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Preface

The work described in these notes has had a long gestation. It grew out of
my sojourn at Macquarie University, Sydney, 1986-87 and 1989-90. during
which time Alan McIntosh was applying Clifford analysis techniques to the
study of singular integral operators and irregular boundary value problems.
His research group provided a stimulating and convivial environment over the
years. I would like to thank my collaborators in this enterprise: Jerry Johnson,
Alan McIntosh, Susumu Okada, James Picton-Warlow, Werner Ricker, Frank
Sommen and Bernd Straub. The work was supported by two large grants from
the Australian Research Council.

Sydney, March 2004 Brian Jefferies
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1

Introduction

The subject of these notes is the spectral theory of systems of operators.
Because ‘spectral theory’ means different things to different workers in func-
tional analysis, it is worthwhile to first set down how the term is used in the
present context and the relationship it bears to the spectral theory of a single
selfadjoint operator.

The spectrum o(A) of a single matrix A is the finite set of all eigenvalues of
A, that is, complex numbers A for which the equation Av = \v has a nonzero
vector v as a solution. In order to treat linear operators A acting on some
function space, it is preferable to take o(A) to mean the set of all A € C for
which AI — A is not invertible. The most complete spectral analysis is available
for selfadjoint operators A acting in Hilbert space, for then the linear operator
A has a spectral decomposition

.,4:/ AdPA(N) (1.1)
o(A)

with respect to a spectral measure P4 associated with A. In the case that A
is an hermitian matrix, the integral representation (1.1) becomes a finite sum

A= Y APa({Ah (1.2)

AEa(A)

in which P4({\}) is the orthogonal projection onto the eigenspace of the
eigenvalue A. The spectral theory of selfadjoint operators lies at the foundation
of quantum physics.

The solution of linear operator equations, such as those that arise in quan-
tum mechanics, often requires the formation of functions of operators. For
example, in order to solve the linear equation

du(t)

— + Au(t) =0, u(0) = ug.
dt
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we need to form the exponential e, t > 0, of A. Because of the importance
of linear evolution equations, the theory of exponentiating an operator is well-
understood, but in general, the spectral properties of A determine the types
of functions f(A) of A that can be formed in a reasonable manner.

In the case of a selfadjoint operator A, we can take

£(A) = / RS (13)

for any P4-essentially bounded Borel measurable function f : 0(A) — C. The
pleasant spectral properties of a selfadjoint operator A are reflected in the
rich class of functions f(A) of A that can be formed.

A basic task of quantum mechanics is to find a quantum representa-
tion f(P, Q) of a classical observable (p,q) — f(p,q) on phase space. Here
Pe= %(;—‘I is the momentum operator and @ is the position operator of ‘mul-
tiplication by z’. They satisfy the commutation relation QP — PQ = ihl.
For example, if H(p,q) = ﬁ—i + V(q) is the classical hamiltonian of the sys-

tem, then H(P,Q) = % + V(Q) is the corresponding quantum observable,
provided that the sum of the two unbounded operators is interpreted appro-
priately. Although it is known that the structure of classical observables is
not preserved in the quantum setting for an extensive class of observables f,
we are left with the problem of forming a function f(P, Q) of a pair (P, Q) of
operators which do not commute with each other.

In another context, symmetric hyperbolic systems
ou = ou
(‘)t 4 ().‘I,'J' ( )

of partial differential equations arise in the linearised equations of magneto-
hydrodynamics [15]. In the case that the matrices Ay, ..., A, are hermitian,
the fundamental solution is the matrix-valued distribution

1 (Pf T B A_,s‘,) g
(271')"’

Here the Fourier transform ~ is taken in the sense of distributions with respect
to the variable £ € R".

Then the fundamental solution f+—— f(A;,..., A,) of (1.4) at time t = 1
may be viewed as a mapping that forms functions f(A;,...,A,) of the n
matrices Ay, ..., A,. The snapshot of the support of the fundamental solution
at time t = 1 determines the propagation cone of solutions of the initial
value problem for the symmetric hyperbolic system (1.4). A mapping such
as f — f(A1,..., - A,) will be termed a functional calculus in this work.
Although the expression is used somewhat loosely, the idea is common to the
areas in functional analysis just mentioned.

