An Introduction to

Object-Oriented
Design

»)

Jo Ellen Perxry Harold D. Levin

Lynne Doran Cote Sponsoring Editor

Helen M. Wythe Production Supervisor

Eileen Hoff Cover Design Supervisor

Roy Logan Senior Manufacturing Manager

Kenneth Wilson Text Designer

Alena Konecny Art coordinator

Mlustrations and Composition Publishers’ Design and Production Services, Inc.

Library of Congress Cataloging-in-Publication Data
Perry, Jo Ellen
An introduction to object-oriented design in C++ / Jo Ellen Perry
and Harold D. Levin.
. cm.
Includes index.
ISBN 0-201-76564-0
1. Object-oriented programming (Computer Science) 2. C++
(Computer program language) I Levin, Harold D. II. Title.
II. Title: Object-oriented design in C++.
QA76.64.P527 1996
005.13'3—dc20 95-5965
CIp

The programs and applications presented in this book have been included for their
instructional value. They have been tested with care but are not guaranteed for any par-
ticular purpose. The publisher does not offer any warranties or representations, nor
does it accept any liabilities with respect to the programs or applications.

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book, and
Addison-Wesley was aware of a trademark claim, the designations have been printed in
initial caps or all caps.

Copyright © 1996 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior written permission of the publisher.
Printed in the United States of America.

123456789 10—MA—98979695

l Preface

WENTY years ago, there were no desktop PCs, most software was batch

processed, and most program I/O was for unit records such as card images.
Today most computers are desktop machines and we operate in an environment
of networks, multimedia, and interactive graphical interfaces. This book is
designed for use in introductory computer science courses that acknowledge
these widespread and fundamental changes.

A couple of years ago, we heard people asking “Is object-oriented program-
ming just a flash in the pan?” We don’t hear this question anymore. Today, we are
in the midst of a major paradigm shift affecting almost every aspect of comput-
ing—from commercial technology to fundamental theory. Elements of the diverse
collection of topics lumped under the general heading “object-oriented” are at the
center of the shift and provide the momentum that will determine the direction of
the discipline into the next century.

What does all this mean with respect to teaching and learning about software
development? Should students learn object-oriented techniques from the start?
The answer is yes, even in the earliest portions of their training. Indeed, we think
that it would be as counterproductive to teach standard techniques of structured
programming early in the curriculum and then add in or switch to object-oriented
methodologies in advanced courses as it would have been to first teach students
to program in BASIC and later on to introduce structured programming as a por-
tion of a specialized software engineering course. Two major ideas moved us
toward the very early introduction of object-oriented concepts. One is that it is
vital to take design seriously. The other is that concepts and technologies associat-
ed with software reuse are so important that they must be introduced at the earli-
est opportunity.

Where did we start?

We have both been teaching introductory computer science and computer pro-
gramming to students for more than a decade. Until three years ago, all of our
introductory teaching amounted to the same course that has been taught in Pascal
since the beginning of structured programming. In the spring semester of 1992,
partly because of the political pressure of other engineering departments and
partly because of student demand, we taught an introductory course using C++.
That first course was strictly experimental. We did not know if we could pull it off.

To make sure that students would not be shortchanged by programming in
C++ rather than Pascal, we taught the experimental course as an exact mirror of

iv An Introduction to Object-Oriented Design in C++

the introductory course with Pascal. Pascal and C++ lectures were kept in lock-
step. The day that Pascal CASE statements were discussed was the same day that
C++ switch statements were discussed. The day that procedures were intro-
duced in Pascal lectures, functions were introduced in C++ lectures. The students
in Pascal and C++ wrote exactly the same lab assignments. Only the languages
were different. No hint of object-oriented development was mentioned in the
C++ course.

We came out of that experiment knowing that we had both succeeded and
failed. We discovered that beginning students can learn C++ syntax as easily as
they can learn Pascal syntax, and they can do traditional top-down design in C++
as easily as they can do it in Pascal. But that experimental course was still a C++
copy of a traditional introductory programming course. It was out of date before
it started.

