LNCS 2017

- Samuel P. Midkiff - José E. Moreira
Manish Gupta - Siddhartha Chatterjee
Jeanne Ferrante - Jan Prins

William Pugh - Chau-Wen Tseng (Eds.)

Languages and Compilers
for Parallel Computing

13th International Workshop, LCPC 2000
Yorktown Heights, NY, USA, August 2000
Revised Papers

‘j} Springer

Samuel P. Midkiff José E. Moreira Manish Gupta
Siddhartha Chatterjee Jeanne Ferrante Jan Prins
William Pugh Chau-Wen Tseng (Eds.)

Languages
and Compilers
for Parallel Computing

13th International Workshop, LCPC 2000

EOlktO\é\l/rllj Heights,
AL ﬁ@%iﬁ

Springer

Volume Editors

Samuel P. Midkiff

José E. Moreira

Manish Gupta

Siddhartha Chatterjee

IBM T.J. Watson Research Center

P.O. Box 218, Yorktown Heights, NY 10598, USA
E-mail: {smidkiff,jmoreira,mgupta,sc}@us.ibm.com

Jeanne Ferrante

University of California at San Diego, Computer Science and Engineering
9500 Gilman Drive, La Jolla, CA 92093-0114, USA

E-mail: ferrante @cs.ucsd.edu

Jan Prins

University of North Carolina, Department of Computer Science
Chapel Hill, NC 27599-3175, USA

E-mail: prins@unc.edu

William Pugh

Chau-Wen Tseng

University of Maryland, Department of Computer Science
College Park, MD 20742, USA

E-mail: {pugh,tseng}@cs.umd.edu

Cataloging-in-Publication Data applied for
Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Languages and compilers for parallel computing : 13th international workshop ;
revised papers / LCPC 2000, Yorktown Heights, NY, USA, August 10 - 12, 2000.
Samuel P. Midkiff ... (ed.). - Berlin ; Heidelberg ; New York ; Barcelona ;
Hong Kong ; London ; Milan ; Paris ; Tokyo : Springer, 2002

(Lecture notes in computer science ; Vol. 2017)

ISBN 3-540-42862-3

CR Subject Classification (1998): D.3, D.1.3, F.1.2, B.2.1,C.2

ISSN 0302-9743
ISBN 3-540-42862-3 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2001
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign
Printed on acid-free paper SPIN: 10782214 06/3142 543210

Lecture Notes in Computer Science 2017
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

Springer
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London

Milan

Paris

Tokyo

Foreword

This volume contains the papers presented at the 13th International Workshop
on Languages and Compilers for Parallel Computing. It also contains extended
abstracts of submissions that were accepted as posters. The workshop was held
at the IBM T. J. Watson Research Center in Yorktown Heights, New York.
As in previous years, the workshop focused on issues in optimizing compilers,
languages, and software environments for high performance computing. This
continues a trend in which languages, compilers, and software environments for
high performance computing, and not strictly parallel computing, has been the
organizing topic. As in past years, participants came from Asia, North America,
and Europe.

This workshop reflected the work of many people. In particular, the members
of the steering committee, David Padua, Alex Nicolau, Utpal Banerjee, and
David Gelernter, have been instrumental in maintaining the focus and quality of
the workshop since it was first held in 1988 in Urbana-Champaign. The assistance
of the other members of the program committee — Larry Carter, Sid Chatterjee,
Jeanne Ferrante, Jans Prins, Bill Pugh, and Chau-wen Tseng — was crucial. The
infrastructure at the IBM T. J. Watson Research Center provided trouble-free
logistical support. The IBM T. J. Watson Research Center also provided financial
support by underwriting much of the expense of the workshop. Appreciation
must also be extended to Marc Snir and Pratap Pattnaik of the IBM T. J.
Watson Research Center for their support.

Finally, we would like to thank the referees who spent countless hours as-
sisting the program committee members in evaluating the quality of the sub-
missions: Scott B. Baden, Jean-Francois Collard, Val Donaldson, Rudolf Eigen-
mann, Stephen Fink, Kang Su Gatlin, Michael Hind, Francois Irigoin, Pramod
G. Joisha, Gabriele Keller, Wolf Pfannenstiel, Lawrence Rauchweger, Martin
Simons, D. B. Skillicorn, Hong Tang, and Hao Yu.