In the traditional setting of a single operator A, a decent functional calcu-

lus f —— f(A) is a homomorphism of Banach algebras: (fg)(A) = f(A)g(A)
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for two functions f, g belonging to the domain of the functional calculus. In
the case of a selfadjoint operator A, the domain of the functional calculus
defined by formula (1.3) is the Banach algebra L>°(P4) under pointwise mul-
tiplication. For two operators A;, As which do not commute, there is a choice
in operator ordering. For example, given the function f(zy, 29) = 2129, the op-
erator f(A;, As) could be Ay A, AsA, %(AlAg + A3 Ay) or some other choice
of weighted operator product. Under these circumstances, the homomorphism
property fails, but we still use the term ‘functional calculus’.

In the noncommutative setting of spectral theory considered in the present
work, there is a shift of emphasis from the algebraic formulation of the spec-
trum to a more analytic formulation of the ‘joint spectrum’ of operators
(Aq,...,A,) as the underlying set on which the ‘richest’ functional calculus
f— f(AL,..., A,) is defined. From this point of view, the ‘joint spectrum’ of
matrices (Ay,..., A, ) associated with the symmetric hyperbolic system (1.4)
determines the propagation cone of the solution, so it has a natural interpreta-

tion. For bounded selfadjoint operators, the ‘joint spectrum’ of (A, ..., An)
can be defined algebraically in terms of commutative objects (Aj,..., Ap)
associated with (Aq, ..., A,), see Section 7.1.

The study of functions of noncommuting operators has been extensively
developed by V.P. Maslov and co-workers, see [82] for a list of references.
The calculus of noncommuting operators has fundamental applications to
the asymptotic analysis of differential equations, quantisation and quantum
groups. The emphasis in the present work is in a different direction: the
properties of the support of functional calculi associated with the operators
(Ay, ...,z A, ) is examined and the relationship between the nature of the oper-
ators (Aj,...,A,) and possible functional calculi is explored. In the case of a
single operator, this is the traditional domain of spectral theory. The support
of the ‘natural’ functional calculus is interpreted as the joint spectrum of the
operators (Aj,..., A,) and it is in this sense that the work is devoted to the
spectral properties of systems of noncommuting operators.

Even for a single bounded selfadjoint operator A, there is a choice between
the ‘richest’ functional calculus f —— f(A) for f € L>(P,4) and the functional
calculus f(A) = 5 ¢; A7 for functions f with a uniformly convergent power

j=0 G4
series expansion Z,/.X:(, cjz! for all z € C belonging to the closed unit disk D(r)
of radius r = ||A]| centred at zero. The spectrum o(A) of A is precisely the

support of the richest functional calculus rather than the closed disk D(r) -
a set much larger than o(A).

When the operators (A, ..., A,) commute with each other, a general no-
tion of joint spectrum relies on ideas from algebraic topology [104], [111], [25].
However, for the class of operators treated in this work, such considerations
are unnecessary (see [76] for a comparison of joint spectra in the commuting
case) and we can deal with both the commutative and noncommutative set-
ting simultaneously. Of course, this is at the expense of placing a restriction on
the combined spectra of the operators (A, . ... A,,), which should be on (or.
in Chapter 6, not be too far from) the real axis. Recent work [10] shows how
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this restriction can be lifted in the Hilbert space setting. Certain ideas from
algebraic geometry do play a part in Chapter 5 in the context of computing
the joint spectrum of a system of hermitian matrices.

The subject of these notes is the generalisation of the spectral theory of
a single operator to the setting of a finite system of possibly noncommuting
bounded (or, in Chapter 6, densely defined) operators. There are other means
by which the program can be realised. The noncommuting variable approach
is taken in a series of papers by J.L. Taylor [104, 105, 106, 107]. A geometric
approach in von Neumann algebras is taken in [2]. One could attempt to
compute the Gelfand spectrum of corresponding commuting objects, see [83],
[3], [4], [6] and Section 7.1 below. A monograph surveying many results in
several variable spectral theory has recently appeared [80].

