143

MR

o L

STANDARDIZED
DEVELOPM.
OF
COMPUTER
SOFTWARE

e
Z
=

Robert C. Tausworthe

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

PART II
STANDARDS

PRENTICE-HALL, INC., Englewood Cliffs, New Jersey 07632

Published in 1979 by Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

This material was prepared by the Jet Propulsion Laboratory under contract
No. NAS7-100, National Aeronautics and Space Administration.

Printed in the United States of America
109876~ 5 4 3 2 1

ISBN: 0-13-842203-6

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA, PTY. LIMITED, Sydney
PRENTICE-HALL OF CANADA, PTD., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo
PRENTICE-HALL OF SOUTHEAST ASIA PTE. LTD., Singapore
WHITEHALL BOOKS LIMITED, Wellington, New Zealand

PREFACE

At the time Part I of this work was being published, the Jet Propulsion
Laboratory’s Deep Space Network (DSN) was in the process of developing
and writing a set of Software Standard Practices, for which Part I was cited
as the “methodology textbook.” The standards were developed over several
years by a group we simply called the “Software Seminar.” It was created
and chaired in its “pathfinder period” by Walter K. Victor, who was, by the
way, the significant inspirator of Part I. Mahlon F. Easterling then led that
symposium (second Webster [43] meaning) through its next “pilot™ phase.
Edward C. Posner steered it through the arduous, major, final phase
involving detailed standards development, consensus building, writing,
review, and publication; he also sponsored the final symposium (first
Webster [43] meaning) immediately after the standards were signed off by
upper management. Daniel C. Preska administered the writing of the
standards, with editorial assistance by Richard C. Chandlee.

The test-bed for the methodology reported in Part I had been an effort of
medium magnitude—a program (the MBASIC™ language processor)
containing about 25,000 lines of non-real-time assembly language code. The
results of that methodology test-bed seemed to indicate that programmer
performance better than had been encountered in past DSN projects could
be extended to the DSN as a whole—an organization involving perhaps 100
programmers in various disciplines.

With that belief, the implementation team manager of a critical
hardware/software project—to completely upgrade the digital data systems
in all of the deep-space stations around the world—undertook the additional
task of applying and evaluating the then-emerging DSN Software Standard
Practices as a standards-test-bed activity. The overall project, including
software for system performance tests, generated approximately 100,000
lines of hard-real-time assembly language code over about 2-1/2 years.

That project could ill-afford to be a mere guinea pig for a software
standards seminar, because the delivery of the first-phase system was

crucially tied to upcoming spacecraft launch dates and committed on-going

iv Preface

missions. Even moderate deviations from the original schedule could not be
tolerated. Short slippages could, perhaps, be accommodated if detected
early enough for appropriate replanning.

Yet the prospects for success using the standards seemed good. A
software manager was appointed, cognizant software development
engineers for each of the major assemblies making up the system were
selected, and a secretariat function (Chapter 17) was established.
Subcontractors were selected to aid in all activities of the implementation
and integrated with JPL personnel into a unified team. All were
admonished to apply and conform to the (draft-form) software standards to
the maximum extent, except where it could be shown that adherence to
standards was interfering with the schedule. Waivers were granted on a
case-by-case basis, in writing, to record the details wherein standards
proved ineffective.

The project demonstrated numerous gratifying benefits arising from the
methodology presented in Part I and the more detailed standards contained
in this second volume. Among these were good schedule and cost
performance, high product reliability, adequate documentation, increased
productivity, and smooth development and delivery.

The delivery date did slip from the original 2-1/2 year plan by somewhat
less than 1 month (3% accuracy of original plan). However, this slip was
predicted about 7 months in advance of its actual occurrence, so that
effective contingency planning could be initiated. The 6% cost overrun was
also predicted well enough in advance that reallocation of project resources
was effective. These excesses were considered unusually slight, particularly
in comparison to past JPL experience and then-current industry-published
data.

The software contained an average of approximately 3 errors per
thousand lines of code, measured from the beginning of system integration
tests, as compared to 10-20 errors per thousand lines commonly reported
in similar projects not employing top-down structured programming
methodology. This test phase, as a matter of fact, required only about 15%
of the overall effort, whereas industry-published figures and previous JPL
experience quoted about a 50% level of effort. The difference in effort was
expended in the design and planning phases to produce a more mature,
well-documented, reliable product.

The development and delivery were reported as being smooth and
controlled. No “tiger teams” were required during implementation, no
significant renegotiation of software commitments was needed near the end

Preface v

of production, and the software was delivered ready for operation with very
few liens levied for future corrective action.

