Theory of Recursive Functions
and Effective Computability

Hartley Rogers, Jr.

Theory of Recursive Functions
and Effective Computability

Hartley Rogers, Jr.
Massachusetts Institute of Technology

McGraw-Hill Book Company

New York St. Louits San Francisco Toronto London Sydney

THEORY OF RECURSIVE FUNCTIONS
AND EFFECTIVE COMPUTABILITY

Copyright © 1967 by McGraw-Hill, Inc. All Rights Reserved. Printed
in the United States of America. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher.
Library of Congress Catalog Card Number 65-25921

53522

1234567890 MAMM 7432106987

Preface

In addressing the American Mathematical Society in 1944, E. L. Post
concluded, “Indeed, if general recursive function is the formal equivalent
of effective calculability, its formulation may play a role in the history of
combinatory mathematics second only to that of the formulation of the
concept of natural number.”{

This book may be viewed as a progress report. on some of the ideas and
hopes expressed in Post’s paper. The subject of recursive functions had
been studied by a number of researchers prior to 1944. In particular,
Church, Kleene, and Turing, as well as Post himself, had already made
major contributions. Although Post’s paper concerns only one part of a
larger subject, it marks an epoch in that subject, not only for the specific
problems and methods that it presents, but also for the emphasis that it
places on intuitive naturalness in basic concepts.

Post’s remark, quoted above, is undoubtedly extravagant; and one may
well question whether the kind of calculability represented by general recur-
sive functions will possess a theory of much practical usefulness. (We dis-
cuss this further in Chapter 1.) Nevertheless, this book is intended to be a
partial vindication of Post’s remark and of his attitude. The book presents
its subject matter in semiformal terms, with an intuitive emphasis that is,
hopefully, appropriate and instructive. The use of semiformal procedures
in recursive function theory is analogous to the use, in other parts of mathe-
matics, of set-theoretical arguments that have not been fully formalized.
It is possible for one who possesses a good grasp of the simple, primitive
ideas of our theory to do research, just as it is possible for a student of ele-
mentary algebra in school to do research in the theory of natural numbers.

Since 1944, and especially since 1950, the subject of recursive function
theory has grown rapidly. Many researchers have been active. The
present book is not intended to be comprehensive or definitive.. - Moreover,
its informal and intuitive emphasis will prove, in some respects, to be a
limitation. Certain important parts of the theory (e.g., the study of various
proper subclasses of the general recursive functions) and certain interesting
applications (e.g., the identification of recursively unsolvable problems in
other parts of mathematics) cannot, by their nature, be treated without more
extensive and detailed formalism. Several works already exist to supply this

+ Recursively enumerable sets. of positive integers and their decision problems.
Bulletin of the American Mathematical Society, vol. 50 (1944), pp. 284-316.

vii

viii Preface

defect, and the reader is urged to use them as a more formal supplement to
the present text. One of these is Kleene’s Iniroduction to metamathematics,
D. Van Nostrand Company, Inc., Princeton, N.J., 1952; another is Davis’s
Computability and unsolvability, McGraw-Hill Book Company, New York,
1958. © These works, while valuable as a supplement, are not a prerequisite
for this book.

The book is in sixteen chapters. Chapters 1 and 2 present the basic
concept of partial recursive function and give simple examples of the unsolv-
ability phenomenon. Chapters 3 and 4 summarize and characterize the
theory to be developed. Chapter 5 gives further basic concepts. Chapters
6 to 10 present results on reducibilities and degrees of unsolvability (con-
cepts emphasized in Post’s 1944 paper). Chapter 11 presents the recursion
theorem, a fundamental tool in the theory. Chapters 12 to 16 present cer-
tain major areas of current research activity. A more detailed outline of
the book is given in Chapter 3.

In most chapters, the final section gives exercises. The exercises appear
in an order parallel to the order of topics in the chapter. They fall into
three categories: unmarked, marked with a triangle (A), and (rarely)
marked with a solid triangle (A). The first category may be solved in a
straightforward manner with a proper understanding of the text. Second-
category exercises are somewhat more difficult. Third-category exercises
are still more difficult or else require, for easy solution, knowledge of results
and methods not yet presented. Hints are supplied for many of the exer-
cises (a triangle or solid triangle applies to the exercise without its hint).
Solid-triangled and more difficult triangled exercises may be discussed at a
later point in the text. Special topics, augmenting the text, are occasionally
covered in exercises and may (though only rarely) be referred to in later
portions of the text.