January 2001 Manish Gupta
Sam Midkiff
José Moreira

VI Organization

Organization

The 13th annual International Workshop on Languages and Compilers for High
Performance Computing (LCPC 2000) was organized and sponsored by the IBM
T. J Watson Research Center, Yorktown Heights, New York

Steering Committee

Utpal Banerjee
David Gelernter
Alex Nicolau
David A. Padua

Program Committee

Siddhartha Chatterjee
Larry Carter

Jeanne Ferrante
Manish Gupta

Sam Midkiff

José Moreira

Jans Prins

Bill Pugh

Chau-Wen Tseng

Sponsoring Institutions

Intel Corporation

Yale University

Unwversity of California at Irvine
University of Illinois at Urbana-Champaign

University of North Carolina at Chapel Hill
University of California at San Diego
University of California at San Diego

IBM T. J. Watson Research Center

IBM T. J. Watson Research Center

IBM T. J. Watson Research Center
University of North Carolina at Chapel Hill
University of Maryland

University of Maryland

The IBM T. J. Watson Research Center, Yorktown Heights, New York

Adve,Vikram, 208
Agrawal, Gagan, 339
Almasi, George, 68
Amato, Nancy M., 82
Arnold, Matthew, 49
Arvind, D.K., 304
Asenjo, Rafael, 1
Atri, Sunil, 158
Ayguade, Eduard, 324

Bannerjee, Prithviraj, 259
Corbera, Francisco, 1

Dennisen, Will, 355
Dietz, H.G., 244

Eigenmann, Rudolf, 274

Faber, Peter, 359
Ferreira, Renato, 339
Field, Antony J., 363

Gonzalez, Marc, 324
Griebl, Martin, 359
Guyer, Samuel Z., 227

Han, Hwansoo, 173
Hansen, Thomas L., 363
Hind, Michael, 49
Hoeflinger, Jay, 289
Hunt, Harry B. III, 127

Irwin, Mary Jane, 142
Ishizaka, Kazuhisa, 189

Jin, Ruoning, 339
Johnson, Jeremy, 112
Johnson, Robert W., 112
Joisha, Pramod G., 259

Kandemir, Mahmut, 142, 158
Kasahara, Hironori, 189
Kelly, Paul H.J., 363

Kim, Hyun Suk, 142

Kim, Seon Wook, 274

Author Index

Labarta, Jesus, 324

Lee, Jenq Kuen, 377
Lengauer, Christian, 359
Lewis, T.A., 304

Lin, Calvin, 227

Martorell, Xavier, 324
Mattox, T.I., 244
Mullin, Lenore R., 127

Narasimhan, Srivatsan, 372
Navarro, Nacho, 324

O’Donnell, John, 16
Obata, Motoki, 189
Oliver, Jose, 324

Padua, David A., 68, 112
Paek, Yunheung, 289
Pande, Santosh, 372
Park, Insung, 274

Ramanujam, J., 158
Rauber, Thomas, 16, 367
Rauchwerger, Lawrence, 82
Reilein, Robert, 367
Rinard, Martin, 34
Rosenkrantz, Daniel J., 127
Rugina, Radu, 34

Riinger, Gudula, 16, 367
Ryder, Barbara G., 49

Sakellariou, Rizos, 208
Saltz, Joel, 339
Sips, Henk J., 355

Torrellas, Josep, 82
Tseng, Chau-Wen, 173

Vijaykrishnan, Narayanan, 142

Wonnacott, David, 97
Wu, Jian-Zhi, 377

Xiong, Jianxin, 112

Zapata, Emilio, 1

Lecture Notes in Computer Science

For information about Vols. 1-2161

please contact your bookseller or Springer-Verlag

Vol. 2017: S.P. Midkiff, J.E. Moreira, M. Gupta, S.
Chatterjee, J. Ferrante, J. Prins, W. Pugh, C.-W. Tseng
(Eds.). Languages and Compilers for Parallel Comput-
ing. Proceedings, 2000. IX, 383 pages. 2001.

Vol. 2162: C. K. Kog, D. Naccache, C. Paar (Eds.),
Cryptographic Hardware and Embedded Systems — CHES
2001. Proceedings, 2001. XIV, 411 pages. 2001.

Vol. 2163: P. Constantopoulos, I.T. Selvberg (Eds.), Re-
search and Advanced Technology for Digital Libraries.
Proceedings, 2001. XII, 462 pages. 2001.

Vol. 2164: S. Pierre, R. Glitho (Eds.), Mobile Agents for

Telecommunication Applications. Proceedings, 2001. XI,
292 pages. 2001.

Vol. 2165: L. de Alfaro, S. Gilmore (Eds.), Process Alge-
bra and Probabilistic Methods. Proceedings, 2001. XII,
217 pages. 2001.

Vol. 2166: V. MatouSek, P. Mautner, R. Moucek, K.
Tauser (Eds.), Text, Speech and Dialogue. Proceedings,
2001. XIII, 452 pages. 2001. (Subseries LNAI).

Vol. 2167: L. De Raedt, P. Flach (Eds.), Machine Learn-
ing: ECML 2001. Proceedings, 2001. XVII, 618 pages.
2001. (Subseries LNAI).