The standards, of course, did not accomplish these achievements—people
did. JPL was fortunate to have had outstanding personnel performing in an
exceptional, professional manner throughout the project. All that one may
claim for the standards is that they provided a methodology which allowed
each member of the project to apply himself or herself toward the
accomplishment of project goals in the most effective way.

That methodology held up to its promise. The managers, designers,
coders, operational personnel, documentarians, and theoreticians in concert
had crafted and codified a viable, detailed set of practices for producing
software. All concerned had had a voice in the creation and adjustment of
their software engineering discipline, and for once the “horse” designed and
built by a “committee” didn’t turn out to be a “camel.”

Part II of this monograph, then, exposes this detailed set of rules for
software implementation. I have broadened some of the DSN practices in
some instances, in an attempt to make them more readily adaptable to
organizational structures different than that of the DSN. Additional
consonant practices from other sources have also been incorporated to
broaden the scope of applicability to projects of types other than the high-
technology, high-efficiency, single-purpose, custom-built variety demanded
by the deep-space-station environment.

There are many whom I must thank and acknowledge for their many and
various contributions toward the completion of this second volume.
Robertson Stevens, the former manager of a large computing facility and,
during this time, manager of the upper-level organization containing the
hardware/software project, was the propounder of many of the manage-
ment policies and status monitors that are found in this work. Paul T.
Westmoreland was the manager of the implementation project; his
professionalism, ability to manage, faith in a standardized approach, and
courage to commit that approach to a critical task have been a personal
inspiration.

I must also acknowledge the effectiveness of Alvin F. Ellman of the
Bendix Corporation, who was software manager. It was perhaps Al’s ability
to recognize what quantitative information a programmer could communi-
cate naturally to management and others that led to the refined status
monitors that proved so effective. His ability to relate to and interface with
project-internal programmers and project-external systems engineers and
users was a major factor in an organization-wide feeling of confidence in
the health of the growing and maturing software.

vi Preface

The subsystem Cognizant Development Engineers were Robert Desens,
Frank Hlavaty, Ronald Murray, Gary Osborn, and Steve Yee. Observance of
their applications of the standards and their performance under the
standards produced many refinements for effectiveness.

The members of the DSN Programming System Steering Committee
included, at various times, Walter K. Victor, Robertson Stevens, Mabhlon
Easterling, Lee W. Randolph, Carl W. Johnson, Cecil P. Wiggins, Edward
C. Posner, Malvin L. Yeater, William C. Frey, William D. Hodgson,
Angela Irvine, Raul D. Rey, Richard B. Miller, and Donald L. Gordon. Each
made special contributions too numerous to single out.

R. Booth Hartley and Lawrence R. Hawley were both co-developers and
appliers of the rules given here during the various implementations of
elements of the DSN Programming System. Their support, feedback, and
ability were sorely needed and freely provided during the preparation of
this material. Kay Landon and Leonard Benson proofread Part I and
generated its index; they also progammed a prototype CRISPFLOW
processor, leading to the descriptions in Appendix G. Annamarie Grana
helped evaluate the utility of Appendix C, using it as a guide for the
generation of two SRDs. Frank Hlavaty collaborated in the formation of
Appendix E. Michelle Martin and Marshall Polsley contributed to the
format and content of Appendix I Richard Schwartz’s influence is
prevalent in the standard language discussions in Chapter 17. John Johnson
and Henry Kleine were instrumental in the formation of the CRISP

language.

I give special thanks to Georgiana Clark, who typed and corrected the
entire manuscript; to Carol Rosner, who had typed a preliminary draft of
the first five chapters; to Margaret Seymour, who drafted all the figures
except those in Appendices G and L; to Silvia Munoz, who aided in
generating the index; to Harold Yamamoto, who edited the volume for
publication; and to Doris Perry, who coordinated all the artwork and was
responsible for the final page makeup. I also extend a belated thanks to
Anita Sohus, who coordinated all the artwork for Part I.

Finally, I wish to thank those who have participated in the many
seminars and classes given on this material during its various stages of
completion; many insights into the secrets of software engineering across a
broad programmer base were revealed to me as the result of these
interactions.

Robert C. Tausworthe

Part |l
STANDARDS

XI.

XI1.

XIII.

