions for further reading 55

2 Interfacing Procedures 56

2-1 Introduction 56
2-2 Reference parameters 62
2-3 Independence and interchangeability of procedures 74
2-4 Automating protection of arguments 77
2-5 Expressions as arguments in a procedure call 89
2-6 Function procedures 93
2-7 Name parameters 101
Name parameters matched to simple arguments 104
2-8 Parameters that stand for procedures or functions 107
Chapter summary 112
29 References and suggestions for further reading 121

3 Recursion 122

3-1 Introduction 122
3-2 Additional examples 145 vi

[0

CONTENTS

3-3
3-4
3-5
3-6
3-7

Tree traversal and recursion 149

Binary tree traversal 167

Symbolic differentiation—an application of binary tree traversal 170

The searching of arbitrary tree structures 173

References and suggestions for future reading 183

4 Syntax Formalism

4-1
4-2
4-3

4-4

Introduction 134

The BNF notation 184

Syntax charts 189

Summary 191

References and suggestions for further reading 191

PART TWO. SYNTAX AND SEMANTICS
OF SEVERAL MAJOR
PROGRAMMING LANGUAGES

5 ALGoL
5-1 Introduction 195
5-2 Syntactic structure of Algol-like languages 195
5-3 Syntactic structure of ALGoL 60 202
Summary 206
5-4 Syntax of ALGoL declarations and statements 208
5-5 Semantics of ALGoL blocks 216
Block entry 216
Exit from a block 219
5-6 Semantics of ALGoL procedures 220
Procedure entry 221
Procedure return 223
Name parameters in ALGOL 224
5-7 Case studies—two elementary examples 226
Discussion 227
5-8 Case studies of recursive functions—two examples 249
59 Name parameters matched to expressions 272
5-10 Parameters that are procedures 288
5-11 Own identifiers in ALGoL 305
5-12 References and suggestions for further reading 307

184

195

CONTENTS

6 Fortran 308
6-1 Introduction 308
6-2 Overview of Fortran syntax and semantics 309
Summary 312
6-3 Global variables in Fortran 312
6-4 Syntax of individual Fortran statements and program units 319
6-5 Case study 336
Discussion 337
6-6 New developments in Fortran 340
6-7 Additional case studies 342
Discussion (case 2) 342
Discussion (case 3) 357
6-8 Input/output in Fortran 366
6-9 A brief comparison of ALGoL and Fortran 370
1. Block structure and dynamic storage allocation 370
2. Explicit versus implicit declarations 372
3. Separate compilability of procedures 372
4. Input/output 373
5. Compound and conditional statements 373
6. Algebraic nature of the languages 375
6-10 References and suggestions for further reading 375
7 Lisp 376
7-1 Introduction 376
72 Data objects in Lisp 377
1. Lists 378
2. Binary trees 379
7-3 Storage structures for S-expressions 381
1. Atoms 381
2. S-expressions 381
3. Variables 384
4. Storage management 384
7-4 The five basic Lisp functions 385

1. CONS 385
CAR 387
CDR 387
ATOM 389
EQ 389

Sk wN

CONTENTS

7-5 Avoiding evaluation of arguments: The use of the quote 392
7-6 The Lisp interpreter 394
7-7 Overview of Lisp syntax and semantics 395
7-8 The syntax of LISP and RLISP 398
7-9 Predefined functions of Lisp 412
7-10 Arithmetic operations in Lisp 416
7-11 Case studies 417
7-12 Function arguments and procedure parameters 431
7-13 Case study 4: A program for symbolic differentiation 444
7-14 Achieving the effect of name parameters in Lisp 461
7-15 References and suggestions for further reading 463
8 Snobol 464

8-1 Introduction 464
8-2 A flowchart language for string processing operations 465
8-3 Snobol syntax 471

1. Assignment 473

2. Pattern match 474

3. Procedure calls 479
8-4 Storage structures for variables 480
8-5 Syntax and semantics of procedure declarations and calls 482
8-6 Snobol case study: Symbolic differentiation 489
8-7 Simulating reference parameters in Snobol 499
8-8 Conversion from one data type to another 502
8-9 Defining and using new data types 504
8-10 Defining the primitive functions of Lisp in Snobol 507
8-11 Tables and arrays in Snobol 512
8-12 A Fortran preprocessor in Snobol 517
8-13 References and suggestions for further reading 518

9 Multisequence Algorithms 519
9-1 Introduction 519
9-2 Two types of multisequencing: Asynchronous tasks and
coroutines 520
9-3 Case study for asynchronous tasking 523
Results using Burroughs ALGOL 533

9-4 Case studies for coroutine tasks 540

Water-sharing problem 541

Snapshots for coroutine environments 546

Producer/consumer problem 548
Chapter summary 549
9-5 References and suggestions for further reading 557

10 Pascal

10-1 Introduction 560
10-2 Primitive data types 561

Constant definitions 562
10-3 Structured data types 563

Records 563

Record structure variants 565

Arrays 568

Set structures 568

Pointer types 570
10-4 Program structure 572
10-5 Constructs for structured programming 576
10-6 Parameter specification and treatment 577
10-7 Input/output 580

Sequential Pascal summary 583
10-8 Case study: The four-color problem 597
10-9 References and suggestions for further reading 610

Appendix
Bibliography
Answers to Selected Exercises

Index

CONTENTS

560

612
618
621
649

PART
ONE