Vol. 2168: L. De Raedt, A. Siebes (Eds.), Principles of
Data Mining and Knowledge Discovery. Proceedings,
2001. XVII, 510 pages. 2001. (Subseries LNAI).

Vol. 2169: M. Jaedicke, New Concepts for Parallel Ob-
ject-Relational Query Processing. XI, 161 pages. 2001.
Vol. 2170: S. Palazzo (Ed.), Evolutionary Trends of the
Internet. Proceedings, 2001. XIII, 722 pages. 2001.

Vol. 2171: R. Focardi, R. Gorrieri (Eds.), Foundations of
Security Analysis and Design. VII, 397 pages. 2001.
Vol. 2172: C. Batini, F. Giunchiglia, P. Giorgini, M.
Mecella (Eds.), Cooperative Information Systems. Pro-
ceedings, 2001. X1, 450 pages. 2001.

Vol. 2173: T. Eiter, W. Faber, M. Truszczynski (Eds.),
Logic Programming and Nonmonotonic Reasoning. Pro-
ceedings, 2001. X1, 444 pages. 2001. (Subseries LNAI).
Vol. 2174: F. Baader, G. Brewka, T. Eiter (Eds.), KI 2001:
Advances in Artificial Intelligence. Proceedings, 2001.
XIII, 471 pages. 2001. (Subseries LNAI).

Vol. 2175: F. Esposito (Ed.), AI*IA 2001: Advances in
Artificial Intelligence. Proceedings, 2001, XII, 396 pages.
2001. (Subseries LNAI).

Vol. 2176: K.-D. Althoff, R.L. Feldmann, W. Miiller
(Eds.), Advances in Learning Software Organizations.
Proceedings, 2001. XI, 241 pages. 2001.

Vol. 2177: G. Butler, S. Jarzabek (Eds.), Generative and
Component-Based Software Engineering. Proceedings,
2001. X, 203 pages. 2001.

Vol. 2178: R. Moreno-Diaz, B. Buchberger, J.-L. Freire
(Eds.), Computer Aided Systems Theory - EUROCAST
2001. Proceedings, 2001. XI, 670 pages. 2001.

Vol. 2180: 1. Welch (Ed.). Distributed Computing. Pro-
ceedings, 2001. X, 343 pages. 2001.

Vol. 2181: C. Y. Westort (Ed.), Digital Earth Moving.
Proceedings, 2001. XII, 117 pages. 2001.

Vol. 2182: M. Klusch, F. Zambonelli (Eds.), Cooperative
Information Agents V. Proceedings. 2001. XII, 288 pages.
2001. (Subseries LNAI).

Vol. 2183: R. Kahle, P. Schroeder-Heister, R. Stirk (Eds.).
Proof Theory in Computer Science. Proceedings, 2001.
IX, 239 pages. 2001.

Vol. 2184: M. Tucci (Ed.), Multimedia Databases and
Image Communication. Proceedings, 2001. X, 225 pages.
2001.

Vol. 2185: M. Gogolla, C. Kobryn (Eds.), «UML» 2001 -
The Unified Modeling Language. Proceedings, 2001. X1V,
510 pages. 2001.

Vol. 2186: J. Bosch (Ed.), Generative and Component-
Based Software Engineering. Proceedings, 2001. VIII, 177
pages. 2001.

Vol. 2187: U. Voges (Ed.), Computer Safety, Reliability
and Security. Proceedings, 2001. XVI, 249 pages. 2001.
Vol. 2188: F. Bomarius, S. Komi-Sirvié (Eds.), Product
Focused Software Process Improvement. Proceedings,
2001. XI, 382 pages. 2001.

Vol. 2189: F. Hoffmann, D.J. Hand, N. Adams, D. Fisher,
G. Guimaraes (Eds.). Advances in Intelligent Data Analy-
sis. Proceedings, 2001. XII, 384 pages. 2001.

Vol. 2190: A. de Antonio, R. Aylett, D. Ballin (Eds.),
Intelligent Virtual Agents. Proceedings, 2001. VIII, 245
pages. 2001. (Subseries LNAI).

Vol. 2191: B. Radig. S. Florczyk (Eds.). Pattern Recog-
nition. Proceedings, 2001. XVI, 452 pages. 2001.

Vol. 2192: A. Yonezawa. S. Matsuoka (Eds.), Metalevel
Architectures and Separation of Crosscutting Concerns.
Proceedings. 2001. XI, 283 pages. 2001.

Vol. 2193: F. Casati, D. Georgakopoulos, M.-C. Shan
(Eds.), Technologies for E-Services. Proceedings, 2001.
X, 213 pages. 2001.

Vol. 2194: A K. Datta, T. Herman (Eds.), Self-Stabiliz-
ing Systems. Proceedings. 2001. VII, 229 pages. 2001.
Vol. 2195: H.-Y. Shum, M. Liao, S.-F. Chang (Eds.),
Advances in Multimedia Information Processing - PCM
2001. Proceedings, 2001. XX, 1149 pages. 2001.