The reader is urged to make every effort to do the unmarked and tri-
angled exercises. If an exercise has a hint, he should make a first attempt
to solve the exercise without reading the hint. Similarly, in the text itself,
he should attempt to prove theorems, whenever possible, without first read-
ing the proof in the text. As in other mathematics, there is no better way
to develop insight, research ability, and an appreciation of the difference
between genuinely new and fruitful -ideas on the one hand, and routine,
though interesting, extensions of old ideas on the other.

. The literature of recursive function theory has grown rapidly in recent
years. The bibliography given in this book is far from complete. Only a
few formal citations are made for 1965 and after, although results from this
period are described in the text.

Some of the material in this book was first presented in courses and semi-
nars at Massachusetts Institute of Technology. I am particularly indebted
to Noam Chomsky and Burton Dreben for their patient encouragement, and
to other members of these courses and seminars for a variety of help and

Preface ix

suggestions that I cannot hope to acknowledge in detail. I owe a special
debt of gratitude to Mary Marto and Marsha Scherr for patient and loyal
work in typing and preparing the manuscript, and to Katharine Kumar for
help with the index and final stages of proof. I am also grateful to Ann
Singleterry, James Geiser, and Leslie Tharp for help with the manuseript
and to Patrick Fischer, Carl Jockusch, Donald Kreider, and Warren Teitel-
man for a particularly careful reading of portions of the text. Others who
have provided comments, suggestions, and help of great value have included:
J. Addison, Y. Bar-Hillel, D. Bobrow, M. Blum, J. Conger, J. Denton,
H. Enderton, R. Friedberg, L. Hodes, C. Kent, D. Knutson, A. Lévy,
D. Luckham, J. Lukas, J. MacIntyre, D. Martin, T. McLaughlin, M. Min-
sky, Y. Moschovakis, R. Parikh, D. Park, H. Putnam, W. Quine, M. Rabin,
H. Rice, W. Ritter, J. Rosenthal, G. Sacks, C. Shannon, J. Shoenfield,
C. Spector, J. Stillwell, J. Ullian, H. Wang, C. Yates, and P. Young.
Numerous other colleagues and students have given important help. These
persons, named and unnamed, have supplied many ideas, but they have not
had an opportunity to criticize the final text.

I owe a special intellectual debt to James Dekker, John Myhill, and
Norman Shapiro. Shapiro introduced mé to recursive function theory.
The methods and attitudes of Dekker and of Myhill have been a major
influence on the present work.

A portion of the material in the present text appeared, in somewhat dif-
ferent order and form; as Theory of recursive functions and effective computa--
bility, volume I, published in mimeographed form by the Mathematics
Department of Massachusetts Institute of Technology in 1957.

This book would not exist but for support provided me by the National
Science Foundation through the Mathematics Department at Massachusetts
Institute of Technology under grants G-19992, GP-379, GP-2496, and
GP-6982. I am deeply grateful for the time that this support has made
possible.

Hartley Rogers, Jr.

Introduction: Prerequisiies and Notation

This book is intended for use as a senior undergraduate or first-year
graduate text. It assumes a knowledge of basic set-theoretical terminology
and techniques such as might be obtained in an undergraduate course in
modern algebra. In most parts of the book, no knowledge of logic is
assumed, but the reader will find some knowledge of logic helpful. We shall
use a few notations from elementary logie, as described below.

The literature of recursive function theory unfortunately lacks a single,
commonly used terminology and notation. We present our choice of basic
terminology and notation in this introductory section. The reader is urged
to give this section a careful, preliminary reading and then to return to it
from time to time as may later prove necessary. Initial effort by the reader
here will, hopefully, be rewarded with clarity and facility in the main text.

For the most part, we deal with nonnegative integers, sets of nonnegative
integers, and mappings from nonnegative integers to nonnegative integers.
Unless specifically indicated otherwise, we use the words number and infeger
to mean nonnegative (rational) integer. N is the set of all integers. A, B,
C, . . . (Latin capitals, early in the alphabet) denote subsets of N. @ is the
empty set. =z, y, z, . . . (Latin lowercase, late in the alphabet) denote
members of N, i.e., integers.

