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Foreword

This volume contains the papers presented at the 13th International Workshop
on Languages and Compilers for Parallel Computing. It also contains extended
abstracts of submissions that were accepted as posters. The workshop was held
at the IBM T. J. Watson Research Center in Yorktown Heights, New York.
As in previous years, the workshop focused on issues in optimizing compilers,
languages, and software environments for high performance computing. This
continues a trend in which languages, compilers, and software environments for
high performance computing, and not strictly parallel computing, has been the
organizing topic. As in past years, participants came from Asia, North America,
and Europe.

This workshop reflected the work of many people. In particular, the members
of the steering committee, David Padua, Alex Nicolau, Utpal Banerjee, and
David Gelernter, have been instrumental in maintaining the focus and quality of
the workshop since it was first held in 1988 in Urbana-Champaign. The assistance
of the other members of the program committee — Larry Carter, Sid Chatterjee,
Jeanne Ferrante, Jans Prins, Bill Pugh, and Chau-wen Tseng — was crucial. The
infrastructure at the IBM T. J. Watson Research Center provided trouble-free
logistical support. The IBM T. J. Watson Research Center also provided financial
support by underwriting much of the expense of the workshop. Appreciation
must also be extended to Marc Snir and Pratap Pattnaik of the IBM T. J.
Watson Research Center for their support.

Finally, we would like to thank the referees who spent countless hours as-
sisting the program committee members in evaluating the quality of the sub-
missions: Scott B. Baden, Jean-Francois Collard, Val Donaldson, Rudolf Eigen-
mann, Stephen Fink, Kang Su Gatlin, Michael Hind, Francois Irigoin, Pramod
G. Joisha, Gabriele Keller, Wolf Pfannenstiel, Lawrence Rauchweger, Martin
Simons, D. B. Skillicorn, Hong Tang, and Hao Yu.

January 2001 Manish Gupta
Sam Midkiff
José Moreira
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Accurate Shape Analysis for Recursive Data
Structures™

Francisco Corbera, Rafael Asenjo, and Emilio Zapata

Dept. Computer Architecture, University of Malaga, Spain
{corbera,asenjo,ezapata}@ac.uma.es

Abstract. Automatic parallelization of codes which use dynamic data
structures is still a challenge. One of the first steps in such paralleliza-
tion is the automatic detection of the dynamic data structure used in the
code. In this paper we describe the framework and the compiler we have
implemented to capture complex data structures generated, traversed,
and modified in C codes. Our method assigns a Reduced Set of Refer-
ence Shape Graphs (RSRSG) to each sentence to approximate the shape
of the data structure after the execution of such a sentence. With the
properties and operations that define the behavior of our RSRSG, the
method can accurately detect complex recursive data structures such as
a dcubly linked list of pointers to trees where the leaves point to addi-
tional lists. Other experiments are carried out with real codes to validate
the capabilities of our compiler.

1 Introduction

For complex and time-consuming applications, parallel programming is a must.
Automatic parallelizing compilers are designed with the aim of dramatically re-
ducing the time needed to develop a parallel program by generating a parallel
version from a sequential code without special annotations. There are several
well-known research groups involved in the development and improvement of
parallel compilers, such as Polaris, PFA, Parafrase, SUIF, etc. We have noted
that the detection step of current parallelizing compilers does a pretty good job
when dealing with regular or numeric codes. However, they cannot manage irreg-
ular codes or symbolic ones, which are mainly based on complex data structures
which use pointers in many cases. Actually, data dependence analysis is quite
well known for array-based codes even when complex array access functions are
present [5]. On the other hand, much less work has been done to successfully
determine the data dependencies of code sections using dynamic data structures
based on pointers. Nevertheless, this is a problem that cannot be avoided due
to the increasing use of dynamic structures and memory pointer references.