Vol. 2196: W. Taha (Ed.), Semantics, Applications, and
Implementation of Program Generation. Proceedings,
2001. X, 219 pages. 2001.

Vol. 2197: O. Balet, G. Subsol, P. Torguet (Eds.), Virtual
Storytelling. Proceedings, 2001. X1, 213 pages. 2001.
Vol. 2198: N. Zhong, Y. Yao, J. Liu, S. Ohsuga (Eds.),
Web Intelligence: Research and Development. Proceed-
ings, 2001. XVI, 615 pages. 2001. (Subseries LNAI).

Vol. 2199: J. Crespo, V. Maojo. F. Martin (Eds.). Medi-
cal Data Analysis. Proceedings, 2001. X, 311 pages. 2001.
Vol. 2200: G.I. Davida, Y. Frankel (Eds.), Information
Security. Proceedings, 2001. XIII, 554 pages. 2001.
Vol. 2201: G.D. Abowd, B. Brumitt, S. Shafer (Eds.),
Ubicomp 2001: Ubiquitous Computing. Proceedings,
2001. X111, 372 pages. 2001.

Vol. 2202: A. Restivo, S. Ronchi Della Rocca, L. Roversi
(Eds.). Theoretical Computer Science. Proceedings, 2001.
XI. 440 pages. 2001.

Vol. 2204: A. Brandstidt, V.B. Le (Eds.), Graph-Theo-
retic Concepts in Computer Science. Proceedings, 2001.
X, 329 pages. 2001.

Vol. 2205: D.R. Montello (Ed.), Spatial Information
Theory. Proceedings, 2001. X1V, 503 pages. 2001.

Vol. 2206: B. Reusch (Ed.). Computational Intelligence.
Proceedings. 2001. XVII, 1003 pages. 2001.

Vol. 2207: .W. Marshall, S. Nettles, N. Wakamiya (Eds.),
Active Networks. Proceedings, 2001. IX, 165 pages. 2001.
Vol. 2208: W.J. Niessen, M.A. Viergever (Eds.), Medi-
cal Image Computing and Computer-Assisted Interven-
tion - MICCAI 2001. Proceedings. 2001. XXXV, 1446
pages. 2001.

Vol. 2209: W. Jonker (Ed.), Databases in Telecommuni-
cations I1. Proceedings, 2001. VII, 179 pages. 2001.
Vol. 2210: Y. Liu, K. Tanaka, M. Iwata, T. Higuchi, M.
Yasunaga (Eds.). Evolvable Systems: From Biology to
Hardware. Proceedings, 2001. XI, 341 pages. 2001.
Vol. 2211: T.A. Henzinger, C.M. Kirsch (Eds.), Embed-
ded Software. Proceedings, 2001. X, 504 pages. 2001.
Vol. 2212: W. Lee, L. Mé, A. Wespi (Eds.), Recent Ad-
vances in Intrusion Detection. Proceedings, 2001. X, 205
pages. 2001.

Vol. 2213: M.J. van Sinderen, L.J.M. Nieuwenhuis (Eds.),
Protocols for Multimedia Systems. Proceedings, 2001.
XII, 239 pages. 2001.

Vol. 2214: O. Boldt, H. Jirgensen (Eds.), Automata Im-
plementation. Proceedings, 1999. VIII, 183 pages. 2001.
Vol. 2215: N. Kobayashi, B.C. Pierce (Eds.), Theoretical
Aspects of Computer Software. Proceedings, 2001. XV,
561 pages. 2001,

Vol. 2216: E.S. Al-Shaer, G. Pacifici (Eds.), Management
of Multimedia on the Internet. Proceedings. 2001. X1V,
373 pages. 2001.

Vol. 2217: T. Gomi (Ed.), Evolutionary Robotics. Pro-
ceedings, 2001. XI, 139 pages. 2001.

Vol. 2218: R. Guerraoui (Ed.), Middleware 2001. Pro-
ceedings, 2001. X1II, 395 pages. 2001.

Vol. 2220: C. Johnson (Ed.), Interactive Systems. Pro-
ceedings, 2001. XII, 219 pages. 2001.

Vol. 2221: D.G. Feitelson, L. Rudolph (Eds.), Job Sched-
uling Strategies for Parallel Processing. Proceedings,
2001. VII, 207 pages. 2001.

Vol. 2223: P. Eades. T. Takaoka (Eds.), Algorithms and
Computation. Proceedings, 2001. XIV, 780 pages. 2001.
Vol. 2224: H.S. Kunii, S. Jajodia, A. Selvberg (Eds.),
Conceptual Modeling — ER 2001. Proceedings, 2001. XIX,
614 pages. 2001.