CONTENTS
PART I

SOFTWARE REQUIREMENTS AND DEFINITION
STANDARDS

1.1
11:2
11.3

1.4

11:%

11.6

GENERATING SOFTWARE
REQUIREMENTS . . .
GENERATION OF THE SOFTWARE
ARCHITECTURAL DESIGN . .
GENERATING THE SOFTWARE
FUNCTIONAL SPECIFICATION . .
DOCUMENTING TECHNICAL REQUIRE
MENTS AND FUNCTIONAL
SPECIFICATIONS . . .

RULES FOR THE SOFTWARE
DEVELOPMENT LIBRARY .
SUMMARY .

PROGRAM DESIGN AND SPECIFICATION
STANDARDS

121
12:2

12.3

12.4

12:5

12,6
12.7

12.8

12:9

RULES FOR STRUCTURAL DESIGN . .
RULES FOR DATA STRUCTURING AND
RESOURCE ACCESS DESIGN

RULES FOR DEVELOPING STRUCTURED

PROGRAMS . . . :
RULES FOR APPLYING STRUCTURED
PROGRAMMING THEORY . . .
RULES FOR REAL-TIME STRUCTURED
PROGRAMS . . .

STANDARD DESIGN PRACTICES
RULES FOR DOCUMENTING
STRUCTURED SPECIFICATIONS . .
RULES FOR THE SOFTWARE DEVELOP
MENT LIBRARY

SUMMARY .

PROGRAM CODING STANDARDS

13.1

RULES FOR CODING STRUCTURED
PROGRAMS

vii

14

19

33
34

35
36
39
45
49

53
57

58

83
84

85

86

viii

XIV.

XV.

XVI.

Contents

13.2 RULES FOR CODING STRUCTURED
REAL-TIME PROGRAMS . .

13.3 RULES FOR DOCUMENTING
STRUCTURED CODE . .

13.4 STANDARD PRODUCTION
PROCEDURES

13.5 SUMMARY .

DEVELOPMENT TESTING STANDARDS .

14.1 RULES FOR SPECIFYING DEVELOP-
MENT TESTS .". 2

14.2 RULES FOR DEVELOPING TESTS FOR
REAL-TIME PROGRAMS . . .

14.3 RULES FOR ASSEMBLING AND PER
FORMING TESTS . . :

14.4 RULES FOR CODING TEST ELEMENTS :

145 RULES FOR DOCUMENTING
DEVELOPMENT-TEST SPECIFICATIONS.

14.6 RULES FOR DOCUMENTING TEST
RESULTS -y . - :

14.7 RULES FOR THE SOFTWARE
DEVELOPMENT LIBRARY

14.8 DIAGNOSTIC PROCEDURES

14.9 SUMMARY .

QUALITY ASSURANCE STANDARDS

15.1 STANDARD QA ACTIVITIES . . .

15.2 QA MEASURES DURING PROGRAM
DEVELOPMENT . . -

15.3 SOFTWARE TESTING
CHARACTERISTICS . . .

15.4 RULES FOR ACCEPTANCE TESTING
AND CERTIFICATION .

15.5 SOFTWARE AUDITS . ;

15.6 DOCUMENTATION OF QA ACTIVITIES :

15.7 RULES FOR SECURITY, INTEGRITY, AND
CONFIGURATION CONTROL .

15.8 SUMMARY .

LEVELS OF DOCUMENTATION

16.1 HUMAN FACTORS

93
94

98
101

103

104
107

107
109

111
111
112

113
114

115
116
117
118
129
132
138

143
145

147

148

XVII.

APPENDICES

REFERENCES

INDEX

16.2
16.3
16.4

Contents

DOCUMENTATION STANDARDS. . .
PREPARATION OF DOCUMENTATION
SUMMARY .

A STANDARD SOFTWARE PRODUCTION
SYSTEM :

17.1
17.2
17.3
17.4
17.5
17.6
17.7

17.8

A.

=

A

rom

A

M.

AN INTEGRATED SOFTWARE
PRODUCTION SYSTEM

THE STANDARD PRODUCTION SYSTEM

SUPPORT LIBRARY

STANDARD PROGRAMMING LANGUAGES

AND LANGUAGE STANDARDS
CRISP-PDL PROCESSING . . .
FLOWCHARTING FROM CRISP- PDL i
TEXT AND PROGRAM FILE EDITING.
MANAGEMENT DATA AND STATUS
REPORTING

CONCLUSION

GLOSSARY OF TERMS AND
ABBREVIATIONS . . .

STANDARD FLOWCHART SYMBOLS
SOFTWARE REQUIREMENTS
DOCUMENT TOPICS
SOFTWARE DEFINITION DOCUMENT
QUTLINE . !