This book began as a result of that experience. We knew that we did not want
another Pascal text in C++ clothing. At the same time, we knew that beginning
students still have to learn concepts such as control structures and functions that
are common to all general-purpose languages. While that knowledge is so
ingrained in experienced programmers that many have trouble remembering
when they did not know it, we recognize that students are not born knowing
those concepts. Our first question was “How can we teach the new paradigms and
still cover the fundamental concepts that every programmer knows?” Our answer
is “Teach objects early along with the fundamental concepts.” It is easy to teach
fundamental concepts. What about objects?

Introducing object-oriented concepts

This book introduces objects at two levels: design and programming. At the
design level, we began by thinking in terms of objects, comparing those objects
and their interactions to animated cartoons. This is a comfortable context for most
students. It is through this kind of object-think that students can apply their
everyday intuition. Students know how to solve all sorts of difficult problems in
ordinary life. They ought to be able to use that experience in solving program-
ming problems.

At the programming level, objects can appear in various ways. In the begin-
ning of this book, we use comments to bracket off the parts of programs corre-
sponding to design objects. As we introduce new language features, we rely more
on the code without the comments to describe the objects developed in our
designs. With classes, we are able to capture in our code exactly what we had in
our designs without relying strictly on comments to show us the way.

The focus from the beginning of the text is objects, not classes, and not C++
syntax for defining classes. Objects are concrete. Classes are the abstract mecha-
nism for producing objects. We chose to leave classes until students could first
become familiar with functions and control structures. C++ has built-in objects
cin and cout that students can use from the start. Furthermore, students find it

easy to use class libraries and class type objects quite early. When students can
appreciate the need for producing many instances of new types of objects, they are
ready to tackle the syntax and conceptual scheme for defining C++ classes.

Following through with major

Preface

v

object-oriented concepts

Soon after we taught the first course using C++, we overheard some students say-
ing that they knew all about object-oriented programming because they took a
one-semester course in programming using C++. We knew they were wrong, but
they did not find out until they tried to sell the skills they did not have. Soon, we
began hearing from students asking where could they learn the important stuff—
i.e., inheritance and polymorphism.

We think students need to see the whole picture in object-oriented program
development. More importantly, students think they need to see the whole pic-
ture. And that picture includes first class types, inheritance, and polymorphism.
Those topics are too important to be relegated to a footnote or a short appendix.
Students—and people outside academia—do not think they should be ignored.
And we do not think they should be ignored either.

As we remarked earlier, there has been a significant change not only in the eco-
nomics and sociology of computation but also in what is at the leading edge and
what is at the center of the discipline. If you think that the situation in computing
today is not essentially different from the situation in the 1970s when Pascal and
structured programming were new and important, then you may well be puzzled
about why students should learn about objects, classes, inheritance, and polymor-
phism. However, neither teachers nor students can gain a full appreciation of
object-oriented program development without inheritance and polymorphism.

A quick map of the book

Novice programmers who want to learn object-oriented program development in
C++ from this book should start from the beginning and follow the sequence of
chapters as we have laid them out. Experienced C programmers who are deter-
mined to read as little as possible can read Chapters 1, 3, and the beginning of
Chapter 6 before going to Chapter 7, which gives the first full treatment on class
definitions. Experienced Pascal programmers will also find it necessary to learn
the syntax introduced in Chapters 2 through 6. Chapters 8 through 11 form the
heart of the object-oriented features, syntax, and culture of C++. Chapter 12
introduces the reader to container classes and linked lists. Chapter 13 is a case
study of the iterative process that we went through in developing a sophisticated
class library.

vi

An Introduction to Object-Oriented Design in C++

This book is organized on two different themes. The first theme is design and
analysis of programming problems; the second is the C++ tools that are useful in
implementing solutions to these problems. Students who successfully complete a
programming course should have practical programming skills when they leave
the course. But to prevent creating a hacker mentality—going after an immediate
solution in the quickest way possible—it is important to show students useful
design methodologies from the start.