Another point of view is to see to what extent the Spectral Mapping
Theorem for a single operator generalises to a system of operators, especially
with weak commutativity assumptions - see [74] and [36, 37] for this approach.

It should be obvious from the description above that the present mathe-
matical work has its roots in physical applications. Indeed, the spectral theory
of a single selfadjoint operator was developed by J. von Neumann [113] in order
to put quantum mechanics on a firm foundation. The names of the mathe-
matician H. Weyl and the physicist R. Feynman recur in this work. Both were
motivated by problems in quantum physics.

In [115], H. Weyl proposed the functional calculus

% ((3151 P+1£2Q) cf— f(P.Q)

as a quantisation procedure sending the classical observable f on phase space
to the quantum observable f(P, Q). Although a real valued function is mapped
to a selfadjoint operator, a nonnegative observable need not be mapped to a
positive operator, that is, a quantum observable whose expectation values are
nonnegative; from this point of view, the procedure is physically unrealistic
except for a limited class of classical observables.

An operational calculus for systems of noncommuting operators was pro-
posed by R. Feynman [28] with a view of applications to quantum electrody-
namics. The idea is to attach time indices to the operators concerned, treat
the resulting operator valued functions as commuting objects in functional
calculations and, at the end of the day, ‘disentangle’ the resulting expressions
by restoring time-ordering in which operators with earlier time indices than
other operators act first. The connection with Weyl’s calculus was fleshed out
by E. Nelson [83].

A natural approach to forming functions f(A) of a single bounded linear
operator A is to apply the Riesz-Dunford formula

1
T 2mi

J(A) /( (€I - 47 F(Q)dC (1.5)
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to a function f holomorphic in a neighbourhood of the spectrum o(A) of A
and a suitable closed contour C' about o(A). Although this approach can be
generalised to systems A = (Aj,..., A,) of commuting bounded linear oper-
ators and holomorphic functions defined in C™ by defining the joint spectrum
in terms of the Koszul complex [104], [111], a different line is taken in these
notes.

Clifford analysis also possesses an analogue of the Cauchy integral for-
mula in one complex variable for higher dimensions. The Clifford algebra
C(y) is a complex algebra with unit e, generated by n anti-commuting vectors
€1,...,en. A function f(xg,21,...,x,) of n 4 1 real variables xg,zy,...,x,,
with values in C,,) and satisfying D f = 0 for the operator

is called left monogenic. The Cauchy integral formula takes the form

flz) = Gy(x)n(y)f(y) duly), x € Q2. (1.6)
092

Here f is left monogenic in a neighbourhhood of £2, where 2 is a bounded
open subset of R"*! with smooth oriented boundary 92 and outward unit
normal n(y) at y € 0£2. The surface measure of Jf2 is denoted by pu. The
Cauchy kernel

1 y—

2 n+1 .
Zly—_——r—'mw ry e R"" x#y, (1.7)

Gylx) =

n+

with X, = 27 21/]’ (241) the volume of unit n-sphere in R"*!, is the ana-
logue of the normalised Cauchy kernel %(g — z)7 ! in complex analysis. The
theme of the present notes is to form functions f(Aj,..... A,,) of n operators
Ay, ..., A, via the formula

fAn . A = | Gy(Ar. ... A)n@) f(y) du(y). (1.8)

which arises by analogy with the Riesz-Dunford formula (1.5). The principal
difficulty is making sense of the function r — G,(Ay,..., A,) and deter-
mining its singularities, the collection of which may be viewed as the joint
spectrum of the system (Aj,..., A,) of operators. Along the way to realising
this idea, we shall make contact with the Weyl functional calculus for n op-
erators, Feynman’s operational calculus and the fundamental solution of the
symmetric hyperbolic system (1.4).

It may seem somewhat surprising that Clifford analysis should be a tool in
the analysis of the spectral theory of systems of operators. These notes grew
out of a desire to bring together the seemingly disparate streams of thought I
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have been exposed to over the years by my friends and colleagues. On the one
hand, A. McIntosh has been an enthusiastic proponent of Clifford techniques
in harmonic analysis and the solution of irregular boundary value problems
in partial differential equations [73]. A connection with Weyl’s calculus ap-
pears in joint work with A. Pryde [75], [87], [88]. [89]. On the other hand.
the joint work of G.W. Johnson and M. Lapidus [59], [60], [61] and G.W.
Johnson with myself [48], [49], [50], [51] shows the connection of Feynman’s
operational calculus with the monogenic functional calculus for systems of
operators described in these notes.