Vol. 2225: N. Abe, R. Khardon, T. Zeugmann (Eds.).
Algorithmic Learning Theory. Proceedings, 2001. X1, 379
pages. 2001. (Subseries LNAI).

Vol. 2226: K.P. Jantke. A. Shinohara (Eds.), Discovery
Science. Proceedings, 2001. XII, 494 pages. 2001.
(Subseries LNAI).

Vol. 2227: S. Boztas, LLE. Shparlinski (Eds.), Applied
Algebra, Algebraic Algorithms and Error-Correcting
Codes. Proceedings, 2001. XI1, 398 pages. 2001.

Vol. 2228: B. Monien, V.K. Prasanna, S. Vajapeyam
(Eds.), High Performance Computing — HiPC 2001. Pro-
ceedings, 2001. XVIII, 438 pages. 2001.

Vol. 2229: S. Qing, T. Okamoto, J. Zhou (Eds.), Informa-
tion and Communications Security. Proceedings, 2001.
X1V, 504 pages. 2001.

Vol. 2230: T. Katila, I.E. Magnin, P. Clarysse, J.
Montagnat, J. Nenonen (Eds.), Functional Imaging and
Modeling of the Heart. Proceedings. 2001. XI, 158 pages.
2001.

Vol. 2232: L. Fiege. G. Miihl, U. Wilhelm (Eds.), Elec-
tronic Commerce. Proceedings, 2001. X, 233 pages. 2001.

Vol. 2233: J. Crowcroft, M. Hofmann (Eds.), Networked
Group Communication. Proceedings, 2001. X, 205 pages.
2001,

Vol. 2234: L. Pacholski, P. RuZi¢ka (Eds.), SOFSEM
2001: Theory and Practice of Informatics. Proceedings.
2001. XI. 347 pages. 2001.

Vol. 2237: P. Codognet (Ed.), Logic Programming. Pro-
ceedings, 2001. XI, 365 pages. 2001.

Vol. 2239: T. Walsh (Ed.), Principles and Practice of
Constraint Programming — CP 2001. Proceedings, 2001.
X1V, 788 pages. 2001.

Vol. 2240: G.P. Picco (Ed.), Mobile Agents. Proceedings,
2001. XIII. 277 pages. 2001.

Vol. 2241: M. Jiinger, D. Naddef (Eds.), Computational
Combinatorial Optimization. IX, 305 pages. 2001.

Vol. 2242: C.A. Lee (Ed.), Grid Computing — GRID 2001.
Proceedings, 2001. XII, 185 pages. 2001.

Vol. 2245: R. Hariharan, M. Mukund, V. Vinay (Eds.),
FSTTCS 2001: Foundations of Software Technology and
Theoretical Computer Science. Proceedings, 2001. X1, 347
pages. 2001.

Vol. 2247: C. P. Rangan, C. Ding (Eds.), Progress in
Cryptology — INDOCRYPT 2001. Proceedings, 2001.
XIII, 351 pages. 2001.

Vol. 2250: R. Nieuwenhuis, A. Voronkov (Eds.), Logic
for Programming, Artificial Intelligence, and Reasoning,
Proceedings, 2001. XV, 738 pages. 2001. (Subseries
LNAID.

Vol. 2248: C. Boyd (Ed.). Advances in Cryptology —
ASIACRYPT 2001. Proceedings, 2001. XI, 603 pages.
2001.

Vol. 2256: M. Stumptner, D. Corbett, M. Brooks (Eds.).
AT12001: Advances in Artificial Intelligence. Proceedings.
2001. XII, 666 pages. 2001. (Subseries LNAI).

Vol. 2264: K. Steinhéfel (Ed.), Stochastic Algorithms:
Foundations and Applications. Proceedings, 2001. VIII,
203 pages. 2001.

Table of Contents

Presented Papers

Accurate Shape Analysis for Recursive Data Structures 1
Francisco Corbera, Rafael Asenjo, and Emilio Zapata (University of
Milaga)

Cost Hierarchies for Abstract Parallel Machines........................ 16
John O’Donnell (University of Glasgow), Thomas Rauber (Universitit
Halle-Wittenberg), and Gudula Riinger (Technische Universitat
Chemnitz)

Recursion Unrolling for Divide and Conquer Programs 34
Radu Rugina and Martin Rinard (Massachusetts Institute of
Technology)

An Empirical Study of Selective Optimization 49
Matthew Arnold (Rutgers University), Michael Hind (IBM T.J. Watson
Research Center), and Barbara G. Ryder (Rutgers University)

MaJIC: A Matlab Just-In-time Compiler 68
George Almasi and David A. Padua (University of Illinois at
Urbana-Champaign)