* This work was supported by the Ministry of Education and Science (CICYT) of
Spain (TIC96-1125-C03), by the European Union (BRITE-EURAM I1I BE95-1564),
by APART: Automatic Performance Analysis: Resources and Tools, EU Esprit IV
Working Group No. 29488

S.P. Midkiff et al. (Eds.): LCPC 2000, LNCS 2017, pp. 1-15, 2001.
© Springer-Verlag Berlin Heidelberg 2001



2 Francisco Corbera, Rafael Asenjo, and Emilio Zapata

With this motivation, our goal is to propose and implement new techniques
that can be included in compilers to allow the automatic parallelization of real
codes based on dynamic data structures. From this goal we have selected the
shape analysis subproblem, which aims at estimating at compile time the shape
the data will take at run time. Given this information, a subsequent analysis
would detect whether or not certain sections of the code can be parallelized
because they access independent data regions.

There are several ways this problem can be approached, but we focus in the
graph-based methods in which the “storage chunks” are represented by nodes,
and edges are used to represent references between them (2], (8], [9]. In a pre-
vious work [3], we combined and extended several ideas from these previous
graph-based methods, for example, allowing more than a summary node per
graph among other extensions. However, we keep the restriction of one graph
per sentence in the code. This way, since each sentence of the code can be reached
after following several paths in the control flow, the associated graph should ap-
proximate all the possible memory configurations arising after the execution of
this sentence. This restriction leads to memory and time saving, but at the same
time it significantly reduces the accuracy of the method. In this work, we have
changed our previous direction by selecting a tradeoff solution: we consider sev-
eral graphs with more than a summary node, while fulfilling some rules to avoid
an explosion in the number of graphs and nodes in each graph.

Among the first relevant studies which allowed several graphs were those
developed by Jones et al. [7] and Horwitz et al. [6]. These approaches are based
on a “k-limited” approximation in which all nodes beyond a k selectors path
are joined in a summary node. The main drawback to these methods is that the
node analysis beyond the “k-limit” is very inexact and therefore they are unable
to capture complex data structures. A more recent work that also allows several
graphs and summary nodes is the one presented by Sagiv et al.[10]. They propose
a parametric framework based on a 3-valued logic. To describe the memory
configuration they use 3-valued structures defined by several predicates. These
predicates determine the accuracy of the method. As far as we know the currently
proposed predicates do not suffice to deal with the complex data structures that
we handle in this paper.

With this in mind, our proposal is based on approximating all the possible
memory configurations that can arise after the execution of a sentence by a
set of graphs: the Reduced Set of Reference Shape Graphs (RSRSG). We see
that each RSRSG is a collection of Reference Shape Graphs (RSG) each one
containing several non-compatible nodes. Finally, each node represents one or
several memory locations. Compatible nodes are “summarized” into a single one.
Two nodes are compatible if they share the same reference properties. With this
framework we can achieve accurate results without excessive compilation time.
Besides this, we cover situations that were previously unsolved, such as detection
of complex structures (lists of trees, lists of lists, etc.) and structure permutation,
as we will see in this article.
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The rest of the paper is organized as follows. Section 2 briefly describes the
whole framework, introducing the key ideas of the method and presenting the
data structure example that will help in understanding node properties and op-
erations with graphs. These properties are described in Sect. 3 where we show
how the RSG can accurately approximate a memory configuration. The analysis
method have been implemented in a compiler which is experimentally validated,
in Sect. 4, by analyzing several C codes based on complex data structures. Fi-
nally, we summarize the main contributions and future work in Sect. 5.

2 Method Overview

Basically, our method is based on approximating all possible memory configu-
rations that can appear after the execution of a sentence in the code. Note that
due to the control flow of the program, a sentence could be reached by following
several paths in the control flow. Each “control path” has an associated mem-
ory configuration which is modified by each sentence in the path. Therefore, a
single sentence in the code modifies all the memory configurations associated
with all the control paths reaching this sentence. Each memory configuration is
approximated by a graph we call Reference Shape Graphs (RSG). So, taking all
this into account, we conclude that each sentence in the code will have a set of
RSGs associated with it. This set of RSGs will describe the shape of the data
structure after the execution of this sentence.