We use the following set-theoretical notations. A = B means that A
and B are identical as sets, i.e., have the same members. z € A means that
z'is a member ORUALAL 14 } is the notation to indicate set formation.
Holmatiis - -} is the set of all z such that the expression - + - 2 - - - is
true when ’ is interpreted as the integer . The universe from which a
set is formed is indicated by the style of symbol appearing before the vertical
bar. Thus {z| - - -} must be a set of integers.

A U B is the umon of A and B, that is, {z|z € A or 2 € B or both}.
A N B is the intersection of A and B, that is, {zjr E A andz € B}. Ais
the complement of A, that is, {z|not + € A}. A C B means that 4 is a
subset of B; that is to say, for all , if x € A then'z € B. A D B means
that B C A. A is a proper subset of Bif A C B and not A = B. (Thus
A CBand BC A imply A = B))

We occasionally denote a finite set by an expression in braces listing its
members, in any order. For example {2,5,3} is the set of the first three
primes. We sometimes suggest certain infinite sets by a “listing’” in braces.
For example, {0,2,4, . . . 2n, . . .} is the set of even integers.

b 44

xvi Introduction: prerequisites and notation

Given z and y, <z,y> is the ordered pair consisting of z and y in that
order. Similarly <z,2s, . . . ,z> is the ordered k-tuple consisting of
Zi, . . . , 7 in that order. A X B is the cartesian product of A and B,
that is, {<z,y>|x € A and y € B}. Similarly

AT XA X * -+ XAy = {<Ty, . .« T>|T € Arand - - o o € Ax}.
The cartesian product of A with itself & times is denoted as A*. P, Q,
R, . . . (Latin capitals, late middle alphabet) will stand for relations on
N, i.e., subsets of N* for some k > 0. If R C N¥ R is called a k-ary
relation.

Let R be any k-ary relation. We say that R is single-valued if, for every

<z, . . . yTe—1>, there exists at most one zsuch that <zi, . . . ,Z-1,2> € R.
If R is single-valued, we say that its domain is {<z1, . . . ,Tx_1>|there s
a z such that <z, . . . ,%-1,2> € R}, and we call this collection domain R.

Clearly a single-valued k-ary relation may be viewed as a mapping from its
domain into N.
For this reason, instead of saying that R is a single-valued &-ary relation,
we shall sometimes say, synonymously, that R is a partial function A
“variables. (Here the word “‘partial”’ suggests that the domain of R may not
be all of N*1) We shall use ¢, ¥, . . . (Greek lowercase, late alphabet) to
denote partial functions, and we shall often use ordinary functional notation
with these symbols; thus ¢(z,y) = z will mean that <z,y,2> € ¢. The
reader should keep in mind that, fundamentally, a partial funection is to be
construed as a relation. (We thus identify a partial function with its
“graph.”) We shall most often be concerned with the case k = 2, i.e.,
partial functions of one variable, and partial function will mean partial
function of one variable unless otherwise indicated. With partial functions,
the functional notation can result in ambiguity. For example, the assertion
that ¢(z) not = y might mean that <z,y> not € ¢, or it might mean that
there is a z such that <z,2> € ¢ and znot = y. Our intended meaning in
such situations will always be clear. If ¢ is a partial function, we say that
¢ is defined (or convergent) at z if x € domain ¢; otherwise ¢ is undefined (or
divergent) at z. (Similarly for partial functions of more than one variable.)
In case a partial function of k variables has all of N* as its domain, we
call it a function, or, occasionally for emphasis, a total function. We use
f, g h, . . . (Latin lowercase, early middle alphabet) to denote funections.
As before, f(x) = y will mean <z,y> € f.
@, ®, @, . . . (script capitals, early alphabet) denote either sets of sub-
sets of N or sets of relations on N.