This book uses the familiar changemaker problem as a running example to
illustrate iterations in design, enhancements, and implementation. The initial
statement of the problem from Chapter 1 is very simple. As more programming
tools become available, the changemaker is reanalyzed and redesigned to incor-
porate these new tools and to improve either the functionality of the program
solution or to improve its organization.

For the teacher

This book contains material for a two-semester sequence in introductory design
and programming. At North Carolina State University, the first course is orga-
nized into large lecture sections (175 students) with small closed labs. We have
found that it is reasonable to cover Chapter 1 through the first half of Chapter 7
plus the Stream Appendices (D, E, and F) in a traditional three-semester hour
introductory course. Students in four-semester hour courses could cover more
material, or simply do the same material in more depth and with more examples.

The laboratory experience is important. Ideally, we would like all low-level
syntax topics relegated to the lab. The lecture is a very inefficient way to cover that
material. Through laboratories, especially those that have integrated support for
software development, students can experiment with the language to see the prac-
tical results of the lectures.

We realize that the second course varies tremendously among different
schools. The second course at North Carolina State University has traditionally
focused more on software engineering concepts than data structures. The material
in Chapter 7 through the remainder of the book is appropriate for such a second
course.

Comprehensive exercises, varying from straightforward syntax exercises
through programming projects are included at the end of every chapter. Answers
to all of the exercises except the programming projects are available for instructors
upon request from Addison-Wesley. For additional information, see the supple-
ments section following. The programming projects are open-ended and can be
modified to suit individual class needs.

We hope that this textbook will be useful not only for students but also for
teachers who are just now starting to teach the introductory course using C++.
That pedagogical task is not trivial. And it is especially not trivial to those who
know C or Pascal and come to realize very late that C++ is not just a new version
of C and not just Pascal with classes. Part of what we do in this book is addressed

to helping our colleagues, who may be struggling just ahead of their students. We
know about that struggle from our own experience.

Problem solving is difficult no matter what the language and what the tools.
But be encouraged from our discoveries. The language switch—the syntax
switch—is easy. Learning the culture, how good C++ programmers do things, is
harder. But the most difficult thing is learning how to think in terms of object-ori-
ented analysis and design as opposed to structured analysis and design.

For the student

Preface

vii

You will begin learning by solving very simple problems and writing very short
programs. Think about the programs that you use and like. If after three months,
you still do not have a good idea of how to write such a program, all that indicates
is that programming is a broad and deep subject. It will take considerable time
and effort before you will realize the goal of having good object-oriented pro-
gramming skills.

When you begin your work, you will discover ways to organize what you
already know and ways to spell out things that you already know how to do. You
will discover new ways of looking at problems and devising solutions to them.
This book is full of advice on how to learn, what is important, when to exercise old
skills, and when to learn new ones. We suggest that you read carefully. Read new
material in the book before you go to class. Read it after you attend a lecture.
Underline key points. And work problems. Programming is not for spectators.

Do not hesitate to experiment. If you are not sure how a piece of code works,
try it out. All of us, even those of us who are professional teachers, are students
too. And we learn what we know by falling into lots of holes and making lots of
mistakes, just as you are almost certain to do. There is an extensive set of exercises
at the end of each chapter. Answers to selected exercises are available via anony-
mous ftp to £tp.aw.com. For instructions to download these files, refer to the
supplements section following.

Your compiler will not be perfect, and it may not support some features of
C++ mentioned in this book. (For example, the type bool is not available on some
compilers.) We have tried to warn you in the text where some of our compilers
were deficient, and where you might run into the same problems. When possible,
we have suggested simple work-arounds.

Technical standards

The code in the first seven chapters was tested on all of the following environ-
ments. All of the code was tested in at least one UNIX-based environment.