The calculation of this set of graphs is carried out by the symbolic ex-
ecution of the program over the graphs. In this way, each program sentence
transforms the graphs to reflect the changes in the memory configurations de-
rived from the sentence execution. The RSGs are graphs in which nodes repre-
sent memory locations which have similar reference patterns. Therefore, a single
node can safely and accurately represents several memory locations (if they are
similarly referenced) without losing their essential characteristics.

To determine whether or not two memory locations should be represented by
a single node, each one is annotated with a set of properties. Now, two different
memory locations will be “summarized” in a single node if they fulfill the same
properties. Note that the node inherits the properties of the memory locations
represented by this node. Besides this, two nodes can be also summarized if
they represent “summarizable” memory locations. This way, a possibly unlimited
memory configuration can be represented by a limited size RSG, because the
number of different nodes is limited by the number of properties of each node.
These properties are related to the reference pattern used to access the memory
locations represented by the node. Hence the name Reference Shape Graph.

As we have said, all possible memory configurations which may arise after
the execution of a sentence are approximated by a set of RSGs. We call this
set Reduced Set of Reference Shape Graphs (RSRSG), since not all the different
RSGs arising in each sentence will be kept. On the contrary, several RSGs related
to different memory configurations will be fused when they represent memory
locations with similar reference patterns. There are also several properties related
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to the RSGs, and two RSGs should share these properties to be joined. Therefore,
besides the number of nodes in an RSG, the number of different RSGs associated
with a sentence are limited too. This union of RSGs greatly reduces the number
of RSGs and leads to a practicable analysis.

The symbolic execution of the code consists in the abstract interpretation of
each sentence in the code. This abstract interpretation is carried out iteratively
for each sentence until we reach a fixed point in which the resulting RSRSG
associated with the sentence does not change any more [4]. This way, for each
sentence that modifies dynamic structures, we have to define the abstract se-
mantics which describes how these sentences modify the RSRSG. We consider
six simple instructions that deal with pointers: * = NULL, x = malloc, = = y,
x — sel = NULL, x — sel = y, and = y — sel. More complex pointer
instructions can be built upon these simple ones and temporal variables.

The output RSRSG resulting from the abstract interpretation of a sentence
over an input RSRSG; is generated by applying the abstract interpretation to
each rsg; € RSRSG;. After the abstract.interpretation of the sentence over
the rsg; € RSRSG; we obtain a set of output rsg,. As we said, we cannot
keep all the rsg, arising from the abstract interpretation. On the contrary, each
rsgo, will be compressed, which means the summarization of compatible nodes
in the rsg,. Furthermore, some of the rsg,s can be fused in a single RSG if
they represent similar memory configurations. This operation greatly reduces
the number of RSGs in the resulting RSRSG. In the worst case, the sequence
of operations that the compiler carries out in order to symbolically execute a
sentence are: graph division, graph prune, sentence symbolic execution (RSG
modification), RSG compression and RSG union to build the final RSRSG. Due
to space constraints we cannot formally describe this operations neither the
abstract semantics carried out by the compiler. However, in order to provide
an overview of our method we present a data structure example which will be
refered to during the framework and operations description.

2.1 Working Example

The data structure, presented in Fig. 1 (a), is a doubly linked list of pointers
to trees. Besides this, the leaves of the trees have pointers to doubly linked
lists. The pointer variable S points to the first element of the doubly linked list
(header list). Each item in this list has three pointers: nat, prv, and tree. This
tree selector points to the root of a binary tree in which each element has the
lft and rgh selectors. Finally, the leaves of the trees point to additional doubly
linked lists. All the trees pointed to by the header list are independent and do
not share any element. In the same way, the lists pointed to by the leaves of the
same tree or different trees are also independent.

This data structure is built by a C code which traverses the elements of the
header list with two pointers and eventually can permute two trees. Our compiler
has analyzed this code obtaining an RSRSG for each sentence in the program.
Figure 1 (b) shows a compact represetation of the RSRSG obtained for the last
sentence of the code after the compiler analysis.