SOFTWARE SPECIFICATION
DOCUMENT OUTLINE .

USER INSTRUCTION MANUAL TOPICS .

CRISP SYNTAX AND STRUCTURES

DEVELOPMENT PROJECT NOTEBOOK

CONTENTS . .
OPERATIONS MANUAL CONTENTS

SOFTWARE TEST REPORT CONTENTS .

SOFTWARE MAINTENANCE MANUAL
CONTENTESZ e :
SAMPLE PROGRAMS FOR PROJECT
MANAGEMENT 4
USEFUL STANDARD FORMS

ix

155
166
169

171

172
185

187
201
205
210

212
217

219
237

251

263

275
295
309

373
383
399

407

415
513

539
543

Contents

.
[,
IV

VI.
VII.

VIIL.
IX.

PART |

Introduction

Fundamental Principles and Concepts
Specification of Program Behavior

Program Design

Structured Non-Real-Time Programs
Real-Time and Multiprogrammed Structured Programs
Control-Restrictive Instructions for Structured
Programming (CRISP)

Decision Tables as Programming Aids
Assessment of Program Correctness

Project Organization and Management

Xl. SOFTWARE REQUIREMENTS AND
DEFINITION STANDARDS

This chapter is the first of a set containing specific standards extracted
from, or generated in response to, the methods presented in Part I. These
are the rules that guide the top-down, hierarchic, modular, structured
approach to software development.

There are, of course, no universal rules to make intricate programming a
simple task, and there is perhaps very little hope of ever completely
formalizing the programming process. Design is a creative, inventive craft.
But merely identifying the constraints, objectives, design tools, and
parameters in a standardized way yields considerable progress in dealing
with problems effectively. Furthermore, these standard procedures can be
taught. References [1] through [6] are examples of standards in effect based
on the methodology reported here.

The standards and practices contained in the remainder of this work are

meant primarily to apply to new programs or major extensions to existing
programs intended for operational use. They are meant to be easy to use, to

1

2 Software Requirements and Definition Standards [CHAP. 11

be somewhat flexible, and to provide guidelines for focusing the activities
toward what is most needed.

The use of a consistent outline and format for documenting each activity
is presumed. The outlines in Appendices C, D, and E contain a detailed set
of topics to be considered in defining the requirements and functional
behavior of a software package. The topics also give guidelines as to what
material is to be specified within each topic.

A large portion of any software engineering activity deals fundamentally
with the planning of a software development, rather than the actual doing
of it. I recognize that a discipline for such planning is needed just as much
as a discipline for doing, so I have oriented the rules given here toward the
more technical aspects of project engineering and software development.
The interested reader wishing to delve more deeply into management and
planning disciplines may consult [1] through [11].

11.1 GENERATING SOFTWARE REQUIREMENTS

A software requirement is a need established for a piece of software by
an organization in order to achieve certain goals. The requirement-
generation activity culminates in the approvals, negotiations, and
commitments of resources necessary to initiate, sustain, and complete the
software development. Although I have not considered requirements
generation in past chapters to be among the software development
activities, nevertheless, there are a few guidelines that can make the
generation of software requirements more uniformly responsive to the
needs of oncoming activities.

The Software Requirements Document (SRD) is, relatively speaking, a
non-technical document; in its first-reviewed form, it probably contains
only enough functional and technical information and requirements
(perhaps by reference) to identify the need for a perhaps intangible
capability. At this point, its content is primarily oriented so as to allow the
authorizing organization to determine what it is approving.

Part of this approval involves the expenditure of resources to permit the
requirers (and, later, implementors) to supply more planning information
and technical detail.

Requirements are only definite to the extent that they are documented.
The needed output of the requirement-generation activity is an SRD
satisfying the following criteria (see Section 3.3):

Scc. 11.1] Generating Software Requirements 3

a. Tt should be adequate to identify the objectives of the program, its
environment, the configuration needed for its operation, the resources
required for its support, and the advantages and disadvantages in the
service it provides, as related to the customer organization.

b. It should be adequate to permit the developmental activities to
proceed under a reasonable assurance that major revision of
requirements will not be necessary.

c. It should be adequate for review and approval by cognizant authority
on the basis of its conceptual feasibility in accordance with the other
criteria above. It should contain manpower, schedules, and
development-cost estimates, as well as reasonable variances for these
estimates, at least for the next phase of activity.