Feynman viewed his operational calculus as a procedure to invoke when
the Feynman integral, as such, cannot be applied. Indeed, there is an allusion
to Clifford analysis techniques in [28, Appendix B, p. 126]: The Pauli matrices
(times i) are the basis for the algebra of quaternions so that the solution of such
problems [concerning functional calculi] might open up the possibility of a true
mfinitesimal calculus of quantities in the field of hypercomplex numbers. In the
point of view set out here, for the Pauli matrices oy, o3, 03, the key property
needed for the construction of a joint functional calculus by the method of
these notes is that they are selfadjoint, so that £ 0, + &0 + €303 has real
spectrum for all £ = (£,.,&,&3) € R*. Even if the n operators Ay, ... .. A, do
not have real spectra, it is enough to require that the spectrum of the operator
27:] &jA; is contained in a fixed sector in C for all £ € R" in order that the
functional calculus described here should exist.

It is by utilising the underlying real-variable characteristics of Clifford
analysis of monogenic functions defined in R"*! and the spectral properties
of the operators Ay, ..., A, that we can bypass homological considerations of
[104], [111], [25], leading to a rather straightforward approach to forming func-
tions of systems of noncommuting operators. Even in this restricted setting,
there is considerable scope for investigating the properties of joint functional
calculi and their relationship with quantisation procedures and the geometric
analysis of the support of solutions of the hyperbolic system (1.4) of partial
differential equations.

A more detailed description of the contents of the present notes and the
connection with the work of these authors follows.

The background to Weyl’s functional calculus is given in Section 1 of
Chapter 2. A unitary representation of the Heisenberg group is used to form
functions o (D, X ) of position X and momentum operators D in quantum
mechanics on R". The same idea works for a system A = (A,,..., A,) of
n bounded linear operators on a Banach space provided that the right ex-
ponential growth estimates (2.2) are satisfied and this is described carefully
in Section 2 of Chapter 2, from work of E. Nelson [83], M. Taylor [108],
R.F.V. Anderson [7], [8] and A. Pryde [88]. The joint spectrum v(A) of A is
simply the support of the Weyl functional calculus W4 — an operator valued
distribution with compact support.

For n = 1, a single bounded linear operator A satisfies the exponential
growth estimate (2.2) precisely when it is a generalised scalar operator with
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real spectrum [23]. Such operators may be viewed as generalisations of self-
adjoint operators for which spectral measures are replaced by spectral distri-
butions.

Chapter 3 sets down the background in Clifford analysis, such as the
Cauchy integral formula (1.6), needed to construct a functional calculus for
operators. Most of the material here is from the monograph [19]. Other impor-
tant formulae include the monogenic representation of distributions (Theorem
3.3) and the plane wave decomposition of the Cauchy kernel (Proposition 3.4).
Proposition 3.6 gives an approximation result for real analytic functions with
a proof due to F. Sommen.

A natural way to construct the Cauchy kernel for an n-tuple A =
(Ag,..., A,,) of mutually commuting operators with real spectra is to adapt
formula (1.7) in the time-honoured way by replacing the vector x € R" by the
n-tuple A and writing

—(n+1)/2
l B n ) n .
Gy(A) = o |7+ > Ajes | [ vl +> (il — A))° . (1.9
" j=1 i=1
for all y = (yo,y1,---, yn) € R"M with yy # 0. Then the Cauchy kernel
y — G, (A) will have singularities on the set
v(A) =< (0.y1,.... y) ER™0€a [ Y (gl - A)* ] p. (1.10)

Jj=1

This is the basic idea of the paper [75] of A. McIntosh and A. Pryde. If n is
odd, then formula (1.9) is readily interpreted and a functional calculus may
be constructed via the Riesz-Dunford formula (1.8). If n is even, it is not clear
how the fractional power should be interpreted.