Borland Turbo C++ version 3.0 on DOS 5.0
Microsoft Visual C++ version 1.0 (Standard Edition) for Windows 3.1

viii

An Introduction to Object-Oriented Design in C++

Symantec C+4+ version 7.0 on Macintosh, system 7.0
AT&T version 3.0 on a SUN4 using SunOS 4.1
Gnu version 2.6.1 on a DECstation using Ultrix 4.2

The technical terms that we introduce in the text are not ours. Wherever pos-
sible, we have tried to conform our use of technical terms with the practice of the
C++ community, its epicenter being at Bell Laboratories. We have also tried to
conform with the language standards described in Margaret Ellis and Bjarne
Stroustrup’s Annotated C++ Reference Manual (the ARM),! which serves as the base
document for the ANSI standardization of C++ currently in progress. In the few
places where our code uses an operating system or other system-dependent head-
ers or procedures, we isolated the nonportable features and indicated system
dependence with comments.

We have entirely avoided the use of exceptions and exception handling for
two reasons. First, exceptions are not as widely implemented in C++ compilers as
are the other ARM language features, and standards for exceptions are more in
flux than other parts of the language described in the ARM. Second, exception
handling is an important addition to the control structures of the structured pro-
gramming tradition but not an integral part of our central theme—object-oriented
program development.

Supplements

The following supplements are available through the Addison Wesley ftp site:

® Source code

* Answers to selected exercises

¢ Instructor’s solutions access information

To obtain any of the supplement files, ftp to aw.com. Log in with user name

anonymous and use your internet address as the password. From there, type
cd sceng/authors/perry/oop.csl.

Acknowledgments

The authors gratefully acknowledge the help of many people in writing this book.
Among our colleagues, Don Martin has been especially encouraging from the
start. We doubt that we could have completed our work without the assistance of
Susan Jones, who has worked tirelessly to check code, do problems, and suggest

1 Ellis, Margaret A., and Bjarne Stroustrup. The Annotated C++ Reference Manual. Reading, Mass.: Addi-
son-Wesley, 1990.

ways of formulating ideas. Both Susan and Don have been with us since the incep-
tion of this project, always giving constructive criticism and refraining from ask-
ing the question “Isn’t it done yet?”

We appreciate the willingness of Don Martin, Susan Jones, Carol Miller, and
Steve Worth to use a draft manuscript for their classroom text. We thank our stu-
dents and colleagues alike for serving as guinea pigs in this project. All have pro-
vided valuable feedback.

The editorial staff at Addison-Wesley has been very helpful in preparing the
final manuscript. Our editor Lynne Cote has offered valuable words of encourage-
ment and has also provided us with a rich reference library from among the
numerous excellent Addison-Wesley publications. We thank the authors of those
books for pointing out to us and to their other readers the culture and use of
object-oriented techniques and C++. In addition, our production supervisor Helen
Wythe has been gracious and diligent in dealing with the endless problems of
putting the book together.

We have taken advantage of extensive reviewer comments, incorporating
many of the suggestions into the book. We thank especially James Adcock,
Microsoft Corporation; Vicki H. Allan, Utah State University; Frank Cioch, Oak-
land University; H. E. Dunsmore, Purdue University; Thomas Hain, University
of South Alabama; Dennis Heckman, Portland Community College; Robert
Kline, Westchester University; Rayno Niemi, Rochester Institute of Technology;
Christopher Skelley, Insight Resources; and Phil Sweany, Michigan Technological
University.

Finally, our families have lived with this project almost as much as we have.
Lavon and Connie have demonstrated their love for us through their wonderful
patience in our extended times away from home. They have had to put up with
lost weekends and exhausted spouses for over two years, and they did it almost
without complaint.

Preface

ix

Contents

Object-Oriented Program Development 1

1.1 What is object-oriented program development? 2

1.2 Sample problem: The convenience store 9

1.3 Sample problem: The changemaker 16

1.4 Compilers and languages: Making the program run 23
1.5 Why is object-oriented development so important? 25
1.6 Summary 26