SmartApps: An Application Centric Approach to High Performance
CoOmPULING .« oottt e e e 82
Lawrence Rauchwerger, Nancy M. Amato (Texas A&M University),
and Josep Torrellas (University of Illinois at Urbana-Champaign)

Extending Scalar Optimizations for Arraysc.c.oovuuiennnon... 97
David Wonnacott (Haverford College)

Searching for the Best FFT Formulas with the SPL Compiler............ 112
Jeremy Johnson (Drexel University), Robert W. Johnson (MathStar,
Inc.), David A. Padua, and Jianzin Xiong (University of Illinois at
Urbana-Champaign)

On Materializations of Array-Valued Temporaries 127
Daniel J. Rosenkrantz, Lenore R. Mullin, and Harry B. Hunt II1
(State University of New York at Albany)

Experimental Evaluation of Energy Behavior of Iteration Space Tiling 142
Mahmut Kandemir, Narayanan Vijaykrishnan, Mary Jane Irwin, and
Hyun Suk Kim (Pennsylvania State University)

VIII Table of Contents

Improving Offset Assignment for Embedded Processors 158
Sunil Atri, J. Ramanujam (Lousiana State University), and
Mahmut Kandemir (Pennsylvania State University)

Improving Locality for Adaptive Irregular Scientific Codes 173
Hwansoo Han and Chau-Wen Tseng (University of Maryland)

Automatic Coarse Grain Task Parallel Processing on SMP Using

OpenM P . .. 189
Hironori Kasahara, Motoki Obata, and Kazuhisa Ishizaka (Waseda
University)

Compiler Synthesis of Task Graphs for Parallel Program Performance
Prediction 208
Vikram Adve (University of Illinois at Urbana-Champaign) and
Rizos Sakellariou (University of Manchester)

Optimizing the Use of High Performance Software Libraries 227
Samuel Z. Guyer and Calvin Lin (University of Texas as Austin)

Compiler Techniques for Flat Neighborhood Networks 244
H.G. Dietz and T.I. Mattox (University of Kentucky)

Exploiting Ownership Sets in HPF oo ... 259
Pramod G. Joisha and Prithviraj Bannerjee (Northwestern University)

A Performance Advisor Tool for Shared-Memory Parallel Programming . .. 274

Seon Wook Kim, Insung Park, and Rudolf Figenmann (Purdue
University)

A Comparative Analysis of Dependence Testing Mechanisms 289
Jay Hoeflinger (University of Illinois at Urbana-Champaign) and
Yunheung Paek (Korean Advanced Institute of Science and
Technology)

Safe Approximation of Data Dependencies in Pointer-Based Structures ... 304
D.K. Arvind and T.A. Lewis (The University of Edinburgh)

OpenMP Extensions for Thread Groups and Their Run-Time Support 324
Marc Gonzalez, Jose Oliver, Xavier Martorell, Eduard Ayguade,
Jesus Labarta, and Nacho Navarro (Technical University of Catalonia)

Compiling Data Intensive Applications with Spatial Coordinates 339
Renato Ferreira (University of Maryland), Gagan Agrawal,
Ruoning Jin (University of Delaware), and Joel Saltz (University of
Maryland)

Table of Contents X

Posters

Efficient Dynamic Local Enumeration for HPF......... 355
Will Denissen and Henk J. Sips (Delft University of Technology)

Issues of the Automatic Generation of HPF Loop Programs 359
Peter Faber, Martin Griebl, and Christian Lengauer (Universitit
Passau)

Run-Time Fusion of MPI Calls in a Parallel C++ Library............... 363
Antony J. Field, Thomas L. Hansen, and Paul H.J. Kelly (Imperial
College)

Set Operations for Orthogonal Processor Groups 367
Thomas Rauber (Universitat Halle-Wittenberg), Robert Reilein, and
Gudula Ringer (Technische Universitat Chemnitz)

Compiler Based Scheduling of Java Mobile Agents 372
Srivatsan Narasimhan and Santosh Pande (University of Cincinnati)

A Bytecode Optimizer to Engineer Bytecodes for Performance 377
Jian-Zhi Wu and Jenq Kuen Lee (National Tsing-Hua University)

Author Index ... 383

Accurate Shape Analysis for Recursive Data
Structures™

Francisco Corbera, Rafael Asenjo, and Emilio Zapata

Dept. Computer Architecture, University of Malaga, Spain
{corbera,asenjo,ezapata}@ac.uma.es

Abstract. Automatic parallelization of codes which use dynamic data
structures is still a challenge. One of the first steps in such paralleliza-
tion is the automatic detection of the dynamic data structure used in the
code. In this paper we describe the framework and the compiler we have
implemented to capture complex data structures generated, traversed,
and modified in C codes. Our method assigns a Reduced Set of Refer-
ence Shape Graphs (RSRSG) to each sentence to approximate the shape
of the data structure after the execution of such a sentence. With the
properties and operations that define the behavior of our RSRSG, the
method can accurately detect complex recursive data structures such as
a dcubly linked list of pointers to trees where the leaves point to addi-
tional lists. Other experiments are carried out with real codes to validate
the capabilities of our compiler.