The range of a partial function ¢ of k variables is {2| there existxy, . . . , Tk :

such that <zi1, . . . ,ai,2> € ¢}, and we denote it range ¢. Members of
range ¢ are called values of ¢. If o(z1, . . .) = y, y is called the value
of ¢ corresponding to argument <z, . . . ,4>. A partial function is onto
if its range = N. A partial function ¢ is one-one if, for every y, there is at
most one k-tuple <zi, . . . ,&> such that e(zy, . . . x8) =Y. . ca will

R DT

Introduction: prerequisites and notation xvii

be the characteristic function of the set A; hence ca(z) = 1 if z € A, and
ca(z) = 0 if z not € A. Occasionally, a set A is represented by a (non-
unique) function f such that A = {z|f(z) = 0}. Such an f is called a
representing function for A. g

Let [—2—] be an expression such that given any integer in place of ‘‘z,”
the expression defines at most one corresponding value. (For example, the
expression “‘z? + 2’ defines a value for every integer; while the expression
“Jeast proper prime divisor of 2’ defines a value for integers which are not
prime and are different from 1.) Then M[—z—] denotes the partial func-
tion: {<z,y>|[—a—] defines the value y when “” is interpreted as the inte-
ger z}. This is Church’s lambda notation for defining partial functions.
For example, given ¢; and ¢, then Mz[e1(x) + ¢2(x)] is the partial function
¥ such that domain ¢ = domain o1 M\ domain ¢s and ¢(z) = ¢1(z) + 02(2)
for all z in domainy. We also use the lambda notation for partial functions
of k variables, writing Azixs * - *© @ in place of Az. :

If ¢ and ¢ are partial functions, Y indicates their composition, i.e., the
partial function {<z,y>|there is a z such thal <zz> € ¢ and <z,y> € ¢}.
(Note the reversed order of ¢ and ¢ so that Yo(z) can be expressed as
¥(¢(z)).) Other common notations include vl = (<y,a>|<z,y> € ¥};
V(4) = {ylfor some z, z € A and () = y}; ¥7'(4) = {z|for some y,
y € A and Y(z) = y}.

For binary (that is, 2-ary) relations, the terms transitive, reflexive,
equivalence, linear ordering, partial ordering will be given their usual mean-
ings (which we do not define here). Partial orderings will sometimes be
strict (<) and sometimes nonstrict (<).

We use certain notations and conventions from elementary logic: “and”
will sometimes be abbreviated as “&”’; “‘or” will be used in the inclusive
" (and/or) sense and will sometimes be abbreviated as “V”’; “="’ will abbre-
viate “only if”’; “«<’’ will abbreviate “if and only if”?; ¢ 77’ will abbreviate
“not” and will be placed before the statement which it negates. We some-
times combine ¢ .’ with “€”” or “=" as “&’’ or “F.” Brackets will be
used to indicate grouping of statements, except that (contrary to logical
usage but following common mathematical usage) “)=@2)= - =
(n)” (where (1), (2), . . . , (n) are statements) will abbreviate ST R
@]1&[@=>0B)& [n—D=m],"and“D =) e - - - o 0)”
will abbreviate “[[(1) &)] &[2) © @) & * - - [(n — 1) & Wl N
and “3” are called universal and existential quantifier symbols, respectively.
“(Vz)” isread: “forallz.” ““(Iz)” isread: ‘there exists an x such that . . 4
Groups of symbols such as “(Vz)” and “(3z)” are called, respectively,
universal and existential quantifiers.

The above logical symbols serve as convenient abbreviations of ordinary
mathematical language. For example, the meaning of A C B can be
expressed (Vz)[z € A = z € B], and the definition of domain ¢ can be -

expressed {z|(Jy)[e(x) = ¥]}.

xviii Introduction: prerequisites and notation

N, is the cardinality of N. 2% is the set of all subsets of N'; we sometimes
call this collection 9t. 2¥° denotes the cardinality of 2%, i.e., the cardinality
of the continuum. pz[: - - = - - <] is the least integer such that the
expression - - - z - - -+ is true when “2” is interpreted as the integer z, if
this least integer exists.

Various other general and special notations will be introduced as the
book progresses.