1.7 Exercises 28

C++Tools: Anatomy of a Simple Program 33

2.1 The convenience store program, line-by-line 34

2.2 Storing information 42

2.3 Expressions, statements, and numeric types 45

2.4 C++ streams 60

2.5 Programming style: Does it matter? 68

2.6 Making sure that the analysis, design, and implementation are correct 70
2.7 Summary 73

2.8 Exercises 76

Implementing Object Behaviors with Functions 87

3.1 C++ functions that return values 88

3.2 Procedures: Functions that do not return values 101
3.3 Scopes and lifetimes 111

3.4 Programming errors and functions 118

3.5 Refining object-oriented designs 120

3.6 Using Class Libraries 133

3.7 Summary 143

3.8 Exercises 146

Decision Behavior: Selections and Alternatives 159

4.1 The if and if/else selection statements 160
4.2 Evaluating Boolean expressions 167
4.3 Typedefs and enumerations 173

xi

Xii An Introduction to Object-Oriented Design in C++

4.4 switch statements 177
4.5 The conditional operator: Providing shorthand for a simple if/else 180
4.6 Recursive functions 181
4.7 Testing: The evaluation part of the implementation process 189
4.8 Application example: Navigational running lights 192
4.9 Summary 201
4.10 Exercises 203

Chapter 5 Iteration Behavior: Loops 211

5.1 The first loop structure: while loops 212
5.2 Constructing loops: How to start, how to quit,
and how to get to the next step 217
5.3 The second loop structure: do/while; loops 227
5.4 The third loop structure: for loops 230
5.5 Nested loops 238
5.6 Alternative loop constructions and the break statement 241
5.7 Design modification: Redesigning the calculator 243
5.8 Anew problem: Text analysis 246
59 Summary 257
5.10 Exercises 259

. List Objects and Array-Based Implementations 269

6.1 Implementing list objects with old programming tools 271
6.2 Arrays: The fundamentals 274
6.3 List type objects 283
6.4 Array-based implementations of lists 287
6.5 Sorting and searching 296
6.6 Strings: Implementation tool for names and phrases 307
6.7 Lists of names 313
6.8 Multidimensional arrays 318
6.9 Redesigning the changemaker to fit new implementation ideas 322
6.10 Summary 327
6.11 Exercises 329

Chapter 7 7 Producing Objects Through Classes 341

7.1 Simple objects: Structs 343

7.2 Implementing objects with behaviors: Classes 348
7.3 Asimple list class with an array data member 359
7.4 Constructors revisited 371

7.5 Aclass with string data 379

7.6 Classes with class type member data 381

Contents

7.7 Aninventory table class 384

7.8 The changemaker revised—with classes 393

7.9 Organization of program source code and libraries 402
7.10 Sharing constant class data 407
711 Summary 411
7.12 Exercises 414

First Class Objects 429

xiii

8.1 A numerical example: Rational numbers 430

8.2 Asecond example: Three-dimensional vectors 448
8.3 Designing first class types 457

8.4 Efficiency issues: Inlining 459

8.5 Summary 462

8.6 Exercises 463

Storage Management for Objects 471

9.1 Pointers 472

9.2 Dealing with failures: exit () and assert () 487

9.3 References 489

9.4 Dynamic array creation 492

9.5 First class strings 499

9.6 Extensible arrays 522

9.7 Implementation standards for classes with pointers data 529
9.8 Summary 531

9.9 Exercises 532

Chapter 10 Inheritance and Reuse 543

i

10.1 Incremental programming: Extending an existing class 544

10.2 Single inheritance: Designing a class hierarchy 553

10.3 Multiple inheritance 569

10.4 Inheritance as an organizational tool 577

10.5 C++ streams: Built-in inheritance 579

10.6 Changing the changemaker solution to incorporate inheritance 588
10.7 Summary 604

10.8 Exercises 606

Chapter 11~ Polymorphism and Generic Classes 615

11.1 Ad hoc polymorphism through overloading 616

11.2 Parameterized polymorphism through templates 618
11.3 Runtime polymorphism 629

11.4 Abstract base classes 648

Xiv An Introduction to Object-Oriented Design in C++

11.5 Polymorphism and cloning for array-based lists 663
11.6 The changemaker, revisited again 670

11.7 Summary 678

11.8 Exercises 680

Chapter 12 Container Classes and Linked Lists 691

12.1 Examples of containers 692
12.2 Linked lists and traditional linked list algorithms 694
12.3 Implementing a linked list type List and Node classes 703
12.4 Iterator classes 715
12.5 List variations using inheritance and templates 721
12.6 Stacks and queues 733
12.7 Message passing: Letting the nodes do it recursively 743
12.8 Tables 756
129 Summary 770
12.10 Exercises 772

