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§ 1. Lecture Notes aim to report new developments - quickly, informally, and at
a high level. The texts should be reasonably self-contained and rounded off. Thus
they may, and often will, present not only results of the author but also related
work by other people. Furthermore, the manuscripts should provide sufficient
motivation, examples and applications. This clearly distinguishes Lecture Notes
manuscripts from journal articles which normally are very concise. Articles
intended for a journal but too long to be accepted by most journals, usually do not
have this “lecture notes” character. For similar reasons it is unusual for Ph. D.
theses to be accepted for the Lecture Notes series.

§ 2. Manuscripts or plans for Lecture Notes volumes should be submitted
(preferably in duplicate) either to one of the series editors or to Springer- Verlag,
Heidelberg . These proposals are then refereed. A final decision concerning
publication can only be made on the basis of the complete manuscript, but a
preliminary decision can often be based on partial information: a fairly detailed
outline describing the planned contents of each chapter, and an indication of the
estimated length, a bibliography, and one or two sample chapters - or a first draft
of the manuscript. The editors will try to make the preliminary decision as definite
as they can on the basis of the available information.

§ 3. Final manuscripts should preferably be in English. They should contain at

least 100 pages of scientific text and should include

- a table of contents;

- an informative introduction, perhaps with some historical remarks: it should be
accessible to a reader not particularly familiar with the topic treated;

- a subject index: as a rule this is genuinely helpful for the reader.
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Branching processes, the Ray-Knight
theorem, and sticky Brownian motion

JONATHAN WARREN!
University of Bath, U.K.

1 Introduction

Diffusions with boundary conditions were studied by Ikeda and Watanabe [5] by means
of associated stochastic differential equations. Here we are interested in a fundamental
example. Let 8 and z be real constants satisfying 0 < § < oo and 0 < z < 0o. Suppose
(2, (Ft)e>0, P) is a filtered probability space satisfying the usual conditions, and that
(Xi;t > 0) is a continuous, adapted process taking values in [0, 00) which satisfies the
stochastic differential equation

t t
(1.1) X =.’L‘+9/ I{X,zo)ds+/ I{xs>0}dW,,
0 0

where (W,;t > 0) is a real valued (F;)-Brownian motion. We say that X, is sticky
Brownian motion with parameter 6, started from z. Sticky Brownian motion has a
long history. Arising in the work of Feller [3] on the general strong Markov process on
[0,00) that behaves like Brownian motion away from 0, it has been considered more
recently by several authors, see Yamada [12] and Harrison and Lemoine [4], as the
limit of storage processes, and by Amir [1] as the limit of random walks.

Ikeda and Watanabe show that (1.1) admits a weak solution and enjoys the
uniqueness-in-law property. In [2], Chitashvili shows that, indeed, the joint law of
X and W is unique (modulo the initial value of W), and that X is not measurable
with respect to W, so verifying a conjecture of Skorokhod that (1.1) does not have a
strong solution. The filtration (F;) cannot be the (augmented) natural filtration of W
and the process X contains some ‘extra randomness’. It is our purpose to identify this
extra randomness in terms of killing in a branching process. To this end we will study
the squared Bessel process, which can be thought of as a continuous-state branching
process, and a simple decomposition of it induced by introducing a killing term. We
will then be able to realise this decomposition in terms of the local-time processes of
X and W. Finally we will prove the following result which essentially determines the
conditional law of sticky Brownian motion given the driving Wiener process.

Theorem 1. Suppose that X is sticky Brownian motion starting from zero, and that
W is the driving Wiener process, also starting from zero. Letting L, = sup,<,(—W),
the conditional law of X given W satisfies

P(X, < z|o(W)) = exp ( — 20(W, + L, — z)) a.s.

for z € [0, W, + L,].

ljwl@maths.bath.ac.uk



Note in particular that X, € [0, W, + L,] a.s.. The proof of this result is given in
Section 4, and depends on the construction of the pair (X, W) discussed in Section
3. Section 2 is essentially independent, but helps provide us with the intuitive reason
for believing Theorem 1.

We begin with a simple but illuminating lemma on sticky Brownian motion, and
fix some notation we will need in the sequel.

We denote:
t
(1.2) Af :/ Iix,>0pds; af =inf{u: A} > t};
0
t
1.3 Al = Iix.—0vds; ao-—-infu:A3>t.
t 4 {X,=0} t

Then we have

Lemma 2. If we time change both sides of (1.1) with o™, the right-continuous inverse
of A%, we find that (Xu'+,t > 0) solves Skorokhod’s reflection equation

X+ =W+ L

where W, = z—f—foa:r Iix,>0ydW, is a Brownian motion, and L} = sup,, ((—W,")Vv0).
Proof. On time changing we have

Xop = Wit + 042,

Observe that W is a Brownian motion by Lévy’s characterization. Now, A? is a
continuous and increasing function of ¢, A} is a continuous and strictly increasing
function of t, and so L} = GA‘;Jr is also a continuous and increasing function of ¢.