Both logic and recursive function theory lack a universally accepted sys-
tem of notation. Our choice of logical abbreviations is not uncommon. A
choice of notation for recursive function theory presents some difficulties,
especially in a treatment that covers a variety of areas. Part of the current
literature uses Greek lowercase letters for sets. We do not do so because
of the almost universal use of these symbols for ordinals. The reader should
note that by number-theoretic predicate, Kleene and others mean relation
on N. The reader should also note that some writers use f, g, . . . to
denote partial functions in general, rather than only total functions, and
that in a significant part of the literature, Greek lowercase letters early in the
alphabet are used for total functions.

In the assertion of a theorem or lemma, unless otherwise specified, we
follow the usual mathematical convention that all unquantified variable
symbols (representing integers, sets, or relations) are to be taken as operated
on by unexpressed universal quantifiers standing at the beginning of the
entire assertion.

In the course of a proof, certain variable symbols may appear as uni-
versal variables, e.g., “Let z be any integer such that - - - . Other vari-
able symbols may be introduced as lemporary names, €.g., “Choose o to be
some fixed integer greater thanz”f In general, but not always, we
shall use subscripted symbols in the latter case. (Subscripted symbols may
also be used in the former case when sufficiently many distinet variable
symbols are required.) Occasionally, for emphasis, we shall also use letters
in the middle of the Latin lowercase alphabet, ¢, 7, k, m, n, . . ., with or
without subscripts, as temporary names of integers. Occasionally, for
emphasis, we shall use letters late in the Latin capital alphabet, X, Y, Z, as
universal variables for sets. In this respect our usage will not always be
consistent, but it will be clear from the context whether we adhere to these
conventions or deviate from them.

Chapters are divided into sections. Thus §7.4 is the fourth section of
Chapter 7. Theorems receive roman numerals, beginning anew in each
chapter. Theorem 7-VI is the sixth theorem in Chapter 7. Exercises
receive arabic numerals. Exercise 7-14 is the fourteenth exercise at the end
of Chapter 7. When reference is made to a theorem or exercise occurring

+ In the terminology of elementary logic, & universal variable is a variable symbol intro-
duced by universal spectfication, and a temporary name is a variable symbol introduced by
existential specification (see Suppes [1957]).

Introduction: prerequisites and notation xix

in the same chapter, the chapter number may be omitted. The conclusion
of a proof is indicated by the symbol .

Reference to entries in the bibliography is made by giving the author’s
name and a bracketed date. The item will be found under that name and
beside that date in the bibliography.

Chapter 1

§1.1
§1.2
§1.3
§1.4
§1.5
§1.6
§1.7
§1.8
§1.9
§1.10

Chapter 2

§2.1
§2.2
§2.3
§2.4
§2.5
§2.6

Chapter 3

§3.1
§3.2
§3.3

Chapter 4

§4.1
§4.2

xi

Preface
Introduction: Prerequisites and N otation

RECURSIVE FUNCTIONS

The informal notion of algorithm

An example: the primitive recursive functions
Extensionality

Diagonalization

Formal characterization

The Basic Result

Church’s Thesis

Godel numbers, universality, s-m-n theorem
The halting problem

Recursiveness

UNSOLVABLE PROBLEMS

Further examples of recursive unsolvability
Unsolvable problems in other areas of mathematics
Existence of certain partial recursive functions
Historical remarks

Discussion

Exercises

PURPOSES; SUMMARY
Goals of theory

Emphasis of this book

Summary

RECURSIVE INVARIANCE

Invariance under a group
Recursive permutations

Conitents

vii
XV

32

32
35
36
38
39
40

46

46
48
48

50

50
51

xii Contents

§4.3
§4.4
§4.5
§4.6

Chapter 5
§5.1

§5.2

§5.3

§5.4
§5.5
§5.6
§5.7
§5.8

Chapter 6

§6.1
§6.2

Chapter 7

§7.1
§7.2
§7.3
§7.4
§7.5
§7.6
§7.7
§7.8
§7.9

Chapter 8

§8.1
§8.2
§8.3
§8.4
§8.5
§8.6

Recursive invariance
Resemblance

Universal partial functions
Exercises

RECURSIVE AND RECURSIVELY ENUMERABLE SETS

Definitions

Basic theorem

Recursive and recursively enumerable relations; coding of
k-tuples

Projection theorems

Uniformity

Finite sets

Single-valuedness theorem

Exercises

REDUCIBILITIES

General introduction
Exercises

ONE-ONE REDUCIBILITY ; MANY-ONE REDUCIBILITY ;