Chapter 13 An Example Reconsidered: Some Issues in Design 783

13.1 The Typesetter class 784

13.2 Has-a vs. is-a relationships 802

13.3 Memory leaks: A common flaw 804

13.4 ATNss for specification and implementation correctness 806
13.5 Separating public interface from implementation details 819
13.6 Summary 821

13.7 Exercises 822

Appendix A: ASCIl Character Codes and Escape Sequences 825
Appendix B: C++ Keywords 827

Appendix C: Operator Precedence 829

Appendix D: Stream Input 831

Appendix E: Stream Output 839

Appendix F: File Streams 847

Bibliography 857

Index 859

Chapter 1

Object-Oriented Program
Development

OMPUTERS are not smart; they just know how to follow instructions. Unlike

dogs or cats or people, computers follow instructions very well, step-by-step.
A computer program is a set of instructions to the computer. The purpose of this
book is to teach you to write computer programs that will tell computers how to
solve particular problems or do particular things.

This chapter begins with a look at how the entire process of creating a comput-
er program originates. We will follow a special approach called object-oriented

2 Anintroduction to Object-Oriented Design in C++

program development, an approach that is somewhat new in the computing
world but very old in the world of human experience. It involves creating models
of real-world situations and building computer programs based on those models.

The best way to learn about object-oriented development of solutions to pro-
gramming problems is through examples. There are no generic recipes that are
going to work with all problems. Computer problem solving is a creative activity.
It can be very simple or very complex, depending on the nature of the problem.
And that's what makes it interesting. If solving problems were just a matter of fol-
lowing a simple list of instructions, then we wouldn’t need programmers at all.
We'd just write one program that would be able to write all other programs!

We'll examine two different problems to illustrate object-oriented develop-
ment concepts, solving them step-by-step, from the beginning. First, we analyze
the problems, then we design and draw out solutions on paper. We finish by writ-
ing the computer programs that are the actual problem solutions. The focus for
this chapter is on analysis and design, because that constitutes the hard part of
problem solving.

In this book we’ll show you how to “object-think” when you are at the analy-
sis or design levels of solving programming problems. We'll introduce specific
details of how to code your solutions for the computer using the programming
language C++. And we'll approach C++ programming tools gradually. Each pro-
gram that you will encounter while studying this text uses the concepts of C++
that you already know or will soon learn. As you progress with your mastery of
the features available in C++, you will see how some of the initial designs for
problems can be changed to take advantage of increasingly sophisticated features
of the language.

1.1 What is object-oriented program development?

A program is somewhat like the script of a play. A script describes the cast of char-
acters, the environment in which they exist, and the things the characters do. The
sets and the props of a play represent physical things, and the characters represent
people that seem real (usually). The interactions among the characters represent
situations and events. In many cases, computer programs contain computer-
world representations of the things or objects that constitute the solutions of real-
world problems. Executing a program such as this is like performing a play.

Object-oriented program development means constructing programs as mod-
els of real-world events. The entire programming process begins with construc-
tion of a model of the event. The end result of the process is a computer program
that contains features representing some of the real-world objects that are part of
the event. Execution of the program simulates the event.

Most of the things that you are asked to do in a beginning programming
course are things that you know how to do without a computer. You know how to
alphabetize a list of names, convert temperatures from Fahrenheit to Celsius, and

determine the cost of a shopping cart full of groceries. But unless you've pro-
grammed before, you probably don’t have the foggiest idea of how to make a
computer solve these fairly simple problems. You probably don’t even know
where to begin.

As our first step in program construction, we’ll look at an intuitive way to
describe what is to be done. This description has nothing necessarily to do with
computers. At this point, we will pay very careful attention to the objects involved
in our intuitive solution and their behaviors. We will rely on our own real-world
experiences and intuition for guidance.

