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Preface

WWIC 2007 was organized by the University of Coimbra, Portugal, and it was the
fifth event of a series of International Conferences on Wired/Wireless Internet
Communications, addressing research topics such as the design and evaluation of
protocols, the dynamics of the integration, the performance trade-offs, the need for
new performance metrics, and cross-layer interactions. Previous events were held in
Berne (Switzerland) in 2006, Xanthi (Greece) in 2005, Frankfurt (Germany) in 2004,
and Las Vegas (USA) in 2002.

As in 2005 and 2006, WWIC was selected as the official conference by COST Action
290 (Wi-QoST-Traffic and QoS Management in Wireless Multimedia Networks).

WWIC 2007 brought together active and proficient members of the networking
community, from both academia and industry, thus contributing to scientific,
strategic, and practical advances in the broad and fast-evolving field of wired/wireless
Internet communications.

The WWIC 2007 call for papers attracted 257 submissions from 36 different
countries in Asia, Australia, Europe, North America, and South America. These were
subject to thorough review work by the Program Committee members and additional
reviewers. The selection process was finalized in a Technical Program Committee
meeting held in Malaga, Spain, on February 15, 2007.

A high-quality selection of 32 papers, organized into 8 single-track technical
sessions made up the WWIC 2007 main technical program, which covered transport
layer issues, handover and QoS, traffic engineering, audio/video over IP, IEEE 802.11
WLAN:S, sensor networks, protocols for ad-hoc and mesh networks, and OFDM
systems. The technical program was complemented by two keynote speeches, by
Henning Schulzrinne (Columbia University, New York, USA) and Nitin Vaidya
(University of Illinois at Urbana-Champaign, USA), on New Internet and 4G Wireless
Networks, and Multi-Channel Wireless Networks, respectively.

In addition to the main technical program, the two days preceding the conference
were dedicated to two workshops: the 1st ERCIM workshop on eMobility
(http://www.emobility.unibe.ch/workshop) and the 1st WEIRD workshop on WiMax,
Wireless and Mobility (http://workshop.ist-weird.eu/).

We wish to record our appreciation of the efforts of many people in bringing about
the WWIC 2007 conference: to all the authors that submitted their papers to the
conference, we regret that it was not possible to accept more papers; to the Program
Committee and to all associated reviewers for their careful reviews; to our sponsors and
supporting institutions; to the University of Malaga, for hosting the TPC meeting.
Finally, we would like to thank all the people that helped us at the University of
Coimbra and all the volunteers from the Laboratory of Communications and Telematics.

May 2007 Fernando Boavida
Edmundo Monteiro

Saverio Mascolo

Yevgeni Koucheryavy
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TCP Contention Control: A Cross Layer Approach to
Improve TCP Performance in Multihop Ad Hoc
Networks

Ehsan Hamadani and Veselin Rakocevic

Information Engineering Research Centre
School of Engineering and Mathematical Sciences

City University, London EC1V OHB, UK
{E.hamadani, V.rakocevic}@city.ac.uk

Abstract. It is well known that one of the critical sources of TCP poor
performance in multihop ad hoc networks lies in the TCP window mechanism
that controls the amount of traffic sent into the network. In this paper, we
propose a novel cross layer solution called “TCP Contention Control” that
dynamically adjusts the amount of outstanding data in the network based on the
level of contention experienced by packets as well as the throughput achieved
by connections. Our simulation results show TCP Contention Control can
drastically improve TCP performance over 802.11 multihop ad hoc networks.

Keywords: Contention, Multiple ad hoc Networks, TCP Congestion Control.

1 Introduction

Multihop ad hoc networks are autonomous systems of mobile devices connected by
wireless links without the use of any pre-existing network infrastructure or centralized
administration. During recent years ad-hoc networks have attracted considerable
research interest thanks to their easy deployment, maintenance and application
variety. To enable seamless integration of ad hoc networks with the Internet (for
instance in ubiquitous computing applications), TCP seems to be the natural choice
for users of ad hoc networks that want to communicate reliably with each other and
with the Internet. However, as shown in many papers (e.g. [1,2]), TCP exhibits
serious performance issues such as low and unstable throughput, high end-to-end
delay and high jitter. This is because most TCP parameters have been carefully
optimized based on assumptions that are specific to wired networks. For instance,
since bit error rates are very low in wired networks, nearly all TCP versions assume
that packet losses are due to congestion and therefore invoke their congestion control
mechanism in response to such losses. On the other hand, because of wireless medium
characteristic and multihop nature of ad hoc networks, such networks exhibit a richer
set of packet losses, including medium access contention drops, random channel
errors and route failure where in practice each are required to be addressed differently.
In particular, as we have shown in [3], when TCP runs over 802.11 MAC in multihop
ad hoc networks, frequent channel contention losses at the MAC layer are wrongly