CREATIVE SETS

One-one reducibility and many-one reducibility

Complete sets -
Creative sets

One-one equivalence and recursive 1somorph1sm

One-one completeness and many-one completeness

Cylinders

Productiveness

Logic

Exercises

TRUTH-TABLE REDUCIBILITIES; SIMPLE SETS

Simple sets

Immune sets

Truth-table reducibility

Truth-table reducibility and many-one reducibility
Bounded truth-table reducibility

Structure of degrees

52
53
53
55

57
57

63
66
67
69
71
73

g

11
79

80

80
82
84
85
87
89

94
99

105

105
107
109
112
114
118

e o S R

Contents xiii

§8.7 Other recursively enumerable sets 120
§8.8 Exercises 121
Chapter 9 TURING REDUCIBILITY; HYPERSIMPLE SETS 127
§9.1 An example 127
§9.2 Relative recursiveness 128
§9.3 Relativized theory 134
§9.4 Turing reducibility 137
§9.5 Hypersimple sets; Dekker’s theorem 138
§9.6 Turing reducibility and truth-table reducibility; Post’s problem 141
§9.7 Enumeration reducibility 145
§9.8 Recursive operators 148
§9.9 - Exercises 154
Chapter 10 POST’S PROBLEM; INCOMPLETE SETS 161
§10.1 Constructive approaches 161
§10.2 Friedberg’s solution 163
§10.3 Further results and problems 167
§10.4 Inseparable sets of any recursively enumerable degree 170
§10.5 Theories of any recursively enumerable degree 171
§10.6 Exercises 174
Chapter 11 THE RECURSION THEOREM 179
§11.1 Introduction 179
§11.2 The recursion theorem 180
§11.3 Completeness of creative sets; completely productive sets 183
§11.4 Other applications and constructions 185
§11.5 Other forms of the recursion theorem 192
§11.6 Discussion 199
§11.7 Ordinal notations 205
§11.8 Constructive ordinals 211
§11.9 Exercises 213

Chapter 12 RECURSIVELY ENUMERABLE SETS AS A LATTICE 223

§12.1 Lattices of sets 223
§12.2 Decomposition 230
§12.3 Cohesive sets 231
§12.4 Maximal sets 234
§12.5 Subsets of maximal sets 237
§12.6 Almost-finiteness properties 240

§12.7 Exercises 246

xiv Contents

Chapter 13

§13.1
§13.2
§13.3
§13.4
§13.5
§13.6
§13.7
§13.8
§13.9

Chapter 14

§14.1
§14.2
§14.3
§14.4
§14.5
§14.6
§14.7
§14.8
§14.9

Chapter 15

§15.1
§15.2
§15.3
§15.4

Chapter 16

§16.1
§16.2
§16.3
§16.4
§16.5
§16.6
§16.7
§16.8
§16.9

DEGREES OF UNSOLVABILITY

The jump operation

Special sets and degrees

Complete degrees; category and measure
Ordering of degrees

Minimal degrees

Partial degrees

The Medvedev lattice

Further results

Exercises

THE ARITHMETICAL HIERARCHY (PART I)

The hierarchy of sets

Normal forms

The Tarski-Kuratowski algorithm
Arithmetical representation

The strong hierarchy theorem
Degrees

Applications to logic

Computing degrees of unsolvability
Exercises 1

THE ARITHMETICAL HIERARCHY (PART 2)

¥ 3

The hierarchy of sets of sets

The hierarchy of sets of functions
Functionals

Exercises

THE ANALYTICAL HIERARCHY

The analytical hierarchy

Analytical representation; applications to logic
Finite-path trees

IIi-sets and Al-sets

Generalized computability

Hyperdegrees and the hyperjump; =3-sets and Aj-sets

Basis results and implicit definability
The hyperarithmetical hierarchy
Exercises

Bibliography
Index of Notations
Subject Index

254

254
262
265
273
276
279
282
289
295

301

301
305
307
312
314
316
318
323
331

335

335
346
358
367

373

373
384
392
397
402
409
418
434
445

459 .