Once we figure out what a program should do, we will be ready to create a
model. Problem solving through model construction is not a new kind of intellec-
tual activity. It'’s been going on since the beginning of civilization. Today we all
use models constantly. Think about traveling by automobile from one city to
another. Highway maps are models we use to solve the problem of getting from
one geographical region to another. The objects that make up a highway map
include representations of such things as cities, roads, and rivers. The relation-
ships among these objects determine the routes that we can travel to go from one
place to another.

What kinds of models can we create for computer programs? There are count-
less answers to this question. The basic requirement of any model is that it be use-
ful. There can be many different models that will be useful in a given
programming problem or task. Some models may even be radically different and
still be useful. The modeling process itself is not rigid. For any one problem there
is no unique answer to what model should be constructed and what objects must
be involved.

Let’s look at a list of problems that might be solved by computer programs.
Think about each in terms of what situations the corresponding computer pro-
gram can model. Imagine a cartoon for each situation. What are the objects in the
cartoons? How do they interact? Some models are better than others. The best
thing you can do is to pick out what you think is most useful. It takes experience
and creativity to think up useful models.

* Avideo game software manufacturer wants to create a new video game
that simulates a jet fighter.

* A physician needs software tailored to patients at her medical clinic. The
patients have many varieties of illnesses and funding sources for their
treatments,

* The Environmental Protection Agency needs a program that simulates
acid rain deposition in the Appalachian Mountains under certain power
plant location scenarios.

* An inventor is building a wheelchair that can climb stairs. The wheel-
chair must be simulated in software before the inventor is willing to pay
for expensive tooling of the wheels, gears, and microprocessor that con-
stitute the actual wheelchair.

Chapter 1

3

4 An Introduction to Object-Oriented Design in C++

You can’t solve these problems now, but you can begin to think about the sce-
narios that they model. The video game will simulate interactions among fighter
jets and is especially easy to imagine as a cartoon. The physician’s software will
take the place of the tedious bookkeeping and record keeping that used to be rele-
gated strictly to hand calculations and notations. Acid rain deposition, which will
take place as a story from the computer rather than as real rain in the Appalachian
Mountains, will involve computer-world power plants and computer-world trees.
The wheelchair simulator will be able to show how well a particular wheelchair
design fits the specifications of the inventor.

The corresponding programs to solve these problems will differ immensely in
length and complexity. Even the effort required to test the solutions to make sure
they are correct will differ greatly among the programs. A program is correct if it
does what it is supposed to do. The correctness of software may have an enor-
mous impact on its users or it may be of relatively trivial significance. If the video
game fails to keep correct scores for its players, the results may be of little conse-
quence. But the failure of the wheelchair to climb a set of stairs properly could
result in serious injury for the person in the wheelchair.

When you first start solving programming problems, your efforts will be very
modest. You will not be able to solve the problems we just listed, and you will
probably spend a considerable amount of time just figuring out how to write your
solutions in C++.

C++ is a computer language specifically designed to support object-oriented
program development. The new language tools that you will learn won't tell you
how to solve the problem. But you will work within the confines of these new
tools in order to create programs that will implement your solutions, programs
that will actually solve the problems and perform the desired tasks.

What is an object?

In our discussions of problems and models, we will use the term object over and
over again. The term object has the same meaning as a noun or noun phrase: It is
a person, place, or thing. Examples of real-world objects are endless: person, table,
vending machine, airline flight schedule, computer, dictionary, city, and the ozone
layer to name a few.

All of the example problems in this chapter can be described in terms of real-
world objects—from jets to ledgers to people to wheelchairs. When we look at a
problem or situation to figure out what a program solution is supposed to do, we
will do so in terms of the objects that make up the problem. We will identify those
objects in terms of what they are, how they behave, and how they interact with
each other.

Some objects—airplanes, people, and major cities—are very complicated, oth-
ers are very simple. An object may include other objects. For example, a personal
computer is an object. One of the objects that makes up the computer is the central
processing unit (CPU). Another object is its main memory and another is the