Chapter 4 examines this problem from two viewpoints. If A satisfies the
exponential growth estimates (2.2), then G, (A) may be defined as Wa (G)) for
all y € R**! outside the support v(A) of the Weyl functional calculus Wa.
The observation that the operator valued distribution W4 may be passed
from outside the Clifford version of the Cauchy integral formula (1.6) into the
integrand verifies the Riesz-Dunford formula (1.8). It is proved in Theorem 4.8
that v(A) is exactly the set of singularities of the Cauchy kernel y — G, (A).
Section 4.1 is based on [53]. Unlike formula (1.9), it is not necessary to assume
that A consists of commuting operators.

On the other hand, the original motivation for the study of the representa-
tion (1.8) was to treat the (commuting) unbounded operators of differentiation
on a Lipschitz surface — a system of operators that does not satisfy the ex-
ponential estimates (2.2). Soon after the work [75], A. McIntosh realised that
the plane wave decomposition of the Cauchy kernel [103] could be used prof-
itably in the present context. Sections 4.2 and 4.3 are based on joint work
[54] of the author with A. McIntosh and J. Picton-Warlow and represent the
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Cauchy kernel y — G (A) in terms of the plane wave formula. Rather than
the the exponential estimates (2.2), what is essential here is the condition
(4.10) that real linear combinations of Ay,..., A, should have real spectra.
It is not necessary to assume that the bounded linear operators Ay,..., A,
commute with each other. Now the joint spectrum (A) is defined to be the
set of singularities of the Cauchy kernel y — G, (A).

A basic property of the notion of a ‘spectrum’ of an operator or system of
operators is that disjoint components should be associated with projections
onto subspaces left invariant by the system. That the joint spectrum y(A)
enjoys this property is proved in Section 4.4 by appealing to formula (1.8). The
result is actually a consequence of a general version of the noncommutative
Shilov idempotent theorem [4, Theorem 4.1] proved by E. Albrecht, but the
Clifford analysis techniques used in Section 4.4 are natural in the present
context.

Chapter 5 exploits the complementary viewpoints of the joint spectrum
v(A) for a system A = (Ay,..., A,) of matrices as the set of singularities of
the Cauchy kernel G(.)(A) and as the support of the Weyl functional calculus
Wa. For matrices, the spectral reality condition (4.10) is equivalent to the
exponential growth estimates (2.2) necessary for the existence of the Weyl
functional calculus W4. This is proved in Section 5.2 following [44] although,
in another language, the result is known from the techniques of partial dif-
ferential equations, see [58, p. 153]. An explicit formula for W4 due to E.
Nelson [83, Theorem 9] is proved in Section 5.1 for the case that A;,..., 4,
are hermitian N x N matrices. The proof is based on [42].

The ‘numerical range’ of the system A enters into Nelson’s formula. Let
S(CN) = {u € CN : |u| = 1} be the unit sphere in CV. The numerical range
map W4 : S(CN) — R" is defined by

Wa:ur— ((Au,u), ..., (Ayu,u)), ue S((CN),

with (-, -) representing the inner product of CN. The range of W4 is the
‘generalised numerical range’ of the system A. For the case n = 2, the range
of the map Wj4 is just the usual numerical range of the (N x N) matrix
A; + 1As. Differential properties of the numerical range map and their rela-
tionship to spectral properties of the matrix A +iAs are studied in [38] and
[63]. The matrix valued distribution W, is written out in Theorem 5.1 as a
matrix valued differential operator acting on the image uaq = v o W;l of the
uniform probability measure v on S(CV) by the numerical range map Wa4.
An alternative representation of the Weyl calculus Wa is based on formulae of
Herglotz-Petrovsky-Leray [11] for the fundamental solution of the symmetric
hyperbolic system (1.4), but the image measure p4 is not a feature of this
representation.

An explicit calculation of the joint spectrum v(A) of a pair A = (A, As)
of hermitian matrices is made in Section 5.3, following the approach of [56]. If
the matrices A; and As commute with each other, then v(A) can be identified
with the finite set of eigenvalues of the normal matrix A, +iA,, otherwise y(A)