As T indicated in previous chapters, it may not always be feasible to
actually complete the SRD until after some of the software development
process has already begun (in a top-down way, of course). That part upon
which the funding and manpower approvals are based (the overview)
probably derives in largest part from the justification section (see Appendix
C). This justification—intended for management—contains material oriented
principally toward establishing the need for, and feasibility of, software to
fulfill certain goals or missions of the funding organization.

The remainder of the SRD—for guiding the implementation—deals with
setting forth technical requirements, developmental constraints, and
acceptance criteria in enough detail to identify the external functional and
operational characteristics of the software. These can subsequently be
negotiated, refined, and then implemented so as to satisfy the sponsor’s
goals. The final SRD constitutes an agreement between the requesting and
implementing organizations on the software to be produced.

The SRD contains material that may well be broken into several separate
documents, such as, perhaps, a Software Justification Report, a Software
Acquisition Plan, a Software Functional Requirement, and so on. Some
material may be included directly, if not extensively, while some may be
appended or referenced. The hierarchic nature of the outline in Appendix C
permits this to be done quite easily in the most accommodating way,
should the need arise.

The reader may notice, comparing Appendices C, D, and E, that the
SRD, Software Design Definition (SDD), and Software Specification
Document (SSD) outlines are all very similar in appearance. But while they
cover the same general topic, they do not generate the same content. The
SRD, upon completion, contains customer/user requirements and
constraints, and estimates the resources available or needed for software

4 Software Requirements and Definition Standards [CHAP. 11

production. The SDD identifies those external characteristics of a program
needed to fulfill the given requirements, establishes the program
architecture, defines costs and schedules, and presents a work breakdown
structure by tasks. The SSD defines the external and operational
characteristics of the program and specifies how these are to be effected
into internal program structures, “as built.” By giving these documents the
semblance of a conformable outline, I have tried to ensure a rough
downward traceability from pre-design requirement to definitions, to
implemented specifications, and upward, again, in the reverse order.

11.1.1 Rules for Generating Software Requirements

The following guidelines for structuring software requirements form a
small set of standards to aid in the preparation of the SRD through the
overview phase, culminating in a Requirements Review. Sections 3.1 and
3.2 contain useful guidelines for recognizing requirements.

1. Complete the SRD, supplying the material indicated in the topical
outline (Appendix C), documented subject to the rules in Section 11.4.

Delete items in the outline that are irrelevant or do not
apply, or mark them as “not applicable.” Mark purposely
unspecified items as “development prerogative,” perhaps
conditioned by the addition of modifiers, such as “subject
to approval.” Cite existing material, such as policies and
constraints, by reference; include deviations from these,
however. Figure 11-1 presents a graphic table of contents
for the SRD that emphasizes the hierarchy of management
information. The complete graphic table of contents is
shown as Figure C-1 (Appendix C).

9. Establish a set of criteria and weights for the SRD review, such as
breadth of coverage, level of detail, adherence to standards, etc., and obtain
concurrence on these from the review board.

3. Identify cost and schedule drivers likely to impact the decisions that
have to be made. Establish priorities and constraints for development, with
emphasis placed on factors that tend to drive costs up if they are not
identified and frozen early.

Include any known factors involving special complexity
that tend to jeopardize schedules or place stringent
demands on specific (and possibly scarce or unavailable)
personnel.

(17} aseyd jeaosdde Jo} uepodw) sway juswabeusw jo Ayssesaly Bumoys ‘QUS Ul 40} SIUAUOD JO 3|qe) [BNSIA Y “L-L| 3inbig

sjuawalinbay j\)
Bunuoday | | Aupaiseay]
L [Ph LSt
%
swswainbay | | sa|qesanljag papaap 40
@0URWIOIA asemyos [uondussag []
|e1auag)
vl\} M.\j W\I/
mc_wa.“m | 3|npayas pasN 40
iy e wawysiqersy 7]
o 211110114 pue 3uols3|IN
-~
e
m : W\J M\J
S sjulesuo) pue 1amoduepy
B siuawalinbay [pue buipung [] adoog —
eq yoeouddy
: e fr e e
=
M sao130814 ueld
= piepuelg P 10 pOoYyla|N = asoding =
IOI. uonisinboy
w2
e ; F ! L
£ eLalID l\l
- uonen|ea3 b sjuienuo) siuawalinbay o > uonealisny
g sadipuaddy pue i amli pue agejialu| pue yotseuLioju pue
%) |euoijouny juawabeuepy
m aoueidasoy s810110d juswuoliaug uonaNposu|
& L L 9 | S I 2 | € I ¢ 1 L il
~ j\—\}
= awnooQg
= sjuawalinbay
S 21eM140S
%]

ads