F. Boavida et al. (Eds.): WWIC 2007, LNCS 4517, pp. 1-16, 2007.
© Springer-Verlag Berlin Heidelberg 2007



2 E. Hamadani and V. Rakocevic

perceived as congestion and are recovered through TCP congestion control algorithm.
This phenomenon severely degrades the performance of TCP as it leads to
unnecessary TCP retransmission, unstable and low throughput, unfairness, high end-
to-end delay, and high jitter. As we concluded there, a high percentage of MAC layer
contention drops can be eliminated by decreasing the amount of traffic load in the
network. This observation in addition to the results derived in [2,4], motivated us to
propose a novel cross layer solution called “TCP Contention Control” that will be
used in conjunction with TCP Congestion Control algorithm. In simple words, when
TCP Contention and TCP Congestion Control are used together, the amount of
outstanding data in the network is tuned based on the level of contention and channel
utilization as well as level of congestion in the network. More precisely, while TCP
Congestion Control adjusts the TCP transmission rate to avoid creating congestion in
the intermediate network buffers, TCP Contention Control adjusts the transmission
rate to minimize the level of unnecessary contention in the intermediate nodes.
Therefore, when two algorithms are used jointly in the network, the TCP sender sets
its transmission rate not merely based on the amount of congestion in the network and
available buffer size at the receiver but also by the level of medium contention in
intermediate nodes along the data connection. Our simulation results over a variety of
scenarios confirm that the proposed scheme can dramatically improve the TCP
performance in multihop networks in addition to substantial decrement in number of
packet retransmission in the 802.11 link layer.

The rest of the paper is organized as follows. In section 2, we will give a brief
overview of TCP congestion control algorithm. In section 3, the main problem of TCP
congestion control in ad hoc networks are discussed in fine details. Then based on the
drawn facts, we propose the new cross layer solution in section 4, which aims to
improve TCP performance in multihop ad hoc networks. This is followed by the
simulation model and the key results obtained by simulating the proposed model
against the default TCP protocol in section 5. Finally, in section 6, we conclude the
paper with some outlines towards future work.

2 TCP Congestion Control

TCP Congestion Control was added to TCP in 1987 and was standardized in RFC2001
[5] and then updated in RFC2581 [6]. In a broad sense, the goal of the congestion
control mechanism is to prevent congestion in intermediate router’s buffer by
dynamically limiting the amount of data sent into the network by each connection. To
estimate the number of packets that can be in transit without causing congestion, TCP
maintains a congestion window (cwnd) that is calculated by the sender as follows:
when a connection starts or a timeout occurs, slow start is performed where at the start
of this phase, the cwnd is set to one MSS (Maximum Segment Size). Then the cwnd is
increased by one MSS for each acknowledgment for the new data that is received. This
results in doubling the window size after each window worth of data is acknowledged.
Once cwnd reaches a certain threshold (called the slow start threshold, ssthresh), the
connection moves into the congestion avoidance phase. Ideally, a TCP connection
operating in this phase puts a new packet in the network only after an old one leaves.
The TCP in congestion avoidance also probes the network for resources that might
have become available by continuously increasing the window, albeit at a lower rate
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than in slow start. In the start of this phase, TCP gently probes the available bandwidth
by increasing the cwnd by one packet in every round trip time (Additive Increase).
During this time if the TCP detects packet loss through duplicate acknowledgments, it
retransmit the packet (fast retransmit) and decreases the cwnd by a factor of two
(Multiplicative Decrease) or it goes to slow start according to the TCP version used.
Alternatively, if the sender does not receive the acknowledgment within retransmission
time out (RTO), it goes to slow start and drops its window to one MSS. In both
occasions, the ssthresh is set to half the value of cwnd at the time of loss.

After calculating the current value of cwnd, the effective limit on outstanding data
(i.e. flight size), known as ‘send window’ (swnd), is set as the minimum of the cwnd
and available receiver window (rwnd). The rwnd is the amount of available buffer
size in the receiver side and is taken into account in order to avoid buffer overflow at
the receiver by a fast sender (flow control). Therefore:

swnd = min{rwnd ,cwnd } (1

3 Problem Description

As we mentioned in section 2, the performance of TCP directly depends on the swnd.
It is well known that the optimal value for swnd should be proportional to the
bandwidth-delay product of the entire path of the data flow [4]. It is important to note
that the excess of this threshold does not bring any additional performance
enhancement, but only leads to increased buffer size in intermediate nodes along the
connection. As shown in [1,7,8], the bandwidth-delay product of a TCP connection
over multihop 802.11 networks tends to be very small. This is mainly because in
802.11, the number of packets in flight is limited by the per-hop acknowledgements at
the MAC layer. Such property is clearly quite different from wireline networks, where
multiple packets can be pushed into a pipe back-to-back without waiting for the first
packet to reach the other end of the link. Therefore, as compared with that of wired
networks, ad hoc networks running on top of 802.11 MAC, have much smaller
bandwidth-delay product. However, as shown in [2], TCP grows its congestion
window far beyond its optimal value and overestimates the available bandwidth-delay
product. To get a better understanding of TCP overestimation of available bandwidth-
delay product in ad hoc networks, consider a simple scenario in fig.1 where all nodes
can only access their direct neighbors. Here a TCP connection is running from node A
to E and all nodes have at least one packet to send in the forward direction.

Fig. 1. 4 hop chain topology

Let us assume nodes B and D initially win the channel access and start to transmit
their data into the network at the same time. Soon after both stations start
transmitting their data, the packet from B to C is collided with the interference caused
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by D>E transmission. Following this case, node A is very likely to win the access to
the channel and starts transmitting several consecutive packets towards B before
releasing the channel [9]. Meanwhile, since B is unable to access the channel it
buffers the new packets in addition to packet(s) already in its buffer and starts
building up its queue (figure 2).

Fig. 2. Queue build up in network

This results in an artificial increase of the RTT delay measured by the sender as node
B now becomes the bottleneck of the path. Such situation leads to an overestimate of the
length of available data pipe and therefore an increase of the TCP congestion window
and hence network overload in the next RTT. To have a better understanding of the
effect of network overload on the TCP performance, fig.3 summarizes the chain of
actions that occur following a network overload. In particular, increasing the network
overload causes higher amount of contention among nodes as all of them try to access
the channel (stage 2). On the other hand, when the level of contention goes up, more
packets need to be retransmitted as the probability of collision increases with the
increasing level of contention (stage 3). This in turn introduces extra network overload
and therefore closing the inner part of the cycle (stage 1 >stage2->sage3->stagel).

A e o TS

/ Stage 2 .
Excessive MAC
Contention

Stage 1 ey
Network Overload yer
Retransmission

$S07 UORUBIUOY) 1xoed

. / Stage 4 \
Stage 5 >< _————— —‘(TCPTimeout/TCP

TCP Retransmission Fast retransmit
\—/
Fig. 3. TCP Instability cycle

This cycle is continued until one or more nodes cannot reach its adjacent node within a
limited tries (specified by MAC_Retry_Limit in 802.11 MAC standard [10]) and drop the
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packet (packet contention loss). This packet loss is then recovered by the TCP sender
either through TCP fast retransmit or through TCP timeout (stage 4). In both cases, TCP
drops its congestion window resulting in a sharp drop in number of newly injected packets
to the network (stage 5) and therefore giving the network the opportunity to recover.
However, soon after TCP restarts, it creates network overload again by overestimating the
available bandwidth-delay product of the path, and the cycle repeats.

Fig.4 shows the change of cwnd and the instances of TCP retransmission in a 4 hop
chain topology as shown in figure 1 using 802.11 MAC. Here, the only cause of
packet drop in the network has been set to contention losses to verify the problem of
TCP and link layer interaction in ad hoc networks. The results fully support the above
argument and confirm that TCP behavior towards overloading the network causes
extensive packet contention drops in the link layer. These packet drops are wrongly
perceived as congestion by the TCP and result into false trigger of TCP congestion
control algorithm and frequent TCP packet retransmissions.

This observation is also confirmed in many studies such as [1,2,11] by showing
that TCP with a small congestion window (e.g., 1 or 2) tends to outperform TCP with
a large congestion window in 802.11 multihop networks. To enforce the congestion
window to a small value, the authors in [4] showed that the bandwidth-delay product
of ad hoc networks is limited to round trip per hop count (RTHC). They then refine
this upper bound based on the 802.11 MAC layer protocol, and show that in a chain
topology, a tighter upper bound of approximately 1/5 of the round trip hop count of
the path outperforms in comparison to default TCP. The authors in [2] impose a hard
limit of 1/4 of chain length based on transmission interference in 802.11.

14 ! ! ! ! T T = a I " &
¢ : : ] — cwnd

cwnd (Packets)

i i i i i i i i
800 210 220 230 240 250 260 270 280 290 300
Time (sec)

Fig. 4. Change of cwnd and the instances of TCP retransmission in a 4 hop chain topology