1 Introduction

For complex and time-consuming applications, parallel programming is a must.
Automatic parallelizing compilers are designed with the aim of dramatically re-
ducing the time needed to develop a parallel program by generating a parallel
version from a sequential code without special annotations. There are several
well-known research groups involved in the development and improvement of
parallel compilers, such as Polaris, PFA, Parafrase, SUIF, etc. We have noted
that the detection step of current parallelizing compilers does a pretty good job
when dealing with regular or numeric codes. However, they cannot manage irreg-
ular codes or symbolic ones, which are mainly based on complex data structures
which use pointers in many cases. Actually, data dependence analysis is quite
well known for array-based codes even when complex array access functions are
present [5]. On the other hand, much less work has been done to successfully
determine the data dependencies of code sections using dynamic data structures
based on pointers. Nevertheless, this is a problem that cannot be avoided due
to the increasing use of dynamic structures and memory pointer references.

* This work was supported by the Ministry of Education and Science (CICYT) of
Spain (TIC96-1125-C03), by the European Union (BRITE-EURAM I1I BE95-1564),
by APART: Automatic Performance Analysis: Resources and Tools, EU Esprit IV
Working Group No. 29488

S.P. Midkiff et al. (Eds.): LCPC 2000, LNCS 2017, pp. 1-15, 2001.
© Springer-Verlag Berlin Heidelberg 2001

2 Francisco Corbera, Rafael Asenjo, and Emilio Zapata

With this motivation, our goal is to propose and implement new techniques
that can be included in compilers to allow the automatic parallelization of real
codes based on dynamic data structures. From this goal we have selected the
shape analysis subproblem, which aims at estimating at compile time the shape
the data will take at run time. Given this information, a subsequent analysis
would detect whether or not certain sections of the code can be parallelized
because they access independent data regions.

There are several ways this problem can be approached, but we focus in the
graph-based methods in which the “storage chunks” are represented by nodes,
and edges are used to represent references between them (2], (8], [9]. In a pre-
vious work [3], we combined and extended several ideas from these previous
graph-based methods, for example, allowing more than a summary node per
graph among other extensions. However, we keep the restriction of one graph
per sentence in the code. This way, since each sentence of the code can be reached
after following several paths in the control flow, the associated graph should ap-
proximate all the possible memory configurations arising after the execution of
this sentence. This restriction leads to memory and time saving, but at the same
time it significantly reduces the accuracy of the method. In this work, we have
changed our previous direction by selecting a tradeoff solution: we consider sev-
eral graphs with more than a summary node, while fulfilling some rules to avoid
an explosion in the number of graphs and nodes in each graph.

Among the first relevant studies which allowed several graphs were those
developed by Jones et al. [7] and Horwitz et al. [6]. These approaches are based
on a “k-limited” approximation in which all nodes beyond a k selectors path
are joined in a summary node. The main drawback to these methods is that the
node analysis beyond the “k-limit” is very inexact and therefore they are unable
to capture complex data structures. A more recent work that also allows several
graphs and summary nodes is the one presented by Sagiv et al.[10]. They propose
a parametric framework based on a 3-valued logic. To describe the memory
configuration they use 3-valued structures defined by several predicates. These
predicates determine the accuracy of the method. As far as we know the currently
proposed predicates do not suffice to deal with the complex data structures that
we handle in this paper.

With this in mind, our proposal is based on approximating all the possible
memory configurations that can arise after the execution of a sentence by a
set of graphs: the Reduced Set of Reference Shape Graphs (RSRSG). We see
that each RSRSG is a collection of Reference Shape Graphs (RSG) each one
containing several non-compatible nodes. Finally, each node represents one or
several memory locations. Compatible nodes are “summarized” into a single one.
Two nodes are compatible if they share the same reference properties. With this
framework we can achieve accurate results without excessive compilation time.
Besides this, we cover situations that were previously unsolved, such as detection
of complex structures (lists of trees, lists of lists, etc.) and structure permutation,
as we will see in this article.

Accurate Shape Analysis for Recursive Data Structures 3

The rest of the paper is organized as follows. Section 2 briefly describes the
whole framework, introducing the key ideas of the method and presenting the
data structure example that will help in understanding node properties and op-
erations with graphs. These properties are described in Sect. 3 where we show
how the RSG can accurately approximate a memory configuration. The analysis
method have been implemented in a compiler which is experimentally validated,
in Sect. 4, by analyzing several C codes based on complex data structures. Fi-
nally, we summarize the main contributions and future work in Sect. 5.