Furthermore it is constant on the set {t : X,+ > 0}. The criteria of Skorokhod’s
lemma, see [9], are thus satisfied and L; = sup,,(~W,") as claimed. O

This lemma shows us that sticky Brownian motion is just the time change of a
reflecting Brownian motion so that the process is held momentarily each time it visits
the origin. In this way it spends a real amount of time at the origin, proportional to
the amount of local time the reflecting Brownian motion has spent there, in fact,

(1.4) 0A2, = Lf.

The laws of Af,A? and other quantities can be obtained directly from this, as has
been accomplished by Chitashvili and Yor [13].

2 A decomposition of the squared Bessel process

We consider two processes (R;,¢ > 0) and (Y;,t > 0) satisfying

(218.) th =24/ Rt dBt — 29Rt dt, RO =2z,
(2.1b) dY, = 2\/Y,dB, + 20R, dt, Y, =0,

where B and B are independent Brownian motions.



Proposition 3. V; = R, +Y, is a squared Bessel process of dimension 0 started from
T

Proof. One need only make a simple application of Pythagoras’s theorem, following
Shiga and Watanabe [11]. We sum the two equations of (2.1) and note that

t VR,dB, + /Y, dB,
0 Vv Ra + )/s

is a Brownian motion. O

This simple decomposition can be thought of in the following manner. V; is the
total-mass process of a continuous-state critical branching process and R, that of a
subcritical process. But a subcritical process can be obtained from a critical process
by introducing killing at some fixed rate into the latter. Y; represents the mass of
that part of the critical process descended from killed particles. The idea that ‘R, is
V; with killing at rate 26" will pervade this paper.

V; has some finite extinction time 7 = inf{¢ : V, = 0}, see for example Revuz and
Yor [9], and the same is true of Ry, its extinction time being denoted by o. It is clear
that 7 > o; perhaps surprisingly 7 can equal o, and we will calculate the probability
of this. This will be accomplished first via the Lévy-Khintchine formula and then
extended using martingale techniques.

Lemma 4. The laws of the eztinction times T and o are given by

P(r € dt) = 2% exp(—z/2t) dt,

and

2
P(o € dt) = 3z [ﬁ} exp [1z6(1 — coth(tf))] dt.

Proof. From Pitman and Yor (8],

P(V; = 0) = exp(—z/2t),

and
P(R, =0) = /\lim Eexp(—AR,) = exp [3z6(1 — coth(t9))] .
—00
The lemma follows on differentiating. 0O

We wish to prove the following.

Proposition 5. The conditional law of the extinction time of the subcritical process
given the extinction time of the critical process satisfies

P(o = 7|7) = exp(—20T) a.s..



This can be loosely interpreted as the probability that the last surviving particle
of the critical process also belongs to the subcritical process, an event that depends
on whether there has been any killing along its line of ancestry.

Let us denote the law of a process satisfying

dZ, = 2\/Z,dB, + 2(BZ, + 6) dt, Zo=y

by #Q¥, and the law of the Z-process conditioned to be at z at time ¢ by Q¢*,,. Now
the following Lévy-Khintchine formula comes from Yor [14],

Elexp(—AY:)|o(R)] = exp {— /n*(de)/oz ds 20R, (1 —exp(— /\l,_,(e)))} ,

where nt is the restriction of It6 excursion measure for Brownian motion to positive
excursions and li(e) the local time at height ¢ of the excursion e. Letting A 1 oo, we
have

0 if supe>t—s,
exp (= Ali—s(€)) = { 1 otherwise.

Hence, since n*(supe >t — s) = 1/2(t — s) we obtain

(2.2) P(Y, = 0|o(R)) = exp {— /Ot dsOR,/(t - s)} ;

From this it follows that

(2.3) P(Y,=0lc=t) = I_,Oexp{ 0/ Z,/(t—s)d }

Note that because we are conditioning to hit 0 at time ¢ and not before, we obtain

=4 z—>o» and not 9QI_,0 as one might expect, see [8] for a full discussion. To evaluate
this we begin by observing that by the change of measure given in Pitman and Yor

[8]7

(2.4) ~°Q O_,Oexp{ 9/Z/t—s }

0Q}, exp {—Of(: Z,/(t—s)ds — —02f0 Z, ds}
0Qp",, exp {—%62f0 Zy ds} ‘

Now from [9], under °Qg",,, Z, solves, for u < t,

Zu:Q/u \/ZdB,+2/u[2—Z,/(t—s)]ds,
0 0

where B is a Brownian motion. Hence,

t t
9/ Zs/(t—s)ds=2t0+9/ vV Z,dBs,
0 0



but, of course, [;'/Z, dB, is a martingale with quadratic variation Iy Z,ds, so

exp {—0/ vV Z,dB, — %02/ Fs ds}
0 0

is a martingale too (it’s bounded above by exp(26t)!!). We take expectations and have
succeeded in evaluating the numerator of (2.4),

t t
(2.5) °Q5",, exp {—9/ Zs/(t —s)ds — %02/ Zs ds} = exp(—2t6).
0 0

We find directly from Pitman and Yor (8] that the denominator satisfies

(2.6) °Qpt,, exp {—%92/; Z ds} = {ﬁr.