469
473

1 Recursive Functions

§1.1 The Informal Notion of Algorithm 1

§1.2 An Example: The Primitive Racursive Functions 5
§1.3 Extensionality 9 '

§1.4 Diagonalization 10

§1.5 Formal Characterization 11

§1.6 The Basic Result 18

§1.7 Church’s Thesis 20

§1.8 Godel Numbers, Universality, s-m-n Theorem 21
§1.9 The Halting Problem 24

§1.10 Recursiveness 26

§1.1 THE INFORMAL NOTION OF ALGORITHM

In this chapter we give a formal (i.e., mathematically exact) charac-
terization of recursive function. The concept is basic for the remainder
of the book. It is one way of making precise the informal mathematical
notion of function computable “‘by algorithm” or “by effective procedure.”
In this section, as a preliminary to the formal characterizdtion, we discuss
‘certain aspects of the ¢nformal notions of algorithm and function computable
by algorithm as they occur in mathematics.

Roughly speaking, an algorithm is a clerical (i.e., deterministic, book-
keeping) procedure which can be applied to any of a certain class of symbolic
inputs and which will eventually yield, for each such input, a corresponding
symbolic output. An example of an algorithm is the usual procedure given
in elementary calculus for differentiating polynomials. (The name calculus,
of course, indicates the algorithmic nature of that discipline.)

In what follows, we shall limit ourselves to algorithms which yield, as
outputs, integers in some standard notation, e.g., arabic numerals, and
which take, as inputs, integers, or k-tuples of integers for a fixed k, in some
standard notation. Hence, for us, an algorithm is a procedure for com-
puting a function (with respect to some chosen notation for integers). For
- our purposes, as we shall see, this limitation (to numerical functions)
results in no loss of generality. It is, of course, important to distinguish
between the notion of algorithm, i.e., procedure, and the notion of function
computable by algorithm, i.e., mapping yielded by procedure. The same

1

2 Recursive functions

function may have several different algorithms. We shall occasionally
refer to functions computable by algorithm as algorithmic functions.t

Here are several examples of functions for which well-known algorithms
exist (with respect to the usual denary notation for integers).

a. \z[zth prime number]. (The method of Eratosthenes’ sieve is an
algorithm here.) (We are assuming Church’s lambda notation. To say
that f = Nz[zth prime number] is to say that for all z, f(x) = xzth prime
number.)

b. Nxy[the greatest common divisor of z and y]. (The Euclidean algorithm
serves here.)

c. \x[the integer <9 whose arabic numeral occurs as the xth digit in the
dectmal expansion of m = 3.14159 - - -]. (Any one of a number of common
approximation methods will give an algorithm, e.g., quadrature of the unit
circle by Simpson’s rule.)

Of course there are even simpler and commoner examples of functions
computable by algorithm. One such function is

d. Azylz + y]. Such common algorithms are the substance of elemen-
tary school arithmetic.

Several features of the informal notion of algorithin appear to be essen-
tial. We describe them in approximate and intuitive terms.

*1. An algorithm 1is given as a set of instructions of finite size. (Any
classical mathematical algorithm, for example, can be described in a finite
number of English words.)

*2. There is a computing agent, usually human, which can react to the
instructions and carry out the computations.

*3. There are facilities for making, storing, and retrieving steps in a
computation. :

*4. Let P be a set of instructions as in *1 and L be a compuling agent as in
*2. Then L reacts to P in such a way that, for any given input, the computa-
tion s carried out in a discrete stepwise fashion, without use of continuous
methods or analogue devices.

*5. L reacts to P in such a way that a computation is carried forward
deterministically, without resort to random methods or devices, e.g., dice.§

Virtually all mathematicians would agree that features *1 to *5, although
inexactly stated, are inherent in the idea of algorithm. The reader will
note an analogy to digital computing machines: *1 corresponds to the

t Beginning in §1.5, we shall extend our use of the word algorithm to include pro-
cedures for computing nontotal partial functions.

t As we proceed, we shall assume, without further comment, the conventions of
notation and terminology set forth in the Introduction. In addition to the lambda
notation, the restriction of function and partial function to mean mappings on: (non-
negative) integers is important for Chapter 1.

§ In a more careful discussion, a philosopher of science might contend tha.t *4 implies
*5. Indeed, he might question whether there is any real difference between *4 and *5.