2 Method Overview

Basically, our method is based on approximating all possible memory configu-
rations that can appear after the execution of a sentence in the code. Note that
due to the control flow of the program, a sentence could be reached by following
several paths in the control flow. Each “control path” has an associated mem-
ory configuration which is modified by each sentence in the path. Therefore, a
single sentence in the code modifies all the memory configurations associated
with all the control paths reaching this sentence. Each memory configuration is
approximated by a graph we call Reference Shape Graphs (RSG). So, taking all
this into account, we conclude that each sentence in the code will have a set of
RSGs associated with it. This set of RSGs will describe the shape of the data
structure after the execution of this sentence.

The calculation of this set of graphs is carried out by the symbolic ex-
ecution of the program over the graphs. In this way, each program sentence
transforms the graphs to reflect the changes in the memory configurations de-
rived from the sentence execution. The RSGs are graphs in which nodes repre-
sent memory locations which have similar reference patterns. Therefore, a single
node can safely and accurately represents several memory locations (if they are
similarly referenced) without losing their essential characteristics.

To determine whether or not two memory locations should be represented by
a single node, each one is annotated with a set of properties. Now, two different
memory locations will be “summarized” in a single node if they fulfill the same
properties. Note that the node inherits the properties of the memory locations
represented by this node. Besides this, two nodes can be also summarized if
they represent “summarizable” memory locations. This way, a possibly unlimited
memory configuration can be represented by a limited size RSG, because the
number of different nodes is limited by the number of properties of each node.
These properties are related to the reference pattern used to access the memory
locations represented by the node. Hence the name Reference Shape Graph.

As we have said, all possible memory configurations which may arise after
the execution of a sentence are approximated by a set of RSGs. We call this
set Reduced Set of Reference Shape Graphs (RSRSG), since not all the different
RSGs arising in each sentence will be kept. On the contrary, several RSGs related
to different memory configurations will be fused when they represent memory
locations with similar reference patterns. There are also several properties related

4 Francisco Corbera, Rafael Asenjo, and Emilio Zapata

to the RSGs, and two RSGs should share these properties to be joined. Therefore,
besides the number of nodes in an RSG, the number of different RSGs associated
with a sentence are limited too. This union of RSGs greatly reduces the number
of RSGs and leads to a practicable analysis.

The symbolic execution of the code consists in the abstract interpretation of
each sentence in the code. This abstract interpretation is carried out iteratively
for each sentence until we reach a fixed point in which the resulting RSRSG
associated with the sentence does not change any more [4]. This way, for each
sentence that modifies dynamic structures, we have to define the abstract se-
mantics which describes how these sentences modify the RSRSG. We consider
six simple instructions that deal with pointers: * = NULL, x = malloc, = = y,
x — sel = NULL, x — sel = y, and = y — sel. More complex pointer
instructions can be built upon these simple ones and temporal variables.

The output RSRSG resulting from the abstract interpretation of a sentence
over an input RSRSG; is generated by applying the abstract interpretation to
each rsg; € RSRSG;. After the abstract.interpretation of the sentence over
the rsg; € RSRSG; we obtain a set of output rsg,. As we said, we cannot
keep all the rsg, arising from the abstract interpretation. On the contrary, each
rsgo, will be compressed, which means the summarization of compatible nodes
in the rsg,. Furthermore, some of the rsg,s can be fused in a single RSG if
they represent similar memory configurations. This operation greatly reduces
the number of RSGs in the resulting RSRSG. In the worst case, the sequence
of operations that the compiler carries out in order to symbolically execute a
sentence are: graph division, graph prune, sentence symbolic execution (RSG
modification), RSG compression and RSG union to build the final RSRSG. Due
to space constraints we cannot formally describe this operations neither the
abstract semantics carried out by the compiler. However, in order to provide
an overview of our method we present a data structure example which will be
refered to during the framework and operations description.

2.1 Working Example

The data structure, presented in Fig. 1 (a), is a doubly linked list of pointers
to trees. Besides this, the leaves of the trees have pointers to doubly linked
lists. The pointer variable S points to the first element of the doubly linked list
(header list). Each item in this list has three pointers: nat, prv, and tree. This
tree selector points to the root of a binary tree in which each element has the
lft and rgh selectors. Finally, the leaves of the trees point to additional doubly
linked lists. All the trees pointed to by the header list are independent and do
not share any element. In the same way, the lists pointed to by the leaves of the
same tree or different trees are also independent.

This data structure is built by a C code which traverses the elements of the
header list with two pointers and eventually can permute two trees. Our compiler
has analyzed this code obtaining an RSRSG for each sentence in the program.
Figure 1 (b) shows a compact represetation of the RSRSG obtained for the last
sentence of the code after the compiler analysis.