Next we observe, recalling (2.2),

QL exp {—9[0' Zs/(t — s) ds}
(2.7) o exp{ 0/ Batlp—md } - QU z,=0)
_ OQ:?I{ZC:Q} _ P(T Z t)
QIzi—0y Plo>1t)

We can now proceed to

Proof of proposition 5. The Pitman-Yor decomposition, [8],

—0 4t _ -6
’ QO—»O z—)ov

allows us, combining (2.5),(2.6) and (2.7), to compute P(7 = t|o = t). Then we have

and substituting from the lemma we are done. O

We will now extend this result by conditioning on the whole of V, instead of just
its extinction time. We will need the following lemma, which is perhaps of some
independent interest.

Lemma 6. Suppose M and N are continuous, orthogonal martingales with respect to
a filtration (F;;t > 0), and suppose that M has the following representation property.
Any bounded, o(M)-measurable variable ® is of the form

<I>=c+/ H, dM,,
0

where H, is F;-previsible, and ¢ € o(My). Let G, = F, V o(M), then N 1is a G-
martingale.



Proof. By an application of the monotone-class lemma, it suffices to show that for
bounded o(M)-measurable variables @,

E[q)(Nt - Na)l}-s] =0.

But, by the representation property,

E[®(N, - N)|F)] = E[{ /0 A, dMu}(Nt - N,) f,}

=E[(H-M),N; — (H-M),N,|F,]
=0,

since (H-M) and N are orthogonal. O
Now on the stochastic interval [0,7) we define

t

R
O, = A exp(26t).

Applying It6’s formula gives

VR,
Vi

R
de, = {2 dB, — V—;dv,} exp(26t),
t

which shows ©, to be a local martingale on [0,7). Moreover, since ©, < exp(26t),
©, tends to a finite limit as t 17, and if we define ©; = ©,_ for t > 7, then ©; is a

martingale for 0 <t < oo .
If we continue to calculate with Itd’s formula, we find that, for t < 7,

(2.82) 0.V, = 0
t

Thus we have proved

Lemma 7. ©, is a F;-martingale with quadratic variation

tAT (s
6], = / ds 47’(exp(295) -6,),
0 s

and furthermore © is orthogonal to V.

So if we put G, = F; V o(V), we can apply Lemma 6 to deduce that ©; is a
G.-martingale. Moreover, 7 is Gyp- measurable, and so for any positive constant K,

Eeoo](1'<K} = E901{1'<K}1
since ©;1(,; <k} is a bounded G,-martingale. But as K too we obtain
EQ, =EQy =1,

whence O is uniformly integrable. Now we are able to prove



Proposition 8. The conditional law of the extinction time of the subcritical process
gwen o(V;; 0 < t < 00) satisfies

P(o = 7|o(V)) = exp(—20r) a.s..

Proof. We have already remarked that ©._ exists and hence [0], is finite almost
surely. It is easy to confirm, for example by time inversion, that fOT V. lds = oo, and
thus we deduce from the formula for the quadratic variation process of ©, given in
Lemma 7, that O,(exp(20s) — ©,) — 0 as s1T 7. Hence ©, is either 0 or exp(267).
Furthermore,

E[©,|Go] = E[6|Go] = 1,
and so,
P(©, = exp(207)|o(V)) = exp(—267).

Now observe that 7 > ¢ implies that ©, = 0 (but the converse isn’t so evident!),
whence

P(r = ol|o(V)) > exp(—267).
But
P(r = o|r) = E[P(r = olo(V))|r] = exp(—267),

implying the desired equality. O

3 A decomposition of Brownian motion

It is now well known, as excellently described by Le Gall [7], that if we interpret the
squared Bessel process of dimension zero as a continuous-state branching process then
the associated genealogical structure is carried by Brownian excursions. In this section
we will give a decomposition of Brownian motion that corresponds to the decompo-
sition of the squared Bessel process induced by the killing considered previously. By
looking at local times we will be able to recover Proposition 3.

To begin we recall:

Theorem 9 (Ray-Knight). If W, is reflecting Brownian motion, starting from zero,
with I its local time at level y, then, letting 7, = inf{t: [} > z}, we have (I ,y > 0)
15 a squared Bessel process of dimension 0 started from z.

If we introduce drift we can obtain the subcritical process of the previous section
in a similar manner.

Theorem 10. If S; is reflecting Brownian motion with drift § towards the origin,
starting from zero, and if I¥ is its local time at level y, then letting T, = inf{t : I > z},
we have the law of the process (I¥_,y > 0) is ~°Q0.



